Alcune mosse che utilizzano le proprietà delle operazioni in N

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Alcune mosse che utilizzano le proprietà delle operazioni in N"

Transcript

1 Operzioni in N Proprietà commuttiv dell ddizione + b b +,b N Proprietà ssocitiv dell ddizione ( + b) + c + (b + c) + b + c,b,c N Proprietà invrintiv dell sottrzione b ( + c) (b + c) b ( c) (b c),b,c N,b,c N Proprietà commuttiv dell moltipliczione b b,b N Proprietà ssocitiv dell moltipliczione ( b) c (b c) b c,b,c N Proprietà distributiv dell moltipliczione (b ± c) (b ± c) b ± c,b,c N Proprietà invrintiv dell divisione : b ( c) : (b c),b,c N, b,c 0 : b ( : c) : (b : c),b,c N, b,c 0 Proprietà distributiv dell divisione ( ± b) : c : c ± b : c,b,c N, c 0 Prticolri divisioni 0 : 0 N, 0 : 0 non h significto / impossibile N, 0 0 : 0 indeterminto Divisione con resto : b q con resto di r b q + r Alcune mosse che utilizzno le proprietà delle operzioni in N Uso dell proprietà invrintiv dell sottrzione per fcilitre sottrzioni (99 + ) (9 + ) (100 ) (50 ) Uso dell proprietà distributiv dell moltipliczione per rccogliere fttori in comune (5 + ) (5 + ) (5 + 1) 1

2 Uso dell proprietà invrintiv dell divisione per fcilitre divisioni. 00 : 00 (00 : 100) : (00 : 100) : Uso dell proprietà invrintiv dell divisione per semplificre i fttori di dividendo e divisore. 100 : 5 ( 5 ) : ( 5 ) 100 : 5 ( 5 ) : ( 5 ) 100 : 1 ( 5 ) : ( ) 100 non è divisibile per 1 Alcuni errori rigurdnti le proprietà delle operzioni in N In presenz di un sequenz di divisioni e moltipliczioni, si svolgono le operzioni nell ordine in cui sono scritte d sinistr verso destr. 1 : 1 : ( ) 1 : 8 1 : (1 : ) 8 1 : : 1 : ( : ) 1 : 8 1 : : (1 : ) : : L proprietà invrintiv dell sottrzione fferm che è possibile sommre o sottrre (e non moltiplicre o dividere) minuendo e sottrendo un stess quntità. b ( c) (b c) e b ( : c) (b : c) 0 10 (0 5) (10 5) 0 10 (0 + 5) (10 + 5) 0 10 (0 : 5) (10 : 5) 0 10 (0 5) (10 5) L proprietà invrintiv dell divisione fferm che è possibile moltiplicre o dividere (e non sommre o sottrrre) dividendo e divisore un stess quntità divers d zero. : b ( + c) : (b + c) e : b ( c) : (b c) 0 : 10 (0 + 5) : (10 + 5) 0 : 10 (0 5) : (10 5) 0 : 10 (0 5) : (10 5) 0 : 10 (0 : 5) : (10 : 5) Non esiste un proprietà distributiv dell moltipliczione rispetto ll moltipliczione o ll divisione. Semplicemente, si svolgono le operzioni rispettndo l ordine prescritto dlle prentesi. ( b) c ( c) (b c) e ( : b) c ( c) : (b c) ( 5) ( ) (5 ) 10 0 ( 5) 5 0 (8 : ) (8 ) : ( ) 1 : 8 (8 : ) Non esiste un proprietà distributiv dell divisione rispetto ll moltipliczione o ll divisione. Semplicemente, si svolgono le operzioni rispettndo l ordine prescritto dlle prentesi. ( b) : c ( : c) (b : c) e ( : b) : c ( : c) : (b : c) ( ) : ( : ) ( : ) ( ) : : 1 (8 : ) : (8 : ) : ( : ) : (8 : ) : : 1 L proprietà distributiv dell divisione rispetto ll ddizione e ll sottrzione vle solo qundo l ddizione o l sottrzione sono l dividendo, e non l divisore. c : ( + b) c : + c : b e c : ( b) c : c : b 0 : ( + ) (0 : ) + (0 : ) : ( + ) 0 : 5 0 : ( ) (0 : ) (0 : ) : ( ) 0 : 1 0

3 Potenze in N Prodotto di potenze con ugule bse m n m+n,m,n N Quoziente di potenze con ugule bse m : n m n,m,n N Prodotto di potenze con ugule esponente n b n ( b) n,b,n N Quoziente di potenze con ugule esponente n : b n ( : b) n,b,n N Potenz di potenz ( m ) n m n,m,n N Prticolri potenze 1 N 0 n 0 n N, n N, non h significto Alcune mosse che utilizzno le proprietà delle potenze in N Sequenz di moltipliczioni e divisioni con potenze di ugule bse. : 5 : Conseguenze dell proprietà dell potenz di potenz. ( m ) n ( n ) m n m Scomporre un potenz in prodotto o quoziente di potenze con esponenti picere : 5 1 Scomporre un potenz in fttori primi. 15 ( 5) 5 8 ( ) 1 0 ( 5) ( ) 5 5 Prodotto o quoziente di potenze con bsi che sono potenze un dell ltr. 8 ( ) 1 : 9 : ( ) :

4 Prodotto o quoziente di potenze con bsi ed esponenti diversi. 5 5 ( ) 5 ( 8 ) 1 : 5 ( ) : 5 ( ) : 5 Clcolre un prodotto di potenze con bsi e Alcuni errori rigurdnti le proprietà delle potenze in N In un prodotto o quoziente di potenze, se le bsi e gli esponenti delle potenze sono diversi, non si possono pplicre proprietà delle potenze ( meno che, scomponendo e distribuendo l esponente, non si trovino bsi in comune). 5 ( ) ( ) 5 In cso di somme o sottrzioni, non ci sono proprietà delle potenze che vlgno. ( + b) n n + b n e ( b) n n b n ( + ) ( + ) 5 5 ( ) 9 5 ( ) 1 1 m + n m+n e m n m n Un esponente che è un potenz e un potenz di potenz sono cose diverse. mn ( m ) n 1 m ( ) 8

5 Operzioni e potenze in Q Addizione e sottrzione di frzioni c ± b c ± b c,b,c N, c 0 Moltipliczione di frzioni c b d b c d,b,c,d N, c,d 0 Divisione di frzioni c : b d c d b d c b,b,c,d N, b,c,d 0 Elevmento potenz di un frzione ( b ) n n b n,b,n N, b 0 Proprietà invrintiv delle frzioni b c b c b : c b : c,b,c N, b,c 0,b,c N, b,c 0 Alcune mosse che utilizzno le proprietà delle operzioni e potenze in Q Semplificzione di frzioni (ricorrendo eventulmente ll scomposizione in fttori) Ricondurre llo stesso denomintore più frzioni per poterle sommre o sottrrre Moltipliczione di frzioni con nness semplificzione in croce (ricorrendo eventulmente ll scomposizione in fttori) Ricondurre llo stesso denomintore più frzioni per poterle sommre o sottrrre Spezzre l frzione in un somm di frzioni con numertori picere

6 Spezzre l frzione nell su prte inter più l su prte frzionri Prodotto o quoziente di potenze con bsi che sono potenze un dell ltr. ( ) 8 ( ) ( ) 8 [( ) ] ( ) 8 ( ) ( ) 1 9 ( 5 1 ) : ) [ ) ] : ) ) ) ) Prodotto o quoziente di potenze con bsi ed esponenti diversi. ( 10 ) ( 9 ) ( 5 ) ( ) ) : ( 10 ) ) ( ) 5 ) ( ) Alcuni errori rigurdnti le proprietà delle operzioni e potenze in Q Non si può spezzre il denomintore di un frzione, m solo il numertore Nell semplificzione di un frzione si possono semplificre solo fttori, e non ddendi Nelle moltipliczioni si possono semplificre in croce solo fttori, e non ddendi In un moltipliczione tr frzioni elevte d esponenti diversi non si possono semplificre in croce i numertori/denomintori dell un con i denomintori/numertori dell ltr. ( ) ( ) ( 1 ) ( ) ( ) ( ) Il reciproco di un frzione con un somm l denomintore non è un somm di frzioni. Il reciproco di + 5 è + 5 Il reciproco di + 5 è

7 Operzioni e potenze in Q Potenz con esponente pri ( ) n n Q, n N, n pri Potenz con esponente dispri ( ) n n Q, n N, n dispri Potenz con esponente negtivo n 1 n Q, 0, n N Prticolri potenze ( 1) n + 1 se n N, n pri 1 se n N, n dispri Alcune mosse che utilizzno le proprietà delle operzioni e potenze in Q L somm lgebric gode dell proprietà commuttiv Pssggio del segno meno d un fttore ll ltro di un prodotto. ( ) 5 ( 5) 5 Pssggio del segno meno tr numertore e denomintore Il segno meno dvnti d un prentesi cmbi i segni di tutti gli ddendi in ess contenuti. (5 + ) 5 + Il segno meno dvnti d un frzione cmbi i segni di tutti gli ddendi del numertore In un potenz, un bse negtiv può essere trsformt in positiv (e vicevers) se l esponente è pri. ( 5) (+5) In un potenz, un bse negtiv può essere trsformt in positiv (e vicevers), e il segno meno portto fuori dll bse, se l esponente è dispri. ( 5) (+5) In presenz di moltipliczioni o divisioni, è possibile trsformre tutte le bsi negtive in positive, semplicemente cmbindo il segno se l esponente è pri, o trsportndo il segno meno dvnti l prodotto se l esponente è dispri. 5 ( 5) ( 5)

8 Anche in presenz di potenze di potenze, è possibile eliminre o trsportre fuori il meno second che l esponente cui è elevto si pri o dispri. [( 5) ] [(+5) ] 5 ( 5 ) (5 ) 5 [ ( 5) ] [ (+5) ] [(+5) ] 5 [ ( 5) ] [ (+5) ] [(+5) ] 5 9 Trsformre un bse nel suo reciproco, cmbindo il segno dell esponente. ( ) ( ) ) ( 5 ) Alcuni errori rigurdnti le proprietà delle operzioni e potenze in Q L positività o negtività di un termine dipende dl vlore dell incognit. è negtivo è negtivo se è positivo è positivo se è negtivo In un potenz, il segno meno v elevto solo se è prte dell bse (ovvero, solo se è dentro l prentesi) ( 5) +5 Non si può spostre il segno meno d fuori dentro l bse di un potenz con esponente pri. 5 ( 5) 5 5 ( ) 5 ( 5) ( ) Cmbire segno ll esponente di un potenz trsform l bse nel suo reciproco, m non ne cmbi il segno. ( 1 ) 1 ( 1 ) ( 1 ) ( ) 1 ( ( ) 1 )

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali.

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali. I rdicli Cos è un rdicle? Il simbolo si chim rdicle e si legge rdice ennesim di. - n si chim indice dell rdice e deve essere un numero nturle mggiore di zero. Qundo l indice si sottintende e il rdicle

Dettagli

Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi

Radicali. Definizioni Variazioni di radicali Operazioni Razionalizzazione Radicali doppi Potenze con esponente razionale Esercizi Rdicli Definizioni Vrizioni di rdicli Operzioni Rzionlizzzione Rdicli doppi Potenze con esponente rzionle Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni n L espressione è comunemente dett rdice

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

RIEPILOGO FRAZIONI ALGEBRICHE

RIEPILOGO FRAZIONI ALGEBRICHE RIEPILOGO FRAZIONI ALGEBRICHE Per semplificre un frzione: scomponi numertore e denomintore semplific numertore e denomintore tenendo presente che: il quoziente di due fttori uguli è il quoziente di due

Dettagli

Anno 2. Potenze di un radicale e razionalizzazione

Anno 2. Potenze di un radicale e razionalizzazione Anno Potenze di un rdicle e rzionlizzzione Introduzione In quest lezione impreri utilizzre le ultime due tipologie di operzioni sui rdicli, cioè l potenz di un rdicle e l rdice di un rdicle. Successivmente

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è un scrittur in cui compiono operzioni tr numeri rppresentti, tutti o in prte, d lettere. Per clcolre il vlore numerico di

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI

RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI RACCOLTA DI ESERCIZI PER I CORSI PRELIMINARI PROPRIETÀ DEI NUMERI INTERI, SCOMPOSIZIONI, ECC.. Se A è ugule e B è ugule, qunto vlgono m.c.m. ed M.C.D. dei numeri A e B? 0 e. Se si moltiplicno due numeri

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Introduzione alla Fisica. Ripasso di matematica Grandezze fisiche Vettori

Introduzione alla Fisica. Ripasso di matematica Grandezze fisiche Vettori Introduzione ll Fisic Ripsso di mtemtic Grndezze fisiche Vettori L fisic come scienz sperimentle Studio di un fenomeno OSSERVAZIONI SPERIMENTALI MISURA DI GRANDEZZE FISICHE IPOTESI VERIFICA LEGGI FISICHE

Dettagli

Liceo Scientifico E. Majorana Guidonia Quaderno di lavoro estivo Matematica

Liceo Scientifico E. Majorana Guidonia Quaderno di lavoro estivo Matematica Liceo Scientifico E. Mjorn Guidoni Numeri Nturli Sintesi dell teori Domnde Risposte Esempi Come si indic l insieme dei numeri nturli {0,,,,, }? L insieme dei numeri nturli si indic con l letter N. Quli

Dettagli

Rapporti e proporzioni numeriche

Rapporti e proporzioni numeriche Rpporti e proporzioni numeriche Rpporti. Per rpporto tr due numeri e b, di cui il secondo diverso d zero, s intende il quoziente estto dell divisione dei due numeri dti, cioè :b oppure /b. Ad esempio dire

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

PRODOTTI NOTEVOLI. Esempi

PRODOTTI NOTEVOLI. Esempi PRODOTTI NOTEVOLI In lger ci sono delle regole per eseguire in modo più reve e più veloce l moltipliczione tr prticolri polinomi. Queste regole (o meglio formule si chimno prodotti notevoli. Anlizzimo

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

Richiami di aritmetica (1)

Richiami di aritmetica (1) Richiami di aritmetica (1) Operazioni fondamentali e loro proprietà Elevamento a potenza e proprietà potenze Espressioni aritmetiche Scomposizione: M.C.D. e m.c.m Materia: Matematica Autore: Mario De Leo

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

Matematica C3, Algebra 2

Matematica C3, Algebra 2 Mtemtic C Algebr Relese 0.0 www.mtemticmente.it Mrch 0 Contents Numeri reli. Di numeri nturli i numeri irrzionli................................. Numeri reli.................................................

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

Appunti sui RADICALI

Appunti sui RADICALI Imprimo d operre co i rdicli Apputi sui RADICALI sego di rdice, idice di rdice, rdicdo, espoete del rdicdo: cquisteri fmilirità co queste prole: simbolo di rdice, idice di rdice, rdicdo, espoete del rdicdo.

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

ALGEBRA ALGEBRA. esercizi sulle operazioni tra numeri relativi ; ; ; ; ; ; ; ; 9.

ALGEBRA ALGEBRA. esercizi sulle operazioni tra numeri relativi ; ; ; ; ; ; ; ; 9. ALGEBRA Le somme lgeriche vnno clcolte tenendo conto del segno di ogni termine dell'espressione e del ftto che vle l proprietà commuttiv. Es., - - -. Il il segno del prodotto fr numeri reltivi segue l

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Equazioni e disequazioni

Equazioni e disequazioni Cpitolo Equzioni e disequzioni.1 Princìpi di equivlenz 1. Sommndo o sottrendo l stess quntità d entrmbi i membri di un equzione o di un disequzione ess non cmbi, ovvero: A(x) B(x) A(x) k(x) B(x) k(x).

Dettagli

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in Funzione esponenzile Dto un numero rele >0, l funzione si chim funzione esponenzile di bse e f prte dell fmigli delle funzioni elementri. Il suo ndmento (crescenz o decrescenz) è strettmente legto l vlore

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

Le operazioni fondamentali con i numeri relativi

Le operazioni fondamentali con i numeri relativi SINTESI Unità Le operazioni fondamentali con i numeri relativi Addizione La somma di due numeri relativi concordi è il numero relativo che ha lo stesso segno degli addendi e come valore assoluto la somma

Dettagli

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA Slvtore Loris Pelell Corso di Mtemtic RCS LIBRI EDUCATION SPA ISBN 88-45-084-3 004 RCS Libri S.p.A.- Milno Prim edizione: gennio 004 Ristmpe 004 005 006 3 4 5 Stmp: V. Bon, Torino Coordinmento editorile

Dettagli

Operazioni sulle Matrici

Operazioni sulle Matrici Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI Esponenzili e logritmi ESPONENZIALI E LOGARITMI Potenze Fino d or si sono definite le potenze d esponenete intero e rzionle (si positivi che negtivi). Ripssimo le definizioni e i concetti che li rigurdno:

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II Ingegneri Elettric Politecnico di Torino Luc Crlone ControlliAutomticiI LEZIONE II Sommrio LEZIONE II Sistemi lineri e proprietà di unicità Concetto di Stilità Stilità intern ed estern Criterio di Routh

Dettagli

RADICALI. Q (insieme dei razionali relativi) = numeri che possono essere messi sotto forma di frazioni es: 0,+3;

RADICALI. Q (insieme dei razionali relativi) = numeri che possono essere messi sotto forma di frazioni es: 0,+3; RADICALI In quest sched ti vengono riproposti lcuni concetti ed esercizi che ti dovreero essere fmiliri e che sono indispensili per ffrontre con successo gli studi futuri. INSIEMI NUMERICI Ripsso insiemi

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

CALCOLO LETTERALE. Prof. Katia Comandi Dispensa per la classe III ITI Informatico. a.s 2006/2007

CALCOLO LETTERALE. Prof. Katia Comandi Dispensa per la classe III ITI Informatico. a.s 2006/2007 CLCOLO LETTERLE Prof. Kti Comndi Dispens per l clsse III ITI Informtico.s 00/007 Indice Il Clcolo letterle Introduzione pg. Scopo del Clcolo letterle pg. Monomi pg. Polinomi pg.. Prodotti notevoli pg.

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni

X X Y 2 1 0,5 0,25 Y 0,25 1 2,25 4. Disegna i grafici delle rette rappresentate dalle seguenti equazioni Funzioni Consider le seguenti telle e stilisci se e sono direttmente proporzionli, inversmente proporzionli o se vi è un proporzionlità qudrtic. Scrivi l espressione nlitic delle funzioni e rppresentle

Dettagli

LEZIONE 1. del 10 ottobre 2011

LEZIONE 1. del 10 ottobre 2011 LEZIONE 1 del 10 ottobre 2011 CAPITOLO 1: Numeri naturali N e numeri interi Z I numeri naturali sono 0, 1, 2, 3, 4, 5, Questi hanno un ordine. Di ogni numero naturale, escluso lo 0, esistono il precedente

Dettagli

244 FRAZIONI ALGEBRICHE. Esempi: 20x y

244 FRAZIONI ALGEBRICHE. Esempi: 20x y Si dice frzione lgeric un frzione i cui termini sino monomi o polinomi. FRAZIONI ALGEBRICHE Esempi 0 cd k. SEMPLIFICAZIONE DI FRAZIONI ALGEBRICHE A volte (non sempre un frzione lgeric può essere semplifict.

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studete di Mtemtic Spiez - Uiversità di Rom Diprtimeto di Mtemtic Guido Csteluovo we-site: www.selli87.ltervist.org APPUNTI SUI RADICALI DEFINIZIONE DI RADICALE INDICE PARI : Si chim rdice

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Mtemtici per l Fisic Strumenti Mtemtici per l Fisic Approssimzioni Notzione scientific (o esponenzile) Ordine di Grndezz Sistem Metrico Decimle Equivlenze Proporzioni e Percentuli Relzioni fr

Dettagli

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto NUMERI RELATIVI NUMERO RELATIVO È caratterizzato da: segno positivo (+) o negativo (-) 2 3 2 parte numerica che è detta valore assoluto 3 NUMERI RELATIVI Numeri interi relativi (N) Numeri razionali relativi

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione ll lgebr E. Modic ersmo@glois.it Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

Introduzione alla Fisica. Ripasso di matematica Grandezze fisiche Vettori

Introduzione alla Fisica. Ripasso di matematica Grandezze fisiche Vettori Introduzione ll Fisic Ripsso di mtemtic Grndezze fisiche Vettori Alger dei numeri reltivi Numeri reltivi: numeri preceduti dl segno + o dl segno segno 5, modulo o vlore ssoluto (si indic con ) Due numeri

Dettagli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

Richiami di aritmetica

Richiami di aritmetica Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI

Dettagli

Operazioni in N Le quattro operazioni Definizioni e Proprietà

Operazioni in N Le quattro operazioni Definizioni e Proprietà Operazioni in N Le quattro operazioni Definizioni e Proprietà Prof.Enrico Castello Concetto di Operazione NUMERO NUMERO OPERAZIONE RISULTATO PROCEDIMENTO CHE PERMETTE DI ASSOCIARE A DUE NUMERI, DATI IN

Dettagli

Le operazioni fondamentali in R

Le operazioni fondamentali in R La REGOLA DEI SEGNI: 1. ADDIZIONE Le operazioni fondamentali in R + per + dà + per dà + + per dà per + dà Esempi: (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3)

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

ELEMENTI DI TEORIA DEI NUMERI

ELEMENTI DI TEORIA DEI NUMERI ELEMENTI DI TEORIA DEI NUMERI 1. Richimi di teori Con Z indichimo l insieme dei numeri reltivi. Comincimo con il ricordre l definizione di quoziente e resto dell divisione di due numeri in Z. Definizione

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

OPERAZIONI IN Q = + = = = =

OPERAZIONI IN Q = + = = = = OPERAZIONI IN Q A proposito delle operazioni tra numeri razionali, affinché il passaggio da N a vero e proprio ampliamento è necessario che avvengano tre cose: Q risulti un ) le proprietà di ciascuna operazione

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali SINTESI Unità 3 Le quattro operazioni fondamentali Addizione Si dice somma di due numeri naturali il numero che si ottiene contando di seguito al primo tanti numeri consecutivi quante sono le unità del

Dettagli

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N.

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. MULTIPLI E DIVISORI Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. Poiché N = 0,1,2,3...7...95,..104.. Zero è multiplo di

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y

Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y Calcolo letterale Calcolo letterale e operazioni - L uso delle lettere al posto dei numeri si utilizza per scrivere proprietà e regole dandone una valenza più generale rispetto ad un restrittivo esempio

Dettagli

PROGRAMMA SVOLTO A. S. 2014/ 2015

PROGRAMMA SVOLTO A. S. 2014/ 2015 A. S. 4/ Nome docente Borgn Giorgio Mteri insegnt Mtemtic Clsse Previsione numero ore di insegnmento IV G mnutenzione e ssistenz tecnic ore complessive di insegnmento settimne X 4 ore = ore Nome Ins. Tecn.

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

Esercizio n.29 Dire se il dividendo è divisibile per il divisore e, in caso affermativo, eseguire la divisione: a 3 b 2 c 5 : (-a 3 bc 2 ); m 6 n 9 : (-4m 3 n 3 ); -4a 4 b 2 c : (-2abc); 10a 7 y 3 : (-5a

Dettagli

MONOMI. Donatella Candelo 13/11/2004 1

MONOMI. Donatella Candelo 13/11/2004 1 Donatella Candelo 1/11/00 1 MONOMI Un monomio è una qualunque espressione algebrica intera data dal prodotto di fattori qualsiasi, numerici o letterali. Praticamente in ogni monomio si può distinguere

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Teori in sintesi ESPONENZIALI Potenze con esponente rele Esponenzili e ritmi L potenz è definit: se, per ogni R se, per tutti e soli gli R se, per tutti e soli gli Z. Sono definite: 7 7. Non sono definite:.

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

ESERCIZIARIO DI MATEMATICA

ESERCIZIARIO DI MATEMATICA Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

Richiami sui vettori. A.1 Segmenti orientati e vettori

Richiami sui vettori. A.1 Segmenti orientati e vettori A Richimi sui vettori Richimimo lcune definizioni e proprietà dei vettori, senz ssolutmente pretendere di drne un trttzione mtemticmente complet. Lvoreremo sempre in uno spzio crtesino (euclideo) tre dimensioni,

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali 1. ADDIZIONE Le quattro operazioni fondamentali Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione.

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. Monomi e Polinomi Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. ) Sono monomi: 5 a 3 b 2 z; 2 3 a2 c 9 ; +7; 8a b 3 a 2. Non sono monomi: a + 2; xyz

Dettagli

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z Controlli Automtici Trsformte L e Z e schemi blocchi Esercizi sulle trsformte L e Z Esercizi sulle trsformte L e Z Proposte di esercizi e soluzioni in tempo rele trsformt L di y(t) dt trsformt Z di y(i)

Dettagli

N 02 B I concetti fondamentali dell aritmetica

N 02 B I concetti fondamentali dell aritmetica Uità Didttic N 0 I cocetti fodmetli dell ritmetic U.D. N 0 B I cocetti fodmetli dell ritmetic 0) Il cocetto di potez 0) Proprietà delle poteze 0) L ozioe di rdice ritmetic 0) Multipli e divisori di u umero

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Calcolo Letterale. 1. Monomi

Calcolo Letterale. 1. Monomi Clcolo etterle Monomi E corretto dire: un monomio è un espressione letterle compost d un coefficiente e d un prte letterle; il coefficiente di solito è un numero, m può nche essere un letter, se è così

Dettagli

Teoria in pillole: logaritmi

Teoria in pillole: logaritmi Teori in pillole: logritmi EQUAZIONI ESPONENZIALI Un'equzione si dice esponenzile qundo l'incognit compre soltnto nell'esponente di un o più potenze. L'equzione esponenzile più semplice (elementre) è del

Dettagli

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale Esercitzione di Mtemtic sulle equzioni di secondo grdo (o d esse riconducibili) nel cmpo rele 1. Risolvere, nel cmpo rele, le seguenti equzioni di secondo grdo: () 81x 0; (b) (x 1) 7x ; (c) 7x x 0; (d)

Dettagli

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data...

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data... Cpitolo Monomi e polinomi Monomi Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1) LGEBR \ CLCOLO LETTERLE \ MONOMI (1) Un monomio è un prodotto di numeri e lettere; gli (eventuali) esponenti delle lettere sono numeri naturali (0 incluso). Ogni numero (reale) può essere considerato come

Dettagli

I NUMERI RAZIONALI. È stato dimostrato che i ragazzi hanno significative difficoltà ad apprendere e applicare i concetti legati ai numeri razionali.

I NUMERI RAZIONALI. È stato dimostrato che i ragazzi hanno significative difficoltà ad apprendere e applicare i concetti legati ai numeri razionali. I NUMERI RAZIONALI È stto dimostrto che i rgzzi hnno significtive difficoltà d pprendere e pplicre i concetti legti i numeri rzionli. Esempio: Il N.A.E.P. (Ntionl Assesment of Eduction Progress) h dimostrto

Dettagli

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore Principi di economi Microeconomi Esercitzione 3 Teori del Consumtore Novembre 1 1. Considerimo uno studente indifferente tr il consumo di penne nere (x n ) e blu (x b ), e che cquist ogni nno un pniere

Dettagli

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -.

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -. I numeri naturali non sono adatti per risolvere tutti i problemi. Esempio. La temperatura atmosferica di un mattino estivo, sopra lo zero, viene indicata con un numero preceduto dal segno + (+19 C, +25

Dettagli

1 Multipli di un numero

1 Multipli di un numero Multipli di un numero DEFINIZIONE. I multipli di un numero sono costituiti dall insieme dei prodotti ottenuti moltiplicando quel numero per la successione dei numeri naturali. I multipli del numero 4 costituiscono

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

La tabella dell addizione Completa la tabella e poi rispondi alle domande.

La tabella dell addizione Completa la tabella e poi rispondi alle domande. La tabella dell addizione Completa la tabella e poi rispondi alle domande. CCCCCCCCCCCC + 0 4 5 6 7 8 9 0 0 4 5 6 7 8 9 0 A ogni coppia ordinata di numeri naturali corrisponde sempre un numero naturale?

Dettagli

MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO. Coordinatrice: Prof. ANTONINA CASTANIOTTO

MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO. Coordinatrice: Prof. ANTONINA CASTANIOTTO LICEO SCIENTICO STATALE LEONARDO DA VINCI GENOVA.s.04-5 MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO Coordintrice: Prof. ANTONINA CASTANIOTTO

Dettagli

Consideriamo la seguente tabella di numeri presi da un estrazione del lotto:

Consideriamo la seguente tabella di numeri presi da un estrazione del lotto: MAICI E DEEMINANI. LE MAICI Considerimo l seguente tbell di numeri presi d un estrzione del lotto: 7 8 > 8 7 H. 8 8 9 I numeri presenti sono disposti su righe e colonne. Essi costituiscono un insieme ordinto

Dettagli

4 + 7 = 11. Possiamo quindi dire che:

4 + 7 = 11. Possiamo quindi dire che: Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli