Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1"

Transcript

1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del pino ssoci il punto P in modo tle che si: 3. P P. Si noti che d quest definizione segue che il punto è il punto medio del segmento PP. Figur E evidente che il corrispondente del centro è il centro stesso; dunque il centro è un punto unito dell simmetri s. I punti P e P che si corrispondono nell simmetri centrle nche simmetrici rispetto l punto. s (cioè: P P s ) si dicono Si noti che un simmetri centrle s è un corrispondenz biunivoc dl pino in sé. Esminimo or lcune proprietà delle simmetrie centrli.

2 Anzitutto si noti che se s (P) = P, llor s (P) = P; in ltri termini si h per ogni punto P del pino: s ( s (P)) = P. Questo signific che l composizione di un simmetri centrle con se stess è lidentità; ne consegue che linvers dell simmetri centrle s è l simmetri stess, cioè: 3. s. s Tle ftto si esprime nche dicendo che l simmetri centrle è un corrispondenz involutori. Si dimostr che ogni simmetri centrle è unisometri e che ogni simmetri centrle trsform un rett r in un rett d ess prllel. Essendo l simmetri centrle unisometri, si h che ess gode di tutte le proprietà geometriche delle isometrie (vedere il cpitolo ). Anche per studire lcune proprietà delle simmetrie centrli, può essere conveniente riferire il pino d un sistem di coordinte crtesine ortogonli O; in tl modo, dt un simmetri centrle s, si possono trovre le equzioni che permettono di ottenere le coordinte del punto s (P) = P = (, ) trmite le coordinte del punto P = (, ). Si il centro dell simmetri centrle s : = (, b). Si P = (, ) e si il suo corrispondente P = (, ). Allor si hnno le seguenti equzioni che esprimono le coordinte del punto P trmite quelle del punto P: 3.3 b. Le 3.3 sono nche chimte le equzioni dell simmetri centrle.

3 Osservimo che b è l mtrice ssocit ll simmetri centrle di equzioni 3.3. Si vede immeditmente che è un isometri dirett. Nel cso in cui il centro è lorigine (, ) degli ssi crtesini, dlle 3.3 si ottengono le equzioni dell simmetri centrle di centro lorigine degli ssi: 3.4 l cui mtrice ssocit è Figur Si è visto che il centro è un punto unito dell simmetri centrle; usndo le equzioni 3.3 si può dimostrre che il centro è lunico punto unito dell simmetri centrle. Definizione. Due figure F ed F si dicono simmetriche rispetto l punto se esiste un simmetri centrle s tle che: F s F.

4 Figur 3 Poiché ogni simmetri centrle è un isometri (congruenz), si h che due figure simmetriche rispetto d un punto sono congruenti. Definizione. Un figur F si dice simmetric rispetto d un punto se ess è l corrispondente di se stess nell simmetri centrle s, cioè: F s F. Il punto si chim nche il centro di simmetri dell figur F. Figur 4 Vedimo cos ccde effettundo l composizione di due simmetrie centrli. onsiderimo due simmetrie centrli: s con = (, b) vente equzioni

5 3.5 b ed s con b vente equzioni, 3.6 " " b. onsiderimo l composizione s o s di queste simmetrie centrli; per ottenere le equzioni di quest composizione, si sostituisce nelle equzioni 3.6 le espressioni di e che si hnno nelle 3.5; in tl modo si ottiene: 3.7 " " b b. Si noti che le equzioni 3.7 rppresentno le equzioni dell trslzione di vettore u = i b b. j Figur 5 Allo stesso risultto si perviene usndo le mtrici ssocite:

6 b b = b b Pssimo or lle simmetrie ssili. Per definire le simmetrie ssili viene usto il concetto di sse di un segmento. Definizione. Dt un rett del pino, si chim simmetri ssile di sse (che si indic con s ) l corrispondenz dl pino in sé che d ogni punto P dell rett ssoci lo stesso punto P e d ogni punto P non pprtenente ll rett ssoci il punto P tle che l rett è lsse del segmento PP. Figur 6 I punti P e P che si corrispondono nell simmetri ssile dicono nche simmetrici rispetto ll rett r. s (cioè tli che P P s ) si Vedimo or lcune proprietà delle simmetrie ssili. Si noti nzitutto che un simmetri ssile s è un corrispondenz biunivoc dl pino in sé. Inoltre si h che ogni simmetri ssile è unisometri. Essendo l simmetri ssile unisometri, si h che ess gode di tutte le proprietà geometriche delle isometrie (vedere il cpitolo ).

7 Dll definizione di simmetri ssile segue che tutti i punti del suo sse sono punti uniti, mentre tutte le rette perpendicolri llsse sono rette unite. Inftti un qulunque punto di un rett r perpendicolre llsse h per corrispondente un punto dell rett r. Supponimo or che si: s (P) = P; llor si ottiene: s (P) = P; in ltri termini si h per ogni punto P del pino: s ( s (P)) = P. Questo signific che l composizione di un simmetri ssile con se stess, cioè s o s è lidentità; ne consegue che linvers dell simmetri ssile s è l simmetri stess, cioè: 3.8 s. s Dunque ogni simmetri ssile è un corrispondenz involutori. Anche per studire lcune proprietà delle simmetrie ssili, può essere conveniente riferire il pino d un sistem di coordinte crtesine ortogonli O; in tl modo, dt un simmetri ssile s, è possibile trovre le equzioni che permettono di ottenere le coordinte del punto s (P) = P = (, ) trmite le coordinte del punto P = (, ). Le equzioni delle simmetrie ssili sono un po più complicte di quelle delle simmetrie centrli; considerimo nzitutto lcuni csi prticolri. Supponimo come primo cso che lsse dell simmetri ssile s si lsse delle scisse; si P = (, ) e si il suo corrispondente P = (, ). Allor le equzioni dell simmetri ssile vente per sse lsse delle scisse sono le seguenti: 3.9 l cui mtrice ssocit è.

8 Si dimostr che le equzioni dell simmetri ssile vente per sse lsse delle ordinte sono le seguenti: 3. l cui mtrice ssocit è. Si vede immeditmente che sono isometrie indirette. Si dimostr che le equzioni dell simmetri ssile s, vente per sse un rett prllel llsse delle scisse di equzione = h, sono le seguenti: 3. h l cui mtrice ssocit è h. Nello stesso modo si dimostr che le equzioni dell simmetri ssile s, vente per sse un rett prllel llsse delle ordinte di equzione = k, sono le seguenti: 3. k l cui mtrice ssocit è k. Figur 7

9 In generle si dimostr che le equzioni dell simmetri ssile vente per sse l rett di equzione = m + q sono le seguenti: : 3.3. m q m m m qm m m Si noti che le precedenti equzioni 3.9 e 3. sono un cso prticolre di queste ultime equzioni e si ottengono ponendo rispettivmente m =, q = e m =, q = h. Dlle equzioni 3.3 si ottengono come cso prticolre le equzioni dell simmetri ssile vente per sse l bisettrice del primo e del terzo qudrnte; poiché tle rett h equzione =, dobbimo porre nelle 3.3: m = e q = ; si ottengono così le equzioni cercte: 3.4 l cui mtrice ssocit è. Figur 8

10 Usndo le equzioni dell simmetri ssile si può dimostrre il seguente importnte risultto: l composizione di due simmetrie ssili con ssi perpendicolri è un simmetri centrle vente per centro il punto di intersezione dei due ssi. Nel cso prticolre in cui le simmetri ssili hnno gli ssi prlleli, llor l loro composizione è un trslzione, come prov il seguente risultto: l composizione di due simmetrie ssili con gli ssi prlleli è un trslzione. Di precedenti risultti segue in prticolre che l composizione di due simmetrie ssili non è un simmetri ssile. Un ltro risultto rigurdnte l composizione di simmetrie ssili è il seguente: l composizione di due simmetrie ssili con ssi perpendicolri è commuttiv. Il risultto precedente è interessnte poiché sppimo che in generle l composizione di due ppliczioni non è commuttiv (vedere lesercizio 4 del cpitolo ). Definizione. Due figure F ed F si dicono simmetriche rispetto d un rett se esiste un simmetri ssile s tle che: F s F. Figur 9 Poiché ogni simmetri ssile è unisometri (congruenz), si h che due figure simmetriche rispetto d un rett sono congruenti.

