{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }"

Transcript

1 Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri nturli privto dello zero viene indicto col simbolo: o { 1,,, 4,5,6,7,8,,10,11,1, } } 0,,4,6,8,10,1,14, sono i numeri nturli pri, 1,,5,7,,11,1,15, sono i numeri nturli dispri. Somm di due o più numeri nturli L ddizione è l operzione che pplict due numeri (detti ddendi) f corrispondere un solo numero detto somm. Esempio I numeri d ddizionre si chimno ddendi ed il risultto che si ottiene si chim somm Le proprietà formli dell ddizione Proprietà commuttiv: + b b Proprietà ssocitiv: + ( b+ c) + b+ c ( ) Proprietà dissocitiv: L somm di due o più numeri nturli non cmbi se sostituimo d un ddendo l somm di due o più numeri che bbino come somm l ddendo sostituito. + b + c+ d se b c d ( ) Esistenz dell elemento neutro: Qulunque si il numero nturle n si h: n n n /1

2 Lezione 01 Aritmetic Pgin di 1 Il numero 0 è l elemento neutro rispetto ll ddizione L sottrzione L differenz di due numeri nturli, col primo numero mggiore o ugule l secondo, è il numero nturle che ddizionto l secondo dà come somm il primo. Nell sottrzione il primo numero si chim minuendo, il secondo sottrendo ed il risultto che si ottiene si chim differenz. L sottrzione può essere eseguit soltnto qundo il minuendo è mggiore o ugule l sottrendo. Il sottrendo è il numero che deve essere sottrtto, il minuendo è il numero di prtenz che deve essere diminuito. b c b+ c cioè l sottrzione è l operzione invers dell ddizione. si chim minuendo, b si chim sottrendo, c si chim differenz. Nell sottrzione lo zero lsci invrito il minuendo solo se esso rppresent il sottrendo. Inftti l sottrzione non gode dell proprietà commuttiv. L sottrzione gode dell proprietà invrintiv che fferm qunto segue: se ggiungo o sottrggo uno stesso numero l minuendo e l sottrendo l differenz non cmbi. Proprietà invrintiv: b ( + x) ( b+ x) ( x) ( b x) L sottrzione è l operzione invers dell ddizione. /1

3 Lezione 01 Aritmetic Pgin di 1 L moltipliczione Per indicre l moltipliczione del numero 4 per il numero usimo l seguente scrittur 4 che si legge: quttro per due. Il risultto di quest moltipliczione viene chimto prodotto. Si chim prodotto di due numeri l somm di tnti ddendi uguli l primo fttore qunte sono le unità del secondo fttore: L moltipliczione gode dell proprietà commuttiv che fferm qunto segue: cmbindo l ordine dei fttori il prodotto non cmbi L divisione Se voglimo dividere il numero 1 per il numero scrivimo: 1 : 4 1 è il dividendo è il divisore 4 è il quoziente estto Dicimo pure che 1 : 4 perché 4 1 /1

4 Lezione 01 Aritmetic Pgin 4 di 1 L divisione è l operzione invers dell moltipliczione. Inftti il quoziente è quel numero che moltiplicto per il divisore ci dà il dividendo. 6: Dicimo che il numero 6 è divisibile Se tr due numeri esiste il quoziente estto, llor: per il numero o che è multiplo del numero il primo numero si dice divisibile per il secondo numero o è multiplo del secondo numero Dicimo pure che il numero è divisore del o che il secondo numero è divisore del primo numero 6 o sottomultiplo. numero o è sottomultiplo del primo numero. Importnte: 6: ci consente di ffermre che: Il numero 6 è multiplo del numero secondo il numero Il numero è sottomultiplo del numero 6 secondo il numero L divisione con resto Voglimo eseguire l seguente divisione: 14 :.Ottenimo: 14 : 4 con r resto 14dividendo divisore 4 quoziente intero resto resto < quoziente Possimo scrivere: 144+ dividendo quoziente divisore + resto 4/1

5 Lezione 01 Aritmetic Pgin 5 di 1 Il concetto di potenz L potenz di un numero è il prodotto di più fttori uguli quel numero. Il fttore che si ripete si chim bse dell potenz ed il numero di fttori uguli prende il nome di esponente dell potenz. 5 n L operzione medinte l qule si clcol l potenz di un numero prende il nome di elevzione potenz. n volte L potenz con esponente zero di un numero qulsisi diverso d zero è sempre ugule d 1 : L prim potenz (o potenz con esponente 1) di un qulsisi numero è ugule l numero stesso 1 Proprietà delle potenze Il prodotto di due o più potenze venti l stess bse è l potenz che h per bse l stess n p q n+p+q bse e per esponente l somm degli esponenti Il quoziente di due potenze venti l stess bse è l potenz vente per bse l stess bse e per esponente l differenz degli esponenti m n m-n : 7 : L potenz di un potenz è l potenz che h per bse l stess bse e per esponente il n nm prodotto degli esponenti ( ) ( ) 5 m 5 15 L potenz di un prodotto di fttori è ugule l prodotto delle potenze con ugule n n n n n esponente dei singoli fttori ( bcd ) b c d ( ) L potenz di un quoziente è ugule l quoziente delle potenze con ugule esponente del dividendo e del divisore b n b n n /1

6 Lezione 01 Aritmetic Pgin 6 di 1 L nozione di rdice ritmetic Si dice rdice qudrt di un numero il numero x che elevto l qudrto dà come risultto il numero dto. In simboli bbimo: x x in qunto Si dice rdice cubic di un numero il numero x che elevto l cubo dà come risultto il numero dto. In simboli bbimo: x x 15 5 in qunto 5 15 Si dice rdice qurt di un numero il numero x che elevto ll qurt potenz dà come risultto il numero dto. In simboli bbimo: 4 x 4 x Si dice rdice ennesim di un numero il numero x che elevto ll potenz ennesim dà come risultto il numero dto. In simboli bbimo : n x x n Multipli e divisori di un numero Si dice che il numero b (diverso d zero) è divisore del numero se il resto dell divisione del numero per il numero b è ugule zero. Il numero si dice che è multiplo del numero b che su volt si dice sottomultiplo o divisore del numero. Definizione: dto il numero nturle, tutti i numeri nturli b per i quli risult che il quoziente k N è un numero nturle, si chimno divisori del numero. b k N k b. è multiplo del numero b secondo il numero k, b è sottomultiplo b del numero secondo il numero k o divisore del numero. dividendo, b divisore, k quoziente Criteri di divisibilità per i numeri nturli 01) Criterio di divisibilità per : Un numero è divisibile per se l su ultim cifr è pri, cioè qundo il numero termin con un delle seguenti cifre: 0,, 4, 6, 8. 0) Criterio di divisibilità per : Un numero è divisibile per se l somm delle sue cifre è divisibile per 0) Criterio di divisibilità per 5: Un numero è divisibile per 5 se termin con 0 o con 5. 6/1

7 Lezione 01 Aritmetic Pgin 7 di 1 04) Criterio di divisibilità per : Un numero è divisibile per se l somm delle sue cifre è divisibile per 05) Criterio di divisibilità per 11: Un numero è divisibile per 11 se è divisibile per 11 l differenz tr l somm delle cifre di posto pri e l somm delle cifre di posto dispri. Numeri primi e numeri composti Un numero mggiore di 1 si dice primo se è divisibile soltnto per se stesso e per l unità. un numero non primo, cioè un numero che mmette ltri divisori oltre se stesso e l unità, si dice numero composto. Scomposizione di un numero composto in fttori primi Scomporre il numero composto in fttori primi signific trovre tutti i numeri primi il cui prodotto è ugule l numero Mssimo comune divisore e minimo comune multiplo Il mssimo comune divisore ( M.C.D. ) di due o più numeri è il mggiore dei loro divisori comuni. Per clcolre il M.C.D. di due o più numeri, col metodo dell scomposizione in fttori primi, si decompongono i numeri dti in fttori primi e poi si moltiplicno fr loro i fttori primi comuni, presi un sol volt, con l esponente più piccolo , , ( 540,840,1188) 1 M C D Due numeri si dicono primi fr loro qundo hnno come M.C.D. l unità. Il minimo comune multiplo ( m.c.m. ) di due o più numeri è il più piccolo dei multipli comuni diversi d zero. Per clcolre il m.c.m. tr due o più numeri, col metodo dell scomposizione in fttori primi, si decompongono in fttori primi i numeri dti e poi si moltiplicno tr loro i fttori comuni e non comuni, presi un sol volt, ciscuno col mssimo esponente. 7/1

8 Lezione 01 Aritmetic Pgin 8 di , 4 5 7, , m. c. m. ( 0,4,60) Le frzioni Unità frzionri è un qulsisi delle prti uguli in cui è stt divis un grndezz considert come unità. Frzione è l insieme di più unità frzionrie. Il simbolo che rppresent un frzione è costituito d due numeri interi seprti d un trtto orizzontle detto line di frzione. Il numero posto l di sotto dell line di frzione si chim denomintore ed indic in qunte prti uguli è stt divis l unità. Il numero posto l di sopr dell line di frzione si chim numertore ed indic qunte di queste prti uguli sono stte considerte. Il numertore ed il denomintore si dicono termini dell frzione. Un frzione rppresent il quoziente tr due numeri interi. Un frzione di dice propri se il numertore è minore del denomintore. Un frzione propri è minore dell unità. Un frzione si dice pprente se il numertore è multiplo del denomintore. Un frzione pprente rppresent un o più unità intere. Un frzione di dice impropri se il numertore è mggiore (m non multiplo) del denomintore. Un frzione impropri rppresent un numero mggiore dell unità. In ritmetic per numero misto si intende l somm di un numero intero e di un frzione propri. Per pssre d un frzione impropri d un numero misto si procede come segue: ) si divide il numertore dell frzione per il suo denomintore. b) sino Q, R, D rispettivmente il quoziente, il resto, il denomintore dell frzione considert: Risult: N D Q + R D N R D Q 8 + Q R D 8 6 8/1

9 Lezione 01 Aritmetic Pgin di 1 Proprietà invrintiv per le frzioni Moltiplicndo o dividendo numertore e denomintore di un frzione per uno stesso numero diverso d zero si ottiene un frzione equivlente quell dt. Semplificre un frzione signific trsformrl in un ltr equivlente vente numertore e denomintore più piccoli. L semplificzione si effettu dividendo numertore e denomintore dell dt frzione per un loro divisore comune Un frzione si dice irriducibile o ridott i minimi termini qundo il suo numertore ed il suo denomintore sono primi fr loro. Per ridurre i minimi termini un frzione bst dividere il suo numertore ed il suo denomintore per il loro M.C.D. I numeri decimli e le loro frzioni genertrici L divisione tr due numeri interi può dre luogo d un numero decimle limitto o d un numero decimle periodico. In un numero decimle, il numero formto dlle cifre ll sinistr dell virgol si chim prte inter del numero decimle, quello formto dlle cifre destr dell virgol si chim prte decimle. Quindi dicesi numero decimle un qulsisi numero formto d un prte inter e d un prte decimle. Si chimno frzioni decimli quelle frzioni che hnno come denomintore un potenz del 10. Per contrpposto, si chimno frzioni ordinrie tutte le frzioni non decimli. Sono frzioni decimli : ,, I simboli, 5647, 0, 05, 6784, 5 rppresentno numeri decimli. Le cifre che precedono (seguono) l virgol rppresentno l prte inter (decimle) del numero decimle. Regol Per scrivere un numero decimle sotto form di frzione decimle, si scrive l frzione che h per numertore il numero nturle che si ottiene sopprimendo l virgol del numero decimle dto e per denomintore l unità seguit d tnti zeri qunte sono le cifre decimli del numero. 45,45, ,047, , /1

10 Lezione 01 Aritmetic Pgin 10 di 1 Regol Un frzione decimle può essere trsformt in un numero decimle trscrivendo il numertore dell frzione e seprndo con un virgol, prtire d destr, tnte cifre qunti sono gli zeri del denomintore, ggiungendo, ll sinistr del numertore, uno o più zeri qundo il numero delle cifre del numertore è inferiore l numero degli zeri del denomintore. 75 7,5 5, 0, 0, 0, N.B. Il numero delle cifre decimli deve coincidere col numero degli zeri presenti nel denomintore dell frzione decimle. Numeri decimli periodici Dicesi numero decimle periodico ogni numero formto d un prte inter (che può nche essere 0) seguit d infinite cifre decimli che, d un certo punto in poi, si ripetono gruppi sempre nello stesso ordine. L cifre o il gruppo di cifre che si ripete dicesi periodo. Il periodo può comincire, oppure no, subito dopo l virgol; nel primo cso il numero dicesi periodico semplice, nel secondo cso dicesi periodico misto. In un numero periodico misto il gruppo delle cifre decimli che precede il periodo si chim ntiperiodo. I numeri decimli periodici si rppresentno scrivendo un sol volt il periodo e soprssegnndolo, oppure mettendolo entro due prentesi rotonde. 8, ,7 8,(7),856,856() Un frzione si dice riducibile qundo il suo quoziente è un numero decimle limitto. Un frzione si dice irriducibile qundo il suo quoziente è un numero decimle illimitto. Definizione: Chimsi frzione genertrice di un numero decimle periodico, quell frzione tle che il quoziente del suo numertore per il suo denomintore è il numero periodico dto. Teorem N 4 L frzione genertrice di un numero periodico semplice è un frzione che h per numertore l differenz fr il numero stesso privto dell virgol ( e con il periodo scritto un sol volt ) ed il numero formto dlle cifre dell prte inter, e per denomintore il numero formto d tnti qunte sono le cifre del periodo. Teorem N ,1 17 0,7 L frzione genertrice di un numero decimle periodico misto è un frzione che h per numertore l differenz fr il numero stesso privto dell virgol (e con il 7 10/1

11 Lezione 01 Aritmetic Pgin 11 di 1 periodo scritto un sol volt) ed il numero formto dlle cifre dell prte inter seguit d quelle dell ntiperiodo, e per denomintore il numero formto d tnti qunte sono le cifre del periodo, seguiti d tnti zeri qunte sono le cifre dell ntiperiodo. 41,41,(41) ,18() 0, ,56 0,5(6) Operzioni con numeri decimli periodici Per eseguire le operzioni con numeri decimli periodici, bst sostituire d essi le corrispondenti frzioni genertrici ed eseguire i clcoli secondo le regole note. Operzioni con le frzioni L somm (differenz) di due frzioni venti lo stesso denomintore è l frzione vente per numertore l somm (differenz) dei numertori e per denomintore lo stesso denomintore Per ddizionre (sottrrre) due frzioni venti denomintori diversi, si riducono prim llo stesso minimo comune denomintore e poi si pplic l regol per l ddizione (sottrzione) di frzioni venti lo stesso denomintore mcm...(10,18,15) mcm...(14,1) 4 Il prodotto di due o più frzioni è l frzione vente come numertore il prodotto dei numertori e per denomintore il prodotto dei denomintori /1

12 Lezione 01 Aritmetic Pgin 1 di 1 Per effetture l divisone di due frzione bst moltiplicre l prim frzione per l invers dell second : Per elevre potenz un frzione bst elevre quell potenz si il numertore che il denomintore dell frzione Un frzione si dice termini frzionri se il suo numertore o il suo denomintore o entrmbi sono delle frzioni. esempio Un frzione termini frzionri è ugule l prodotto del numertore per il reciproco del denomintore oppure è ugule d un frzione che h come numertore il prodotto dei termini estremi e come denomintore il prodotto dei termini medi oppure: Esempi : : : + : + : + : + : /1

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali.

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali. I rdicli Cos è un rdicle? Il simbolo si chim rdicle e si legge rdice ennesim di. - n si chim indice dell rdice e deve essere un numero nturle mggiore di zero. Qundo l indice si sottintende e il rdicle

Dettagli

Alcune mosse che utilizzano le proprietà delle operazioni in N

Alcune mosse che utilizzano le proprietà delle operazioni in N Operzioni in N Proprietà commuttiv dell ddizione + b b +,b N Proprietà ssocitiv dell ddizione ( + b) + c + (b + c) + b + c,b,c N Proprietà invrintiv dell sottrzione b ( + c) (b + c) b ( c) (b c),b,c N,b,c

Dettagli

Aritmetica Definizioni di concetti, regole e proprietà per il 1 anno della scuola media

Aritmetica Definizioni di concetti, regole e proprietà per il 1 anno della scuola media Aritmetic Definizioni di concetti, regole e proprietà per il nno dell scuol medi ) INSIEMI Concetto primitivo Un concetto primitivo è un concetto che non viene definito con precisione, m solo descritto

Dettagli

Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi

Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi Rdicli Definizioni Vrizioni di rdicli Operzioni Rzionlizzzione Rdicli doppi Potenze con esponente rzionle Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni n L espressione è comunemente dett rdice

Dettagli

N 02 B I concetti fondamentali dell aritmetica

N 02 B I concetti fondamentali dell aritmetica Uità Didttic N 0 I cocetti fodmetli dell ritmetic U.D. N 0 B I cocetti fodmetli dell ritmetic 0) Il cocetto di potez 0) Proprietà delle poteze 0) L ozioe di rdice ritmetic 0) Multipli e divisori di u umero

Dettagli

Rapporti e proporzioni numeriche

Rapporti e proporzioni numeriche Rpporti e proporzioni numeriche Rpporti. Per rpporto tr due numeri e b, di cui il secondo diverso d zero, s intende il quoziente estto dell divisione dei due numeri dti, cioè :b oppure /b. Ad esempio dire

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è un scrittur in cui compiono operzioni tr numeri rppresentti, tutti o in prte, d lettere. Per clcolre il vlore numerico di

Dettagli

Anno 2. Potenze di un radicale e razionalizzazione

Anno 2. Potenze di un radicale e razionalizzazione Anno Potenze di un rdicle e rzionlizzzione Introduzione In quest lezione impreri utilizzre le ultime due tipologie di operzioni sui rdicli, cioè l potenz di un rdicle e l rdice di un rdicle. Successivmente

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

Liceo Scientifico E. Majorana Guidonia Quaderno di lavoro estivo Matematica

Liceo Scientifico E. Majorana Guidonia Quaderno di lavoro estivo Matematica Liceo Scientifico E. Mjorn Guidoni Numeri Nturli Sintesi dell teori Domnde Risposte Esempi Come si indic l insieme dei numeri nturli {0,,,,, }? L insieme dei numeri nturli si indic con l letter N. Quli

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

LE FRAZIONI ALGEBRICHE

LE FRAZIONI ALGEBRICHE LE FRAZIONI ALGEBRICHE 9 Per ricordre H Un frzione lgebric eá un frzione che h l numertore e l denomintore dei polinomi; ess h quindi significto per tutti i vlori reli delle lettere che in ess compiono

Dettagli

SCOMPOSIZIONE IN FATTORI

SCOMPOSIZIONE IN FATTORI Sintesi di Mtemtic cur di Griell Grzino SCOMPOSIZIONE IN FATTORI ) Rccoglimento fttore comune ( Applicile d un polinomio di un numero qulunque di termini purchè i termini presentino lmeno un letter o un

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

CORSO ANALISI MATEMATICA 1 A.A. 2015/2016. Testo consigliato

CORSO ANALISI MATEMATICA 1 A.A. 2015/2016. Testo consigliato Università degli studi di Cgliri CORSO ANALISI MATEMATICA 1 A.A. 2015/2016 Docente: Monic Mrrs 1 Anlisi Mtemtic 1 Testo consiglito con elementi di geometri e lgebr linere. M. Brmnti, C.D. Pgni, S. Sls

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio Scomposizione di un polinomio in fttori Scomporre in fttori primi un polinomio signific esprimerlo come il prodotto di due più polinomi non più scomponibili Ad esempio 9 = ( 3) fttore 1 ( + 3) fttore +

Dettagli

RIEPILOGO FRAZIONI ALGEBRICHE

RIEPILOGO FRAZIONI ALGEBRICHE RIEPILOGO FRAZIONI ALGEBRICHE Per semplificre un frzione: scomponi numertore e denomintore semplific numertore e denomintore tenendo presente che: il quoziente di due fttori uguli è il quoziente di due

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

PRODOTTI NOTEVOLI. Esempi

PRODOTTI NOTEVOLI. Esempi PRODOTTI NOTEVOLI In lger ci sono delle regole per eseguire in modo più reve e più veloce l moltipliczione tr prticolri polinomi. Queste regole (o meglio formule si chimno prodotti notevoli. Anlizzimo

Dettagli

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h )

Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h ) Sezione Esercizi Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli (qundo è possiile clcolrle) 00 l ) m ) n ) o ) 0,0 0,0 0,000 0, Determin le seguenti rdici qudrte

Dettagli

Matematica C3, Algebra 2

Matematica C3, Algebra 2 Mtemtic C Algebr Relese 0.0 www.mtemticmente.it Mrch 0 Contents Numeri reli. Di numeri nturli i numeri irrzionli................................. Numeri reli.................................................

Dettagli

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N.

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. MULTIPLI E DIVISORI Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. Poiché N = 0,1,2,3...7...95,..104.. Zero è multiplo di

Dettagli

POTENZA 2 5 =2*2*2*2*2 PROPRIETA PRODOTTO DI POTENZE DI UGUALE BASE 3 2 *3 7 =3 2+7 =3 9 ANGOLO ANGOLI CLASSIFICAZIONI. 2 è la BASE 5 è l ESPONENTE

POTENZA 2 5 =2*2*2*2*2 PROPRIETA PRODOTTO DI POTENZE DI UGUALE BASE 3 2 *3 7 =3 2+7 =3 9 ANGOLO ANGOLI CLASSIFICAZIONI. 2 è la BASE 5 è l ESPONENTE POTENZ 2 5 =2*2*2*2*2 2 è la SE 5 è l ESPONENTE PROPRIET PRODOTTO DI POTENZE DI UGULE SE 3 2 *3 7 =3 2+7 =3 9 QUOZIENTE DI POTENZE DI UGULE SE 3 12 :3 7 =3 12-7 =3 5 POTENZ DI POTENZ (3 2 ) 7 =3 2*7 =3

Dettagli

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA Slvtore Loris Pelell Corso di Mtemtic RCS LIBRI EDUCATION SPA ISBN 88-45-084-3 004 RCS Libri S.p.A.- Milno Prim edizione: gennio 004 Ristmpe 004 005 006 3 4 5 Stmp: V. Bon, Torino Coordinmento editorile

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

Introduzione alla Fisica. Ripasso di matematica Grandezze fisiche Vettori

Introduzione alla Fisica. Ripasso di matematica Grandezze fisiche Vettori Introduzione ll Fisic Ripsso di mtemtic Grndezze fisiche Vettori L fisic come scienz sperimentle Studio di un fenomeno OSSERVAZIONI SPERIMENTALI MISURA DI GRANDEZZE FISICHE IPOTESI VERIFICA LEGGI FISICHE

Dettagli

ALGEBRA ALGEBRA. esercizi sulle operazioni tra numeri relativi ; ; ; ; ; ; ; ; 9.

ALGEBRA ALGEBRA. esercizi sulle operazioni tra numeri relativi ; ; ; ; ; ; ; ; 9. ALGEBRA Le somme lgeriche vnno clcolte tenendo conto del segno di ogni termine dell'espressione e del ftto che vle l proprietà commuttiv. Es., - - -. Il il segno del prodotto fr numeri reltivi segue l

Dettagli

Richiami di aritmetica (1)

Richiami di aritmetica (1) Richiami di aritmetica (1) Operazioni fondamentali e loro proprietà Elevamento a potenza e proprietà potenze Espressioni aritmetiche Scomposizione: M.C.D. e m.c.m Materia: Matematica Autore: Mario De Leo

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

Lezione 1 Insiemi e numeri

Lezione 1 Insiemi e numeri Lezione Insiemi e numeri. Nozione di insieme, sottoinsieme, pprtenenz Con l prol insieme intendimo un collezione di oggetti detti suoi elementi. Ogni insieme è denotto con lettere miuscole e i suoi elementi

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi.

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi. Clcolo letterle. ) Operzioni con i monomi. ) L moltipliczione. ) L divisione. c) Risolvi le seguenti espressioni con i monomi. ) I polinomi. ) Clcol le seguenti somme di polinomi. ) Applic l proprietà

Dettagli

ELEMENTI DI TEORIA DEI NUMERI

ELEMENTI DI TEORIA DEI NUMERI ELEMENTI DI TEORIA DEI NUMERI 1. Richimi di teori Con Z indichimo l insieme dei numeri reltivi. Comincimo con il ricordre l definizione di quoziente e resto dell divisione di due numeri in Z. Definizione

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni Funzioni Consider le seguenti telle e stilisci se e sono direttmente proporzionli, inversmente proporzionli o se vi è un proporzionlità qudrtic. Scrivi l espressione nlitic delle funzioni e rppresentle

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

MAPPA MULTIPLI E DIVISORI

MAPPA MULTIPLI E DIVISORI MAPPA MULTIPLI E DIVISORI 1 MULTIPLI E DIVISORI divisibilità definizione di multiplo criteri di divisibilità definizione di divisore numeri primi e numeri composti scomposizione in fattori primi calcolo

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Consideriamo la seguente tabella di numeri presi da un estrazione del lotto:

Consideriamo la seguente tabella di numeri presi da un estrazione del lotto: MAICI E DEEMINANI. LE MAICI Considerimo l seguente tbell di numeri presi d un estrzione del lotto: 7 8 > 8 7 H. 8 8 9 I numeri presenti sono disposti su righe e colonne. Essi costituiscono un insieme ordinto

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Mtemtici per l Fisic Strumenti Mtemtici per l Fisic Approssimzioni Notzione scientific (o esponenzile) Ordine di Grndezz Sistem Metrico Decimle Equivlenze Proporzioni e Percentuli Relzioni fr

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA Liceo Scientifico G. Slvemini Corso di preprzione per l gr provincile delle OLIMPIADI DELLA MATEMATICA INTRO ALGEBRA PROPRIETA DELLE POTENZE PRODOTTI NOTEVOLI QUESITO SUGGERIMENTO y è un espressione non

Dettagli

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI PROPRIETÀ DEI NUMERI INTERI, SCOMPOSIZIONI, ECC.. Se A è ugule e B è ugule, qunto vlgono m.c.m. ed M.C.D. dei numeri A e B? 0 e. Se si moltiplicno due numeri

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI Esponenzili e logritmi ESPONENZIALI E LOGARITMI Potenze Fino d or si sono definite le potenze d esponenete intero e rzionle (si positivi che negtivi). Ripssimo le definizioni e i concetti che li rigurdno:

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Richiami di aritmetica

Richiami di aritmetica Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI

Dettagli

CALCOLO LETTERALE. Prof. Katia Comandi Dispensa per la classe III ITI Informatico. a.s 2006/2007

CALCOLO LETTERALE. Prof. Katia Comandi Dispensa per la classe III ITI Informatico. a.s 2006/2007 CLCOLO LETTERLE Prof. Kti Comndi Dispens per l clsse III ITI Informtico.s 00/007 Indice Il Clcolo letterle Introduzione pg. Scopo del Clcolo letterle pg. Monomi pg. Polinomi pg.. Prodotti notevoli pg.

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Richiami sui vettori. A.1 Segmenti orientati e vettori

Richiami sui vettori. A.1 Segmenti orientati e vettori A Richimi sui vettori Richimimo lcune definizioni e proprietà dei vettori, senz ssolutmente pretendere di drne un trttzione mtemticmente complet. Lvoreremo sempre in uno spzio crtesino (euclideo) tre dimensioni,

Dettagli

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI Considerimo un funzione f : I R, dove I è un intervllo di R. Si c un punto interno I in cui f è discontinu. Diremo che c è un punto di discontinuità di prim

Dettagli

Elementi di matematica utilizzati in questo corso

Elementi di matematica utilizzati in questo corso Mtemtic di Bse Elementi di mtemtic utilizzti in questo corso Frzioni Proprietà delle potenze Potenze di dieci e notzione scientific Mnipolzione, semplificzione di espressioni lgeriche Soluzione di equzioni

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

1 Multipli e sottomultipli. Divisibilità

1 Multipli e sottomultipli. Divisibilità Multipli e sottomultipli. Divisibilità LA TEORIA Se la divisione fra due numeri naturali è propria (cioè il resto è uguale a 0) i due numeri si dicono divisibili. Per esempio, nella divisione 8 : diciamo

Dettagli

Appunti sui RADICALI

Appunti sui RADICALI Imprimo d operre co i rdicli Apputi sui RADICALI sego di rdice, idice di rdice, rdicdo, espoete del rdicdo: cquisteri fmilirità co queste prole: simbolo di rdice, idice di rdice, rdicdo, espoete del rdicdo.

Dettagli

1 Multipli di un numero

1 Multipli di un numero Multipli di un numero DEFINIZIONE. I multipli di un numero sono costituiti dall insieme dei prodotti ottenuti moltiplicando quel numero per la successione dei numeri naturali. I multipli del numero 4 costituiscono

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione ll lgebr E. Modic ersmo@glois.it Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

INTERVALLI NELL INSIEME R

INTERVALLI NELL INSIEME R INTEVALLI NELL INSIEME Lo studio dell topologi (1) (dl greco "nlysis situs" ossi "studio del luogo") dell'insieme è di fondmentle importnz per gli rgomenti e i prolemi di nlisi infinitesimle. Il "luogo"

Dettagli

I RADICALI. H La misura di un segmento non eá sempre esprimibile mediante un numero razionale; per esempio, se un

I RADICALI. H La misura di un segmento non eá sempre esprimibile mediante un numero razionale; per esempio, se un I RADICALI Per ricordre H L misur di un segmento non eá semre esrimiile medinte un numero rzionle er esemio, se un qudrto h lto unitrio, l misur dell su digonle, che eá, non eá rzionle. Per misurre occorre

Dettagli

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze Alunno/.. Alunno/ Pgin Esercitzione in preprzione ll PROVA d ESAME Buon Lvoro Prof.ss Elen Sper. Il piccolo fermcrte dell figur è relizzto nel seguente modo. Si prende un cubo di lto cm e su un fcci si

Dettagli

Operazioni sulle Matrici

Operazioni sulle Matrici Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

RADICALI. Q (insieme dei razionali relativi) = numeri che possono essere messi sotto forma di frazioni es: 0,+3;

RADICALI. Q (insieme dei razionali relativi) = numeri che possono essere messi sotto forma di frazioni es: 0,+3; RADICALI In quest sched ti vengono riproposti lcuni concetti ed esercizi che ti dovreero essere fmiliri e che sono indispensili per ffrontre con successo gli studi futuri. INSIEMI NUMERICI Ripsso insiemi

Dettagli

Lezione 2 Potenze. Radicali. Logaritmi

Lezione 2 Potenze. Radicali. Logaritmi Lezione Potenze. Rdicli. Logritmi. Potenze con esponente nturle Definizione. Se n N e n 6= 0, si chim potenz n-esim del numero rele, opotenz con bse ed esponente n, e si indic col simbolo n, il prodotto

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R π, _ -,8,89 Q Z N - 8-8 -8 _,,66 - e, - -,6 _ -,6 6 R Numeri Reli Q Numeri Rzioli Z Numeri Iteri Reltivi N Numeri Nturli Dl digrmm di Eulero-Ve ovvio è che : N è u sottoisieme rorio

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Il Sistema di numerazione decimale

Il Sistema di numerazione decimale Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

MATEMATIKA OLASZ NYELVEN

MATEMATIKA OLASZ NYELVEN Mtemtik olsz nyelven középszint 061 É RETTSÉGI VIZSGA 007. október 5. MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Indiczioni

Dettagli

Il dominio della funzione, cioè l'insieme dei valori che si possono attribuire a x è tutto R ;

Il dominio della funzione, cioè l'insieme dei valori che si possono attribuire a x è tutto R ; CAPITOLO ESPONENZIALI E LOGARITMI ESPONENZIALI Teori in sintesi Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z. + Sono definite:

Dettagli

CORSO DI PREPARAZIONE AL TEST per l ammissione ai corsi triennali dell area sanitaria

CORSO DI PREPARAZIONE AL TEST per l ammissione ai corsi triennali dell area sanitaria CORSO DI PREPARAZIONE AL TEST per l mmissione i corsi triennli dell re snitri MATERIALI PER LA PREPARAZIONE AI TEST DI MATEMATICA Premess: l presente dispens non h lcun pretes né di rigore mtemtico, né

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti

Dettagli

b a ax b 0 Equazione lineare B) Equazioni di 2 grado incomplete: ax 2 0 Equazione monomia x 2 0

b a ax b 0 Equazione lineare B) Equazioni di 2 grado incomplete: ax 2 0 Equazione monomia x 2 0 www.esmths.ltervist.org EQUZIONI DI GRDO SUPERIORE L SECONDO PREMESS Finor simo cpci di risolvere solo equzioni di primo e di secondo grdo. imo imprto che isogn prim condurle form cnonic e poi procede

Dettagli

ESERCIZIARIO DI MATEMATICA

ESERCIZIARIO DI MATEMATICA Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi

Dettagli

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per Funzioni di utilità (finlmente un po di geroglifici, dopo i grffiti) NB: non fte leggere queste pgine un mtemtico, ltrimenti mi msscr!. Definizione e proprietà Considerimo due eni e di interesse per un

Dettagli

Lineamenti. BASE matematica AZZURRO. con CD ROM. Nella Dodero Paolo Baroncini Roberto Manfredi Ilaria Fragni EDIZIONE RIFORMA.

Lineamenti. BASE matematica AZZURRO. con CD ROM. Nella Dodero Paolo Baroncini Roberto Manfredi Ilaria Fragni EDIZIONE RIFORMA. EDIZIONE RIFORM Nell Dodero Polo roncini Roberto Mnfredi Ilri Frgni Linementi enti ZZURRO RO.Mth SE mtemtic lgebr con CD ROM Nell Dodero Polo roncini Roberto Mnfredi Ilri Frgni Linementi.Mth ZZURRO SE

Dettagli