11 Definizione. Un figur F si dice simmetric rispetto d un rett se ess è l corrispondente di se stess nell simmetri ssile L rett si chim nche sse di simmetri dell figur F. s, cioè: F s F. Si noti che un figur, vente due ssi di simmetri e ortogonli, è nche simmetric rispetto l punto di intersezione dei due ssi di simmetri. Figur 3. Esercizi svolti. Dimostrre che ogni simmetri centrle trsform un rett r in un rett d ess prllel. Si dt un rett r del pino e sino P e Q due punti distinti di quest rett; sino P e Q i rispettivi corrispondenti per mezzo di un simmetri centrle; tli punti pprtengono ll rett r che è l corrispondente dell rett r. Dll dimostrzione dellesercizio precedente si h in prticolre che i segmenti PQ e PQ sono nche prlleli; ne consegue che le rette r ed r sono prllele.

12 . Dimostrre le equzioni 3.3 dell simmetri centrle Poiché è il punto medio del segmento PP, si h dll formul del punto medio di un segmento: b, d cui si ottengono le equzioni 3.3 dell simmetri centrle s di centro = (, b): b. 3. Determinre l rett r corrispondente dell rett r di equzione = 3 - nell simmetri vente per centro lorigine e verificre che r e r sono prllele. L simmetri vente per centro lorigine h equzioni. Lequzione di r è dt d 3( ), d cui si h: = 3 +. Perciò le rette r e r sono prllele, poiché hnno entrmbe coefficiente ngolre ugule Dimostrre che il punto di incontro delle digonli di un prllelogrmmo è il suo centro di simmetri. onsiderimo il prllelogrmmo ABD e si O il punto di incontro delle digonli. onsiderimo l simmetri di centro O. Poiché, per un proprietà dei prllelogrmmi, O è il punto medio delle digonli A e BD, si h che in quest simmetri l punto A corrisponde il punto ed l punto B corrisponde il punto D.

13 Dunque l lto AB corrisponde il lto D ed l lto AD corrisponde il lto B. Di conseguenz il punto di intersezione delle digonli di un prllelogrmmo è il suo centro di simmetri. 5. Dimostrre l formul 3.9. Si dto un punto P = (, ) del pino e si P = (, ) il suo corrispondente nell simmetri ssile vente per sse lsse delle scisse. Si H l proiezione ortogonle del punto P sullsse delle scisse. Il punto H = (, ) è il punto medio del segmento PP, perciò si h: = e + =, d cui si ottengono le equzioni 3.9 dell simmetri ssile vente per sse lsse delle scisse:. 6. Dimostrre l formul 3.. Si = h lequzione di un rett prllel llsse delle scisse e considerimo l simmetri ssile di sse. onsiderimo un punto del pino P = (, ) ed il suo corrispondente P = (, ). himto con H il piede dell perpendicolre condott dl punto P ll rett, si h: H = (, h). Il punto H deve essere il punto medio del segmento PP; dunque, dll formul del punto medio di un segmento si ottiene: h, d cui si hnno le equzioni 3. dell simmetri ssile s :

14 h. 7. Dimostrre che l composizione di due simmetrie ssili con gli ssi prlleli è un trslzione. Sino dte due simmetrie ssili s e s con gli ssi e b prlleli; senz perdere in b generlità, possimo considerre un sistem di riferimento crtesino O in cui le rette e b sono prllele llsse delle ordinte. Supponimo che le equzioni delle rette e b sino rispettivmente: = h e = k. Usndo le mtrici ssocite lle simmetrie, si h che: k h = k h che è proprio l mtrice ssocit ll trslzione di vettore v = (k h)i. 8. Dimostrre che l composizione di due simmetrie ssili con ssi perpendicolri è un simmetri centrle vente per centro il punto di intersezione dei due ssi. Sino dte due simmetrie ssili s e s con gli ssi e b perpendicolri; senz perdere in b generlità, possimo considerre un sistem di riferimento crtesino O in cui l rett coincid con lsse delle scisse e l rett b coincid con lsse delle ordinte. Si P = (, ) il corrispondente del punto P = (, ) trmite l simmetri ssile s e si P" = (", ") il corrispondente del punto P = (, ) trmite l simmetri ssile s. b Tenendo conto delle equzioni 3.9 e 3., si ottiene:

15 e " ". Sostituendo nell second equzione i vlori di e dell prim equzione, si ottengono le equzioni dell composizione s o s : b " ", che sono proprio le equzioni dell simmetri centrle con il centro nellorigine degli ssi coordinti. Si rriv llo stesso risultto usndo le mtrici ssocite. 9. Determinre il tringolo simmetrico del tringolo di vertici A = (, 3), B = (, ), = (, -4) nell simmetri vente per sse l rett di equzione =. Sppimo dll formul 3.4 che l simmetri dt h equzioni:. Si h: A B,3 A 3,,, B,,, 4 4,, Quindi il tringolo AB viene trsformto nel tringolo di vertici A = (3, ), B = (, ), = (-4, ).

16 3.3 Esercizi proposti. Dimostrre che due ngoli opposti l vertice si corrispondono in un simmetri centrle.. to il tringolo AB si consideri il punto corrispondente di nell simmetri vente per centro il punto medio M del lto AB. Dimostrre che i segmenti A e B sono congruenti. 3. Nell simmetri ssile vente per sse l rett =, ll rett r corrisponde l rett r di equzione - + =. Determinre lequzione di r. R. + + =. 4. Determinre, se esiste, l simmetri ssile rispetto d un rett prllel llsse che port l curv di equzione 3 nell curv di equzione 3. R. Equzione dellsse:. 5. Determinre sinteticmente, usndo le simmetrie ssili, il centro dell circonferenz che pss per i punti A, B e. 6. Il segmento AB, trmite un simmetri ssile di sse r, si trsform nel segmento AB in modo tle che, detto O il punto di incontro dei prolungmenti di AB e AB, il tringolo AOA risulti equiltero. ome è posto il segmento AB rispetto ll rett r? R. L rett AB form con l rett r un ngolo di I tringoli AB e DEF di vertici A = (, ), B = (, ), = (3, 3) e D = (3, -5), E = (, -3), F = (, -4), si corrispondono in un simmetri. Qule? R. Simmetri ssile con sse di equzione: = -.

17 8. Nell simmetri ssile vente per sse l bisettrice del primo e del secondo qudrnte, dimostrre che le circonferenze con i centri sulle bisettrici si trsformno in se stesse sebbene bbino due soli punti uniti. 9. Determinre il trsformto del rettngolo di vertici A = (-, -), B = (, -), = (, ) e D = (-, ) nell simmetri ssile vente per sse l bisettrice del primo e del terzo qudrnte. R. A = (-, -), B = (-, ), = (, ) e D = (, -). Determinre lequzione dell rett corrispondente ll rett di equzione = 4 - nell simmetri ssile vente per sse l rett di equzione =. R. = Senz clcolre lequzione di r, determinre il punto di intersezione P tr l rett r di equzione + - = e l rett r simmetric di r rispetto llsse. R. P = (, ).. Dti due tringoli AD e BD di vertici A = (-, ), B = (, ), con e D pprtenenti llsse delle, dimostrre che lsse è sse di simmetri del qudriltero ABD. 3. Utilizzndo le simmetrie, dimostrre che un qulunque punto dellltezz reltiv ll bse di un tringolo isoscele è equidistnte di lti. 4. Determinre le equzioni degli ssi di simmetri del qudrto di vertici A = (, ), B = (5, ), = (5, 4) e D = (, 4). 5 7 R.,,, Dto il tringolo AB e indicto con il simmetrico di rispetto l punto medio M del segmento AB e con B il simmetrico di B rispetto l punto medio L di A, dimostrre che i tre punti B,, A sono llineti.

18 6. Dt un simmetri ssile, esistono rette che non sono unite in quest simmetri? E rette che non hnno punti uniti? R. Sì; sì. 7. Dire se un tringolo equiltero h il centro di simmetri. R. No. 8. Dire se un tringolo equiltero h ssi di simmetri. R. Sì. 9. Dire se un generico prllelogrmmo h ssi di simmetri. R. No.. Dire se un rettngolo h ssi di simmetri. R. Sì.. Qunti ssi di simmetri h un qudrto? R. Quttro.. Qunti ssi di simmetri h un generico trpezio isoscele? R. Uno. 3. Qunti ssi di simmetri h l figur formt dllunione di due rette incidenti? R. Due. 4. Qunti ssi di simmetri h l figur formt dllunione di due rette prllele? R. Infiniti. 5. Dimostrre che un rett pssnte per il punto di incontro O delle digonli di un prllelogrmmo intersec due lti opposti in due punti equidistnti d O.

19 6. Si dto un prllelogrmmo ABD. Dimostrre che, se un prllelogrmmo DEFG h i vertici opposti sui lti opposti di ABD, llor i due prllelogrmmi hnno lo stesso centro di simmetri. 7. Linsieme delle simmetrie centrli, venti un centro fissto, formno un gruppo rispetto ll legge di composizione di funzioni? R. Sì. 8. Linsieme di tutte le simmetrie centrli formno un gruppo rispetto ll legge di composizione di funzioni? R. No.

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

1 COORDINATE CARTESIANE

1 COORDINATE CARTESIANE 1 COORDINATE CARTESIANE In un sistem di ssi crtesini (,) un punto P è identificto dll su sciss e dll su ordint : Asciss : distnz di P dll sse delle ordinte Ordint :distnz di P dll sse delle scisse P(-4,4)

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

Ellisse riferita al centro degli assi

Ellisse riferita al centro degli assi Appunti delle lezioni tenute in clsse: ellisse e iperole Ellisse riferit l centro degli ssi Dti due punti F ed F detti fuochi, l ellisse è il luogo geometrico dei punti P del pino per cui è costnte l somm

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana l congruenz teoremi sugli ngoli γ teorem sugli ngoli complementri Se due ngoli sono complementri di uno stesso ngolo α β In generle: Se due ngoli sono complementri di due ngoli congruenti α γ β teorem

Dettagli

TRASFORMAZIONI GEOMETRICHE DEL PIANO

TRASFORMAZIONI GEOMETRICHE DEL PIANO TRASFORMAZIONI GEOMETRICHE DEL PIANO INTRODUZIONE Per trsformzione geometric pin si intende un corrispondenz iunivoc fr i punti di un pino, ossi un funzione iiettiv che ssoci d ogni punto P del pino un

Dettagli

TEOREMI FONDAMENTALI DI GEOMETRIA ELEMENTARE

TEOREMI FONDAMENTALI DI GEOMETRIA ELEMENTARE uthor: Ing, Giulio De Meo GEOMETRIA TEOREMI FONDAMENTALI DI GEOMETRIA ELEMENTARE L somm degli ngoli interni di un poligono di n lti è (n - ) 180. L somm degli ngoli esterni di un qulsisi poligono vle 360.

Dettagli

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Antonella Greco, Rosangela Mapelli. E-Matematica. E-Book di Matematica per il triennio. Volume 1

Antonella Greco, Rosangela Mapelli. E-Matematica. E-Book di Matematica per il triennio. Volume 1 Antonell Greco, Rosngel Mpelli E-Mtemtic E-Book di Mtemtic per il triennio Volume COPIA SAGGIO Cmpione grtuito fuori commercio d esclusivo uso dei docenti Grmond 009 Tutti i diritti riservti Vi Tevere,

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i

Dettagli

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1 Prolemi e rppresentzione di prolemi di geometri dello spzio - ludio ered ferio 00 pg. onvenzioni di disegno e di rppresentzione Nel corso dell trttzione si dotternno le seguenti convenzioni simoliche:

Dettagli

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione eori di Jourwski ü [A.. 0-03 : ultim revisione 4 gennio 03] Si pplic l teori di Jourwski l fine di clcolre l distribuzione di tensioni tngenzili su lcune sezioni soggette sforzo di tglio.. Sezione d ê

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Richiami sui vettori. A.1 Segmenti orientati e vettori

Richiami sui vettori. A.1 Segmenti orientati e vettori A Richimi sui vettori Richimimo lcune definizioni e proprietà dei vettori, senz ssolutmente pretendere di drne un trttzione mtemticmente complet. Lvoreremo sempre in uno spzio crtesino (euclideo) tre dimensioni,

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA

COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA PROBLEMI DI APPLICAZIONE DELL'ALGEBRA ALLA GEOMETRIA ) Inscrivere in un semicirconferenz di dimetro r un rettngolo ABCD vente il lto AB sul dimetro

Dettagli

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze Alunno/.. Alunno/ Pgin Esercitzione in preprzione ll PROVA d ESAME Buon Lvoro Prof.ss Elen Sper. Il piccolo fermcrte dell figur è relizzto nel seguente modo. Si prende un cubo di lto cm e su un fcci si

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

7.5. BARICENTRI 99. Esempio 7.18 (Baricentro di una lamina ellissoidale omogenea). Consideriamo la lamina ellissoidale omogenea in figura.

7.5. BARICENTRI 99. Esempio 7.18 (Baricentro di una lamina ellissoidale omogenea). Consideriamo la lamina ellissoidale omogenea in figura. 7.5. BAICENTI 99 P J Q Gli ssi HJ e PQ (che isecno i lti opposti del rettngolo) sono ssi di simmetri mterile. il ricentro dell lmin coincide con l intersezione dei due ssi: G, G H Esempio 7.18 (Bricentro

Dettagli

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 20 20.1. Prodotti sclri. Definizione 20.1.1. Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione.

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione. Le trsformzioni geometriche ITL 7 TERI Letture llo specchio! Ingegni, ossesso, nilin: tre esempi di plindromi, ovvero di prole che si possono leggere si d sinistr verso destr, si d destr verso sinistr.

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Proiettività della Retta e del Piano.

Proiettività della Retta e del Piano. Introduzione. In queste note proponimo l clssificzione delle proiettività per l rett proiettiv ed il pino proiettivo su un corpo lgebricmente chiuso. Nel cso dell rett studieremo nche il cso del corpo

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

Geometria analitica. punti, rette, circonferenza, ellisse, iperbole, parabola. ITIS Feltrinelli anno scolastico Il piano cartesiano

Geometria analitica. punti, rette, circonferenza, ellisse, iperbole, parabola. ITIS Feltrinelli anno scolastico Il piano cartesiano Geometri nlitic punti, rette, circonferenz, ellisse, iperbole, prbol ITIS Feltrinelli nno scolstico 007-008 Il pino crtesino Si dice pino crtesino un sistem formto d due rette perpendicolri che si intersecno

Dettagli

Appunti di matematica 3 Indice

Appunti di matematica 3 Indice Appunti di mtemtic Indice. Ripsso di lgebr e geometri del biennio. Geometri nlitic Il pino crtesino Rett Circonferenz Prbol Ellisse Iperbole Complementi di geometri nlitic. Successioni numeriche. Funzione

Dettagli

Integrale definito. Introduzione: il problema delle aree

Integrale definito. Introduzione: il problema delle aree Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,

Dettagli

Definiamo ora alcuni vettori particolarmente importanti detti versori.

Definiamo ora alcuni vettori particolarmente importanti detti versori. Prof. A. Di Mro I versori Definimo or lcni vettori prticolrmente importnti detti versori. Un versore è semplicemente n vettore di modlo nitrio. Normlmente gli ssi, e z vengono ssociti i versori i ˆ, ˆj,

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

La parabola con asse parallelo all ady

La parabola con asse parallelo all ady L prbol con sse prllelo ll dy I Prbol con vertice nell origine degli ssi crtesini I disegni degli esercizi dll 1 l 3 dell sched di lbortorio, sono i seguenti: Quindi il segno del coefficiente di x determin

Dettagli

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE.

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE. L prol In figur è trccito il grfico di un prol con sse di simmetri verticle. Si vede suito dl grfico ce: l curv è simmetric rispetto l suo sse di simmetri il suo punto più in sso è il vertice il vertice

Dettagli

Contenuti di matematica classe prima liceo scientifico di ordinamento e delle scienze applicate.

Contenuti di matematica classe prima liceo scientifico di ordinamento e delle scienze applicate. Contenuti di mtemtic clsse prim liceo scientifico di ordinmento e delle scienze pplicte. SAPERE Sper definire, rppresentre e operre con gli insiemi. Conoscere gli insiemi numerici N, Z, Q e sperci operre

Dettagli

Determinanti. Prodotto vettoriale. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Determinanti. Prodotto vettoriale. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milno Corso di Anlisi e Geometri 1 Federico Lstri federico.lstri@polimi.it I erminnti. Il prodotto vettorile. 11 Gennio 2016 Indice 1 Determinnti di mtrici 2 2 2 1.1 Clcolo del erminnte.

Dettagli

triangolo equilatero di lato 9 cm. Quanto misura il lato del rombo?

triangolo equilatero di lato 9 cm. Quanto misura il lato del rombo? GB00001 Il perimetro di un rombo è triplo di quello di un ) 24 cm. b) 21 cm. c) 26,5 cm. d) 20,25 cm. d tringolo equiltero di lto 9 cm. Qunto misur il lto del rombo? GB00002 Due segmenti AB e CD sono tli

Dettagli

Elementi di Geometria. Lezione 02

Elementi di Geometria. Lezione 02 Elementi di Geometri Lezione 02 Angoli complementri e supplementri Due ngoli si dicono complementri qundo l loro somm è un ngolo retto. In Figur 15 i due ngoli e sono complementri perché, sommti come descritto

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi.

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi. Clcolo letterle. ) Operzioni con i monomi. ) L moltipliczione. ) L divisione. c) Risolvi le seguenti espressioni con i monomi. ) I polinomi. ) Clcol le seguenti somme di polinomi. ) Applic l proprietà

Dettagli

ACCADEMIA NAVALE. Syllabus POLIGRAFICO ACCADEMIA NAVALE LIVORNO

ACCADEMIA NAVALE. Syllabus POLIGRAFICO ACCADEMIA NAVALE LIVORNO ACCADEMIA NAVALE Sllbus POLIGRAFICO ACCADEMIA NAVALE LIVORNO PREFAZIIONE È noto che in tluni ordini dell scuol medi superiore l'insegnmento dell mtemtic non giunge sino ll'ultimo nno, in ltri, lo svolgimento

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

Gli Elementi di Euclide

Gli Elementi di Euclide Gli Elementi di Euclide Muro Sit e-mil: murosit@tisclinet.it Versione provvisori. Novembre 2011. 1 Indice 1 L struttu degli Elementi. 1 2 Le prime proposizioni 3 3 Il quinto postulto 4 Simplicio: Voi procedete

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Ottavio Serra. Baricentri

Ottavio Serra. Baricentri Ottvio err Bricentri Bricentro geometrico di un tringolo (All letter, ricentro signific centro del peso Vedremo tr poco il perché di questo nome) L dimostrzione seguente risle Euclide FIG Considero le

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

Funzioni 1. 3) una legge che ad un elemento x di X associa al più un unico elemento ( x)

Funzioni 1. 3) una legge che ad un elemento x di X associa al più un unico elemento ( x) Funzioni Un funzione f d X in Y è costituit d un tern di elementi ) un insieme X, detto dominio di f 2) un insiemey, detto codominio di f f di Y. Nel cso, in cui X,Y sino sottinsiemi di R, generlmente

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

INTERVALLI NELL INSIEME R

INTERVALLI NELL INSIEME R INTEVALLI NELL INSIEME Lo studio dell topologi (1) (dl greco "nlysis situs" ossi "studio del luogo") dell'insieme è di fondmentle importnz per gli rgomenti e i prolemi di nlisi infinitesimle. Il "luogo"

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

Triangoli rettangoli

Triangoli rettangoli Tringoli rettngoli Teori in sintesi Teoremi sui tringoli rettngoli Teorem In un tringolo rettngolo l misur di un cteto è ugule quell dellipotenus moltiplict per il coseno dellngolo cuto esso dicente o

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

Quadriche in E 3 (C) L equazione cartesiana di una quadrica in coordinate non omogenee (x,y,z)

Quadriche in E 3 (C) L equazione cartesiana di una quadrica in coordinate non omogenee (x,y,z) Qudriche in E (C) L equione crtesin di un qudric in coordinte non omogenee (,,) Q:, +, +, +, +, +, +,4 + +,4 +,4 + 4,4. in coordinte omogenee (,,, 4 ) Q:, +, +, +, +, +, + +,4 4 + +,4 4 +,4 4 + 4,4 4.

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione ordinri Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA In un pino, riferito d un sistem

Dettagli

Classe V E. Geometria

Classe V E. Geometria Postulti di Euclide: Primi postulti: Clsse V E Geometri Lo spzio contiene infiniti punti, infinite rette e infiniti pini, un pino contiene infiniti punti e infinite rette, un rett contiente infiniti punti.

Dettagli

Verifica per la classe seconda COGNOME... NOME... Classe... Data...

Verifica per la classe seconda COGNOME... NOME... Classe... Data... L rett Cpitolo Rett erifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt............................... Rett Rette

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni Funzioni Consider le seguenti telle e stilisci se e sono direttmente proporzionli, inversmente proporzionli o se vi è un proporzionlità qudrtic. Scrivi l espressione nlitic delle funzioni e rppresentle

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

5 Geometria analitica

5 Geometria analitica 58 Formulrio di mtemtic 5 eometri nlitic 5.1 Punti e rett distnz di due punti d ( ) + ( y y ) 1 1 distnz tr due punti con ugule sciss d y y1 distnz tr due punti con ugule ordint d 1 punto medio di un segmento

Dettagli

APPLICAZIONI LINEARI e MATRICI ASSOCIATE

APPLICAZIONI LINEARI e MATRICI ASSOCIATE APPLICAZIONI LINEARI e MATRICI ASSOCIATE Dt un ppliczione f: V W con V e W spzi vettorili si dice che f è un ppliczione linere o omomorfismo f(v + v 2 ) = f(v ) + f(v 2 ) v, v 2 V f(αv) = α f(v) v V e

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Cap. 4 - Algebra vettoriale

Cap. 4 - Algebra vettoriale Mssimo Bnfi Cp. 4 - Algebr vettorile Cpitolo 4 Algebr vettorile 4.1. Grndezze sclri Si definiscono sclri quelle grndezze fisiche che sono descritte in modo completo d un numero con l reltiv unità di misur.

Dettagli

Lezione 1 Insiemi e numeri

Lezione 1 Insiemi e numeri Lezione Insiemi e numeri. Nozione di insieme, sottoinsieme, pprtenenz Con l prol insieme intendimo un collezione di oggetti detti suoi elementi. Ogni insieme è denotto con lettere miuscole e i suoi elementi

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

y = Funzioni Lineari : Funzione quadrato: Modulo Funzione omografica (iperbole): Funzioni Potenza: Funzione Esponenziale Funzione Logaritmica

y = Funzioni Lineari : Funzione quadrato: Modulo Funzione omografica (iperbole): Funzioni Potenza: Funzione Esponenziale Funzione Logaritmica Funzioni Lineri : Funzione qudrto: Modulo Funzione omogrfic (iperbole: Funzioni Elementri 1/ y m + q y + b + y y c + + b d c Funzioni Potenz: y Funzione Esponenzile Funzione Logritmic y y log ( Funzioni

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Sessione suppletiv Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PROBLEMA Sono dti un pirmide

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Teori in sintesi ESPONENZIALI Potenze con esponente rele Esponenzili e ritmi L potenz è definit: se, per ogni R se, per tutti e soli gli R se, per tutti e soli gli Z. Sono definite: 7 7. Non sono definite:.

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

ELEMENTI DI TEORIA DEI NUMERI

ELEMENTI DI TEORIA DEI NUMERI ELEMENTI DI TEORIA DEI NUMERI 1. Richimi di teori Con Z indichimo l insieme dei numeri reltivi. Comincimo con il ricordre l definizione di quoziente e resto dell divisione di due numeri in Z. Definizione

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale Esercitzione di Mtemtic sulle equzioni di secondo grdo (o d esse riconducibili) nel cmpo rele 1. Risolvere, nel cmpo rele, le seguenti equzioni di secondo grdo: () 81x 0; (b) (x 1) 7x ; (c) 7x x 0; (d)

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

Operazioni sulle Matrici

Operazioni sulle Matrici Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Prof Emnuele ANDRISANI Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se 0, per ogni R se 0, per tutti e soli gli R se 0, per tutti e soli gli Z Esponenzili e ritmi Sono definite:

Dettagli

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1.

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1. TEST DI MATEMATICA Funzioni in un, Funzioni in due vriili Integrli Equzioni differenzili ) Il vlore del limite seguente e e e lim è ) Il vlore del limite seguente 5 lim 5 è : ) L derivt prim dell funzione

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli