ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008"

Transcript

1 LGER VETTORILE

2 DEFINIZIONE DI VETTORE (1) Sia E lo spazio tridimensionale della geometria euclidea. Consideriamo due punti e appartenenti a E Si chiama segmento orientato, e si indica con (,) il segmento che congiunge i punti e, orientato (arbitrariamente) da a

3 DEFINIZIONE DI VETTORE (2) Segmento Segmento orientato

4 DEFINIZIONE DI VETTORE (3) Si dice che due segmenti orientati (,) e (C,D) sono equipollenti se il quadrilatero DC è un parallelogramma (oppure se = C e = D; in questo caso (,) e (C,D) sono in realtà lo stesso segmento orientato) D D C C

5 DEFINIZIONE DI VETTORE (4) Notiamo che, se i segmenti orientati (,) e (C,D) sono equipollenti, allora anche i segmenti orientati (,C) e (,D) sono equipollenti (infatti anche CD è un parallelogramma) D C D C

6 DEFINIZIONE DI VETTORE (5) L applicazione di E in E che ad un segmento orientato associa un segmento equipollente si chiama traslazione. Possiamo immaginare la traslazione come un trasporto. d esempio il segmento orientato (,), viene trasportato in (C,D) mantenendo fissa la sua lunghezza e il suo orientamento. Tutti i punti del segmento subiscono lo stesso spostamento C D

7 DEFINIZIONE DI VETTORE (6) Consideriamo adesso l insieme S di tutti i possibili segmenti orientati costruiti con coppie di punti di E Si chiama vettore, e si indica con, il sottoinsieme di S di tutti i segmenti orientati equipollenti ad (,) Il vettore si rappresenta graficamente mediante una freccia orientata da a vettore

8 DEFINIZIONE DI VETTORE (7) Poiché tutti i segmenti orientati appartenenti ad una classe di equivalenza sono equipollenti tra loro, per rappresentare un vettore possiamo utilizzare indifferentemente uno qualunque di essi. Si dice che ogni segmento orientato rappresenta il vettore a cui appartiene Esempio 1: i segmenti orientati equipollenti (,), (C,D) ed (E,F), mostrati per illustrare la proprietà di transitività, rappresentano tutti lo stesso vettore: = CD = EF Esempio 2: I segmenti orientati (G,H) e (K,J) non sono equipollenti, quindi GH KJ G H K J

9 DEFINIZIONE DI VETTORE (8) Un vettore è caratterizzato in modo univoco da tre proprietà: Direzione: è la direzione del fascio di rette parallele sulle quali giacciono i segmenti orientati rappresentanti del vettore. La direzione è ben definita perché tutti i segmenti orientati rappresentanti di un dato vettore sono paralleli D C

10 DEFINIZIONE DI VETTORE (9) Verso: è l orientamento dei segmenti orientati rappresentanti del vettore. nche il verso del vettore è ben definito perché gli orientamenti dei segmenti orientati rappresentanti del vettore sono coerenti E F C D

11 DEFINIZIONE DI VETTORE (10) Modulo: è la lunghezza dei segmenti orientati rappresentanti del vettore, ovvero la distanza tra due punti di un segmento orientato. nche il modulo del vettore è ben definito perché le lunghezze dei segmenti orientati rappresentanti del vettore sono uguali = = distanza tra e = lunghezza del segmento D C

12 DEFINIZIONE DI VETTORE (11) Osservazioni L insieme dei vettori V è diverso dallo spazio euclideo tridimensionale E. In altri termini, un vettore non è un elemento dello spazio euclideo tridimensionale. Lo spazio euclideo tridimensionale è servito per costruire l insieme dei vettori, ma è distinto da quest ultimo. Una volta costruiti i vettori, possiamo fare astrazione del metodo usato per costruirli. In particolare, li considereremo indipendenti dai segmenti orientati, e semplicemente caratterizzati dalle loro tre proprietà: modulo, direzione, e verso.

13 DEFINIZIONE DI VETTORE (12) Osservazioni (fine) vremmo potuto costruire i vettori partendo da uno spazio euclideo di dimensione diversa, ad esempio il piano euclideo. vremmo ottenuto l insieme dei vettori definiti sul piano euclideo, di dimensione 2. llo stesso modo potremmo definire i vettori sullo spazio euclideo di dimensione 4. L insieme dei vettori ha la stessa dimensione dello spazio euclideo usato per definirli.

14 OPERZIONI TR VETTORI Nell insieme dei vettori possiamo definire delle operazioni analoghe a quelle che si possono effettuare tra numeri reali: Somma e differenza di due vettori Prodotto di un vettore per un numero reale Prodotto scalare di due vettori Prodotto vettoriale

15 SOMM DI DUE VETTORI (1) Consideriamo due vettori e C. La somma di questi due vettori è il vettore C che è definito dalla relazione: C = + C dove il simbolo + indica la somma vettoriale Il vettore somma va dalla coda del primo vettore alla punta del secondo C

16 SOMM DI DUE VETTORI (2) Come si sommano i vettori e DE? D E

17 SOMM DI DUE VETTORI (3) Effettuo prima la traslazione del segmento orientato (D,E) sul segmento orientato (,F) D F E

18 SOMM DI DUE VETTORI (4) Si noti che F = DE, quindi + DE = + F = F D F E

19 SOMM DI DUE VETTORI (5) Un altra possibilità è di effettuare la traslazione di (D,E) su (,H) D E H

20 SOMM DI DUE VETTORI (6) Poi si trova il punto G tale che GH sia un parallelogramma D G E H

21 SOMM DI DUE VETTORI (7) Si noti che (,G) è equipollente a (,H) e quindi è equipollente a (D,E) D G E H

22 SOMM DI DUE VETTORI (8) Quindi, poiché G = DE, + DE = + G = G D G E F

23 SOMM DI DUE VETTORI (9) Questo metodo di somma dei vettori è detto regola del parallelogramma G F

24 SOMM DI TRE VETTORI (1) Possiamo estendere la definizione di somma di due vettori a tre o più vettori? Come si sommano tre vettori e CD e EF? Dati questi tre vettori vi sono due possibilità: calcolare ( + CD) + EF oppure + (CD + EF)

25 SOMM DI TRE VETTORI (2) Si può dimostrare che la somma vettoriale è associativa, ovvero: ( + CD) + EF = + (CD + EF) Per indicare la somma dei tre vettori, CD e EF possiamo semplicemente scrivere: + CD + EF (senza parentesi)

26 SOMM DI TRE VETTORI (3) In pratica, per costruire il vettore + CD + EF possiamo procedere in questo modo: effettuiamo la traslazione di CD C G F D E

27 SOMM DI TRE VETTORI (4) poi effettuiamo la traslazione di EF H G F E

28 SOMM DI TRE VETTORI (5) infine, la somma dei vettori, CD e EF si ottiene indifferentemente costruendo ( + CD) + EF oppure + (CD + EF) H G H G

29 SOMM DI TRE VETTORI (6) Si noti che la somma di tre vettori si ottiene, analogamente alla somma di due vettori, unendo la coda del primo vettore della somma con la punta dell ultimo H G Questo risultato si generalizza alla somma di un numero qualsiasi di vettori

30 LTRE PROPRIET DELL SOMM VETTORILE (1) La somma vettoriale è commutativa: + CD = CD + questa proprietà discende immediatamente dalla regola del parallelogramma Esiste un elemento neutro, il vettore nullo 0, tale che: + 0 = 0 + = il vettore nullo è un vettore nel quale la punta coincide con la coda; ad esempio, se e sono punti dello spazio euclideo, = = 0 Verifichiamo che tale vettore ha la proprietà richiesta: + = da cui: + 0 = + = da cui: 0 + =

31 LTRE PROPRIET DELL SOMM VETTORILE (2) Per ogni vettore esiste il vettore opposto ( ) tale che: + ( ) = 0 ( ) + = 0 Il vettore opposto di è il vettore, infatti: + = = 0 + = = 0

32 DIFFERENZ DI DUE VETTORI (1) La differenza dei vettori e CD si indica con CD ed è il vettore che, sommato a CD dà C D

33 DIFFERENZ DI DUE VETTORI (2) Per costruire il vettore CD effettuiamo prima la traslazione del segmento orientato (C,D) nel segmento orientato (E,) in modo che E = CD E C D

34 DIFFERENZ DI DUE VETTORI (3) Osserviamo ora che E + E =, ma E = CD, da cui segue E + CD = Quindi E è il vettore differenza: E = CD E C D

35 DIFFERENZ DI DUE VETTORI (4) In alternativa, la differenza dei vettori e CD si può ottenere effettuando prima la traslazione del segmento orientato (C,D) nel segmento orientato (,F) in modo che F = CD C D F

36 DIFFERENZ DI DUE VETTORI (5) La differenza dei vettori e CD in questo caso è data dal vettore F C D F

37 DIFFERENZ DI DUE VETTORI (6) Verifichiamo che F = E E Infatti, poiché F = E, EF è un parallelogramma e quindi E = F C D F

38 DIFFERENZ DI DUE VETTORI (7) Confronto tra somma e differenza dei vettori e C (DC è un parallelogramma) D C + C = D C = C

39 PROPRIET DELL DIFFERENZ (1) La differenza di due vettori non è commutativa, cioè C C C C = C C C = C = C

40 PROPRIET DELL DIFFERENZ (2) C = + C = + ( C) D C E Scegliamo il punto D in modo che (,D) sia equivalente a (C,) e costruiamo il vettore E = + D osserviamo che (,E) è equivalente ad (,D) e quindi anche a (C,) Quindi (,E) è equivalente a (C,) Quindi: E = C = C E = + D = + C Da cui segue che: C = + C

41 MOLTIPLICZIONE PER UN NUMERO RELE (1) Sia un vettore, e a un numero reale. Si definisce prodotto di per a, e si scrive: D = a, il vettore D tale che: il punto D giace sulla retta che passa per i punti e D = a per a > 0 e D sono paralleli per a < 0 e D sono antiparalleli La moltiplicazione di un vettore per un numero reale si indica di solito coll espressione moltiplicazione per uno scalare. Il termine scalare indica un numero reale in contrapposizione ad un vettore che è un oggetto dotato di direzione e verso D D

42 MOLTIPLICZIONE PER UN NUMERO RELE (2) Proprietà della moltiplicazione per uno scalare: siano e CD due vettori e a e b due scalari; valgono le seguenti proprietà: Inoltre: 1 = a ( + CD) = a + a CD (a+b) = a + b (ab) = a (b ) Se a = 0, allora a = 0 Se a = 1, allora a = =

43 COORDINTE DI UN PUNTO NELLO SPZIO EUCLIDEO (1) ssi Cartesiani: un sistema ortonormale di assi cartesiani nello spazio euclideo tridimensionale è costituito da tre rette a due a due ortogonali che si intersecano in un punto detto origine. Ognuna di esse è orientata secondo un verso positivo arbitrario mediante un segmento orientato di lunghezza unitaria. z y 1 O 1 1 x

44 COORDINTE DI UN PUNTO NELLO SPZIO EUCLIDEO (2) Nel caso del piano euclideo, un sistema ortonormale è costituito da due rette ortogonali ed è definito in modo analogo y O 1 1 x Nel caso della retta il sistema cartesiano è definito dalla scelta dell origine e del segmento di lunghezza unitaria O 1 x

45 COORDINTE DI UN PUNTO NELLO SPZIO EUCLIDEO (3) Si chiama misura algebrica di un segmento (,) sulla retta, dotata di un sistema cartesiano, la lunghezza del segmento stesso con il segno + o con il segno a seconda che il verso del segmento sia concorde (parallelo) o discorde (antiparallelo) con il verso positivo della retta. Esempio: C O 1 misura algebrica di (,) positiva misura algebrica di (,C) negativa x Si chiama ascissa di un punto P sulla retta la misura algebrica del segmento (O,P), dove O è l origine della retta. L ascissa di P si indica di solito con x P x O 1 P

46 COORDINTE DI UN PUNTO NELLO SPZIO EUCLIDEO (4) Sia P un punto dello spazio euclideo e siano P x, P y e P z le sue proiezioni ortogonali sugli assi cartesiani P y P y P x O 1 1 x x P = ascissa di P = misura algebrica di (O, P x ) y P = ordinata di P = misura algebrica di (O, P y ) z P = quota di P = misura algebrica di (O, P z ) coordinate del punto P rispetto al sistema cartesiano (O,x,y,z)

47 COORDINTE DI UN PUNTO NELLO SPZIO EUCLIDEO (5) Sia P un punto del piano euclideo e siano P x e P y le proiezioni ortogonali di P sugli assi cartesiani z P z P y P y O P x x Si chiama ascissa del punto P la misura algebrica del segmento (O, P x ) e si indica con x P. Si chiama ordinata del punto P la misura algebrica del segmento (O, P y ) e si indica con y P.

48 COMPONENTI DI UN VETTORE (1) y Caso del piano euclideo y y O x x x x x - x Si chiama componente x del vettore, e si indica con X la misura algebrica del segmento ( x, x ). Osserviamo che X =x -x Si chiama componente y del vettore, e si indica con y la misura algebrica del segmento ( y, y ). Osserviamo che y =y -y x

49 COMPONENTI DI UN VETTORE (2) Nel caso di vettori in tre dimensioni si ha un analoga definizione per la componente z: z =z -z Si può fare riferimento ad un vettore mediante sue componenti rispetto ad un sistema di assi cartesiani: x x y y z z =! E importante osservare che, mentre il vettore è definito in modo univoco dai punti e, le componenti di dipendono dalla scelta del sistema di assi cartesiani. Se si cambiano gli assi cartesiani, cambiano anche le componenti del vettore.

50 COMPONENTI DI UN VETTORE (3) Possiamo verificare che le componenti di un vettore, una volta fissato il sistema di assi cartesiani, non dipendono dal particolare segmento orientato che usiamo per rappresentare il vettore. y D C x x D x C x x x = misura algebrica di ( x, x ) = misura algebrica di (D x, C x ) = DC x

51 SOMM DI VETTORI MEDINTE COMPONENTI (1) Siano e C due vettori C = + C y y C y C Dalla definizione di componente abbiamo: x = x -x ; C x = x C -x ; C x = x C -x x + C x = (x -x ) + (x C -x ) = x C -x Quindi: C x = x + C x y x x C x x nalogamente: C y = y + C y, C z = z + C z

52 MOLTIPLICZIONE PER UNO SCLRE y C = a (caso a>1) C y y C Osserviamo che y (,C (,C ) x ) y y = = (, ) (, ) x x y y C x = a x x C x x Quindi C x = a x C y = a y nalogamente, per un vettore in tre dimensioni C z = a z.

53 ESEMPIO Esempio: Le componenti dei vettori bidimensionali e C rispetto ad un certo sistema di assi cartesiano sono: 7 = 12 4 C = 2 Calcolare + C, - C, 3C: + C - C 3C = + = = = = = ( 4) 4 3* = 3 = 2 3* 2 12 = 6

54 RELZIONI TR COMPONENTI E MODULO DI UN VETTORE (1) Siano u e v due vettori e siano u = u e v = v i loro moduli v y y v u x = u cosα v x = v cosβ u y = u senα v y = v senβ u y β α u x v x u x Dall espressione delle componenti e dall esame della figura (triangolo rettangolo) si vede che: u 2 = u x2 + u y 2 da cui u = u = u x2 + u y 2

55 RELZIONI TR COMPONENTI E MODULO DI UN VETTORE (2) Per un vettore di tre dimensioni si ha un espressione analoga: u = u = u x2 + u y2 + u z 2 Esempio: sia u = 3 calcolare u -4 u = u x2 + u y 2 = (-4) 2 = 5

56 VETTORI UNITRI E VETTORI DI SE (1) Sia v un vettore, si dice che v è unitario se v = v = 1 ssieme ad un sistema di assi cartesiani, si considerano dei vettori particolari: sono i vettori paralleli (stessa direzione e stesso verso) agli assi cartesiani. In tre dimensioni questi vettori si indicano di solito con i, j, k z x k 1 O j 1 1 i y

57 VETTORI UNITRI E VETTORI DI SE (2) Consideriamo un punto P e le sue proiezioni ortogonali P x, P y e P z sugli assi cartesiani OP x = OP x i O i P x con relazioni analoghe per gli altri assi bbiamo quindi: OP = OP x i + OP y j + OP z k e per un generico vettore v = v x i + v y j + v z k Tra i vettori unitari i, j, k valgono le seguenti relazioni: i i = j j = k k = 1 i j = j k = k i = 0

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta, 2008

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta, 2008 LGER VETTORILE DEFINIZIONE DI VETTORE (1) Sia E lo spazio tridimensionale della geometria euclidea. Consideriamo due punti e appartenenti a E Si chiama segmento orientato, e si indica con (,) il segmento

Dettagli

Def. Un vettore è un segmento orientato.

Def. Un vettore è un segmento orientato. VETTORI Def. Un vettore è un segmento orientato. La freccia indica il verso del vettore. La lunghezza del segmento indica il modulo (o intensità) del vettore. La retta cui appartiene il segmento indica

Dettagli

Vettori e Calcolo vettoriale

Vettori e Calcolo vettoriale Vettori e Calcolo vettoriale Ci poniamo nello spazio ordinario S, in cui valgono gli assiomi della geometria euclidea. I vettori vengono rappresentati mediante frecce, con un punto iniziale e un punto

Dettagli

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri:

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: 1. modulo: la lunghezza del segmento 2. direzione: coincidente con la direzione

Dettagli

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 1: Cenni al calcolo vettoriale Anno Accademico 2008-2009

Dettagli

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:

Dettagli

VETTORI GEOMETRICI / RICHIAMI

VETTORI GEOMETRICI / RICHIAMI M.GUIDA, S.ROLANDO, 2016 1 VETTORI GEOMETRICI / RICHIAMI Chiamiamo vettore un qualsiasi segmento orientato del piano o dello spazio. Orientare un segmento significa scegliere un verso per percorrerlo,

Dettagli

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale VETTORI Costruzione di un vettore bidimensionale Nel piano con un righello si traccia una retta r tratteggiata Su r si disegna un segmento di lunghezza l d una delle estremità si disegni la punta di una

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

VETTORI. OPERAZIONI CON I VETTORI. RAPPRESENTAZIONE CARTESIANA DEI VETTORI. APPLICAZIONI.

VETTORI. OPERAZIONI CON I VETTORI. RAPPRESENTAZIONE CARTESIANA DEI VETTORI. APPLICAZIONI. VETTORI. OPERAZIONI CON I VETTORI. RAPPRESENTAZIONE CARTESIANA DEI VETTORI. APPLICAZIONI. Sia AB un segmento orientato. Ad esso è possibile associare: 1) la direzione, cioè la direzione della retta su

Dettagli

Informatica Grafica. Un introduzione

Informatica Grafica. Un introduzione Informatica Grafica Un introduzione Rappresentare la Geometria Operabile da metodi di calcolo automatici Grafica Vettoriale Partiamo dalla rappresentazione di un punto... Spazi Vettoriale SPAZI VETTORIALI

Dettagli

Vettori. Capitolo Vettori applicati e vettori liberi

Vettori. Capitolo Vettori applicati e vettori liberi apitolo 3 Vettori 3.1 Vettori applicati e vettori liberi In questo numero introduciamo il concetto di vettore geometrico su una retta, nel piano e nello spazio che ci consentirà di sviluppare un linguaggio

Dettagli

Algebra dei vettori OPERAZIONI FRA VETTORI SOMMA DI VETTORI

Algebra dei vettori OPERAZIONI FRA VETTORI SOMMA DI VETTORI Algebra dei vettori Il vettore è un oggetto matematico che è caratterizzato da modulo, direzione e verso. Si indica graficamente con una freccia. Un vettore è individuato da una lettera minuscola con sopra

Dettagli

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con.

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con. Vettori. Il vettore è un ente geometrico rappresentato da un segmento orientato, che è caratterizzato da una direzione, da un verso e da un modulo. Il punto di partenza si chiama coda (o punto di applicazione),

Dettagli

Una approssimazione allo spazio della fisica classica. Spazi affini euclidei.

Una approssimazione allo spazio della fisica classica. Spazi affini euclidei. Una approssimazione allo spazio della fisica classica. Spazi affini euclidei. Federico Lastaria. Analisi e Geometria 1. Una introduzione allo spazio della fisica classica. 1/20 Lo spazio E 3 (il piano

Dettagli

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: 049.80.40.211 Fax 049.80.40.277 marconi@provincia.padova.it www.itismarconipadova.it Settore tecnologico Indirizzo meccanica meccatronica ed energia

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

Matematica Lezione 7

Matematica Lezione 7 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 7 Sonia Cannas 26/10/2018 Vettori: definizione Definizione (Vettore) Sia O un punto fissato del piano. Si definisce vettore applicato

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni + CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio

Dettagli

Appunti di Matematica 2 - Il piano cartesiano - Il piano cartesiano. Sistema di riferimento cartesiano ortogonale

Appunti di Matematica 2 - Il piano cartesiano - Il piano cartesiano. Sistema di riferimento cartesiano ortogonale Il piano cartesiano Sistema di riferimento cartesiano ortogonale Fissare nel piano un sistema di riferimento cartesiano ortogonale significa fissare due rette perpendicolari orientate chiamate asse e asse

Dettagli

Grandezze scalari e vettoriali-esempi

Grandezze scalari e vettoriali-esempi Grandezze scalari e vettoriali-esempi Massa Tempo Temperatura Pressione Posizione lungo un asse (linea) Volume Lavoro Energia Posizione nel piano Posizione nello spazio Velocità Accelerazione Forza Quantità

Dettagli

L insieme dei numeri Relativi (Z)

L insieme dei numeri Relativi (Z) L insieme dei numeri Relativi (Z) L esigenza dei numeri relativi Due precise situazioni ci spingono ad ampliare l'insieme de numeri naturali (N): una di carattere pratico, un'altra di carattere più teorico.

Dettagli

GRANDEZZE FISICHE. Le grandezze fisiche si possono distinguere in grandezze scalari e grandezze vettoriali.

GRANDEZZE FISICHE. Le grandezze fisiche si possono distinguere in grandezze scalari e grandezze vettoriali. GRANDEZZE FISICHE Le grandezze fisiche si possono distinguere in grandezze scalari e grandezze vettoriali. Le grandezze scalari sono completamente determinate da un numero che né esprime la misura. Esempio:

Dettagli

Spazi vettoriali. Vettori geometrici. Spazi vettoriali R n. Spazi vettoriali.

Spazi vettoriali. Vettori geometrici. Spazi vettoriali R n. Spazi vettoriali. Spazi vettoriali Vettori geometrici. Spazi vettoriali R n. Spazi vettoriali. Piano vettoriale geometrico G 2 Il contesto del discorso che svolgiamo in questa parte e il piano della geometria elementare,

Dettagli

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni Svolgimento Esercizi Esercizi: 1) Una particella arriva nel punto (-2,2) dopo che le sue coordinate hanno subito gli incrementi x=-5, y=1. Da dove è partita? 2) Disegnare il grafico di C = 5/9 (F -32)

Dettagli

LA CIRCONFERENZA E LA SUA EQUAZIONE

LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA COME LUOGO GEOMETRICO DEFINIZIONE Assegnato nel piano un punto C, detto centro, si chiama circonferenza la curva piana luogo geometrico dei punti equidistanti

Dettagli

Lezione 1

Lezione 1 Lezione 1 Ordini di grandezza Dimensioni fisiche Grandezze scalari e vettoriali Algebra dei vettori Coordinate Cartesiane e rappresentazioni grafiche Verifica Cenno sulle dimensioni delle grandezze fisiche

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

Metodo delle coordinate. Rette nel piano. Mauro Saita. Versione provvisoria. Novembre 2015.

Metodo delle coordinate. Rette nel piano. Mauro Saita. Versione provvisoria. Novembre 2015. . Rette nel piano. maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. Indice 1 Cartesio (1596-1650). 2 2 Lo spazio vettoriale R 2 2 2.1 Prodotto scalare. Distanza.............................

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni Corso di Geometria, a.a. 2009-2010 Ing. Informatica e Automatica Esercizi VI: soluzioni 5 novembre 2009 1 Geometria del piano e prodotto scalare Richiami. Il prodotto scalare di due vettori del piano v,

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

Esercizi svolti. Geometria analitica: rette e piani

Esercizi svolti. Geometria analitica: rette e piani Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;

Dettagli

Sulle componenti cartesiane di un vettore

Sulle componenti cartesiane di un vettore Sulle componenti cartesiane di un vettore Premessa 1. Un vettore è un segmento orientato ed è individuato dai suoi estremi,, che devono essere distinti. 2. Ogni vettore è caratterizzato da tre parametri

Dettagli

Parte 9. Geometria del piano

Parte 9. Geometria del piano Parte 9. Geometria del piano A. Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Vettori geometrici del piano, 1 2 Lo spazio vettoriale VO 2, 3 3 Sistemi di riferimento, 8 4 Equazioni

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Indice. IL METODO DELLE COORDINATE NEL PIANO Mauro Saita Versione provvisoria. Giugno 2019.

Indice. IL METODO DELLE COORDINATE NEL PIANO Mauro Saita Versione provvisoria. Giugno 2019. IL METODO DELLE COORDINATE NEL PIANO maurosaita@tiscalinet.it Versione provvisoria. Giugno 2019. Indice 1 Il piano euclideo 2 1.1 La rivoluzione cartesiana: fare geometria con l algebra............. 2

Dettagli

2 Vettori applicati. 2.1 Nozione di vettore applicato

2 Vettori applicati. 2.1 Nozione di vettore applicato 2 Vettori applicati 2 Vettori applicati 2.1 Nozione di vettore applicato Numerose grandezze fisiche sono descritte da vettori (spostamento, velocità, forza, campo elettrico, ecc.). Per alcune di esse e,

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

I vettori. I vettori sono gli oggetti matematici che costituiscono la base di tutte le teorie fisiche.

I vettori. I vettori sono gli oggetti matematici che costituiscono la base di tutte le teorie fisiche. Vettori I vettori I vettori sono gli oggetti matematici che costituiscono la base di tutte le teorie fisiche. Le grandezze fisiche si distinguono essenzialmente in due grandi classi. Quelle che risultano

Dettagli

Algebra vettoriale. Capitolo 5. 5.1 Grandezze scalari. 5.2 Grandezze vettoriali

Algebra vettoriale. Capitolo 5. 5.1 Grandezze scalari. 5.2 Grandezze vettoriali Capitolo 5 5.1 Grandezze scalari Si definiscono scalari quelle grandezze fisiche che sono descritte in modo completo da un numero accompagnato dalla sua unità di misura. La temperatura dell aria in una

Dettagli

1 Vettori. LeLing4: Vettori.

1 Vettori. LeLing4: Vettori. LeLing4: Vettori. Ārgomenti svolti: Vettori. Prodotto scalare, angolo, lunghezza e proiezzione. Disuguaglianze di Cauchy-Schwarz e triangolare. Equazione della retta, del piano e dell iperpiano. Ēsercizi

Dettagli

SCALARI E VETTORI SOMMA DI VETTORI

SCALARI E VETTORI SOMMA DI VETTORI SLRI E VETTORI lcune grandee fisiche per esempio, la massa di un oggetto, la posiione di un punto possono essere caratteriate matematicamente mediante un numero. Tali grandee o osservabili sono dette scalari.

Dettagli

ed un operazione di moltiplicazione per scalari reali u u 2u

ed un operazione di moltiplicazione per scalari reali u u 2u Geometria e Algebra (II), 0... Consideriamo il piano della geometria euclidea, intuitivamente inteso, e sia un punto fissato in esso. Sull insieme P dei vettori del piano applicati nel punto sono definite

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

I vettori: brevissime note

I vettori: brevissime note I vettori: brevissime note F. Demontis Corsi PAS 2014 Trovate in queste pagine le poche nozioni sul calcolo vettoriale che vi ho presentato durante le lezioni. Tutto il materiale è stato scritto molto

Dettagli

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k Richiami di calcolo vettoriale Consideriamo il vettore libero v = OP. Siano P x, P y, P z le proiezioni ortogonali di P sui tre assi cartesiani. v è la diagonale del parallelepipedo costruito su OP x,

Dettagli

VETTORI B B B. con verso da B a A

VETTORI B B B. con verso da B a A VETTORI Definizione: Il vettore è un segmento orientato ovvero un segmento su cui è fissato un verso di percorrenza. Graficamente il verso del vettore è rappresentato da una freccia. A A A Segmento orientato

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}. Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è

Dettagli

Prodotto scalare e norma

Prodotto scalare e norma Capitolo 7 Prodotto scalare e norma Riprendiamo ora lo studio dei vettori da un punto di vista più geometrico. È noto, per esempio dalla Fisica, che spesso è comodo visualizzare un vettore del piano o

Dettagli

Richiami sugli insiemi numerici

Richiami sugli insiemi numerici Richiami sugli insiemi numerici denota l insieme vuoto cioè l insieme privo di elementi. N = {1, 2, 3,...} denota l insieme dei numeri naturali. Z = {..., 2, 1, 0, 1, 2,...} denota l insieme dei numeri

Dettagli

Matematica Lezione 4

Matematica Lezione 4 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 4 Sonia Cannas 18/10/2018 Proporzioni Esempio Da un rubinetto di una vasca fuoriescono 60 litri di acqua in 4 minuti. Quanti litri

Dettagli

- Fondamenti di calcolo vettoriale - VETTORI

- Fondamenti di calcolo vettoriale - VETTORI VETTORI Definizione: Il vettore è un segmento orientato ovvero un segmento su cui è fissato un verso di percorrenza. Graficamente il verso del vettore è rappresentato da una freccia. A A A Segmento orientato

Dettagli

Lezione I Vettori geometrici e spazi vettoriali

Lezione I Vettori geometrici e spazi vettoriali .. Lezione I Vettori geometrici e spazi vettoriali A. Bertapelle 2 ottobre 2012 Vettori geometrici Definizione naïf di vettore Un vettore geometrico è un ente dotato di direzione, lunghezza e verso. Si

Dettagli

ELEMENTI DI CALCOLO VETTORIALE

ELEMENTI DI CALCOLO VETTORIALE ELEMENTI DI CALCOLO VETTORIALE Vettori liberi e vettori applicati o Vettore libero: - individuato da una direzione orientata ed una lunghezza - non ha un'ubicazione fissa nello spazio: - puo' essere traslato

Dettagli

2.1 Numeri naturali, interi relativi, razionali

2.1 Numeri naturali, interi relativi, razionali 2.1 Numeri naturali, interi relativi, razionali Definizione L insieme N = {0, 1, 2, 3,...} costituito dallo 0 e dai numeri interi positivi è l insieme dei numeri naturali. Se a, b 2 N, allora mentre non

Dettagli

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017

Prova scritta di Geometria 1 Docente: Giovanni Cerulli Irelli 20 Gennaio 2017 Prova scritta di Geometria Docente: Giovanni Cerulli Irelli Gennaio 7 Esercizio. Si considerino i seguenti tre punti dello spazio euclideo: P :=, Q :=, R :=.. Dimostrare che P, Q ed R non sono collineari.

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

METODO DI CAVALIERI-SIMPSON (o delle parabole) (per il calcolo approssimato 1 di integrali definiti)

METODO DI CAVALIERI-SIMPSON (o delle parabole) (per il calcolo approssimato 1 di integrali definiti) METODO DI CVLIERI-SIMPSON (o delle parabole) (per il calcolo approssimato di integrali definiti) ssieme ai metodi dei Rettangoli e dei Trapezi costituisce l insieme dei metodi di Integrazione Numerica

Dettagli

8 Valore assoluto. 8.1 Definizione e proprietà

8 Valore assoluto. 8.1 Definizione e proprietà 8 Valore assoluto 8. Definizione e proprietà Si dice valore assoluto o modulo di un numero reale, e si indica con, il numero stesso se questo è positivo o nullo, altrimenti il suo opposto -, in simboli:

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIBRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

Come sappiamo, fissata una base ortonormale dello spazio tridimensionale dei ~ di coordinate (x, y, z)

Come sappiamo, fissata una base ortonormale dello spazio tridimensionale dei ~ di coordinate (x, y, z) Chapter 1 Distanze nello spazio Come sappiamo, fissata una base ortonormale dello spazio tridimensionale dei ~ di coordinate (x, y, z) vettori applicati in O, la lunghezza di un vettore OP rispetto a tale

Dettagli

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Materiale utilizzato: Telaio (carrucole,supporto,filo), pesi, goniometro o foglio con goniometro stampato, righello Premessa

Dettagli

vettori V Sia inoltre l angolo che il primo vettore deve percorrere per sovrapporsi al secondo. * **

vettori V Sia inoltre l angolo che il primo vettore deve percorrere per sovrapporsi al secondo. * ** Prodotto scalare di vettori. Consideriasmo due vettori u e v e siano O e O due rappresentanti applicati in O. Indichiamo come al solito con u = O la norma (cioè l intensità) del vettore u Sia inoltre l

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

Appunti di Matematica 2 - Il piano cartesiano. La retta nel piano cartesiano - Il piano cartesiano. Sistema di riferimento cartesiano ortogonale

Appunti di Matematica 2 - Il piano cartesiano. La retta nel piano cartesiano - Il piano cartesiano. Sistema di riferimento cartesiano ortogonale ppunti di Matematica Il piano cartesiano Sistema di riferimento cartesiano ortogonale Fissare nel piano un sistema di riferimento cartesiano ortogonale significa fissare due rette perpendicolari orientate

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

Unità Didattica N 08 I sistemi di primo grado a due incognite 1. U.D. N 08 I sistemi di primo grado a due incognite

Unità Didattica N 08 I sistemi di primo grado a due incognite 1. U.D. N 08 I sistemi di primo grado a due incognite Unità Didattica N 08 I sistemi di primo grado a due incognite 1 U.D. N 08 I sistemi di primo grado a due incognite 01) Coordinate cartesiane 0) I sistemi di primo grado a due incognite 03) Metodo di sostituzione

Dettagli

Esempio Date a = (1, 2, 3) e b = (4, 5, 6), calcolare. 2(a + b) 3(2a b).

Esempio Date a = (1, 2, 3) e b = (4, 5, 6), calcolare. 2(a + b) 3(2a b). Matematica II, 26.02.04 Passiamo ora a considerare l insieme R 3 = {(x, x 2, x 3 ); x, x 2, x 3 R}, costituito dalle terne ordinate di numeri reali. Ciascuna terna puo essere pensata come un unica entita,

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Corsi di Laurea dei Tronchi Comuni 2 e 4 Dr. Andrea Malizia 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale 2 Sistemi di riferimento e spostamento 3 Sistemi di

Dettagli

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO FACOLTÀ DI INGEGNERIA CORSO DI AZZERAMENTO - MATEMATICA ANNO ACCADEMICO 010-011 ESERCIZI RELATIVI A SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO Esercizio 1: Fissato su una retta un sistema di riferimento

Dettagli

Matematica Domande di Algebra e Geometria Analitica

Matematica Domande di Algebra e Geometria Analitica Matematica Domande di Algebra e Geometria Analitica prof. Vincenzo De Felice 2015 O studianti, studiate le matematiche, e non edificate sanza fondamenti. Leonardo da Vinci (1452-1519). 1 2 Tutto per la

Dettagli

Insiemi numerici. Teoria in sintesi NUMERI NATURALI

Insiemi numerici. Teoria in sintesi NUMERI NATURALI Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Dr. Andrea Malizia Prof. Maria Guerrisi 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Sistemi di riferimento e spostamento 2 Sistemi di riferimento e spostamento

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

Coordinate Cartesiane

Coordinate Cartesiane - - Coordinate Cartesiane Su di una retta r consideriamo un punto, detto origine, un verso positivo indicato con una freccia ed un segmento unitario U. In questo caso la retta r dicesi asse delle ascisse

Dettagli

LEZIONE 5. Typeset by AMS-TEX

LEZIONE 5. Typeset by AMS-TEX LEZINE 5 5.1. Vettori geometrici. In questo lezione inizieremo a studiare enti geometrici ben noti quali punti, segmenti (orientati), rette, piani nel piano A 2 e nello spazio A 3 affini (cioè in cui valgono

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

Commenti ad alcuni degli esercizi proposti 13. Uso del prodotto scalare: condizioni di perpendicolarità, angoli, distanze.

Commenti ad alcuni degli esercizi proposti 13. Uso del prodotto scalare: condizioni di perpendicolarità, angoli, distanze. Commenti ad alcuni degli esercizi proposti 13. Uso del prodotto scalare: condizioni di perpendicolarità, angoli, distanze. Risposte agli esercizi iniziali. Nello spazio vettoriale euclideo R 2 3, dotato

Dettagli

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 013-014 ESERCIZI RELATIVI A SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO Esercizio 1: Fissato su una retta un sistema di riferimento

Dettagli

RIPASSO DI MATEMATICA

RIPASSO DI MATEMATICA RIPASSO DI MATEMATICA PER LA FISICA LA MATEMATICA È UNO STRUMENTO CHE PERMETTE LA FORMALIZZAZIONE DELLE SUE LEGGI (tramite le formule si può determinare l evoluzione del fenomeno) I NUMERI I NUMERI POSSONO

Dettagli

01 - Elementi di Teoria degli Insiemi

01 - Elementi di Teoria degli Insiemi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2013/2014 M Tumminello,

Dettagli

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

grandezze fisiche vettoriali operazioni con i vettori Appunti di Fisica Prof. Calogero Contrino

grandezze fisiche vettoriali operazioni con i vettori Appunti di Fisica Prof. Calogero Contrino 2006 grandezze fisiche vettoriali operazioni con i vettori Prof. Calogero Contrino Introduzione: determinazione di una temperatura Si considerino le seguenti situazioni: 1. Si vuole conoscere la temperatura

Dettagli

Cosa vuol dire misurare l'area di una figura piana a contorno curvilineo?

Cosa vuol dire misurare l'area di una figura piana a contorno curvilineo? Cosa vuol dire misurare l'area di una figura piana a contorno curvilineo? Idea elementare: 1. fissare un quadratino come unità di misura 2. contare quante volte questo può essere riportato nella figura

Dettagli

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1 Corso di Fisica Lezione 2 Scalari e vettori Parte 1 Scalari e vettori Consideriamo una libreria. Per determinare quanti libri ci sono su uno scaffale basta individuare lo scaffale in questione e contare

Dettagli

Geometria e Topologia I 22 Giugno 2005 (U1-10, 9:00 11:00) [PROVA PARZIALE]1/8

Geometria e Topologia I 22 Giugno 2005 (U1-10, 9:00 11:00) [PROVA PARZIALE]1/8 Geometria e Topologia I 22 Giugno 2005 (U-0, 9:00 :00) [PROVA PARZIALE]/8 Correzione 0 () In A 3 (R) siano dati i tre punti A =, B = 0, C =. 0 (a) A B e C sono allineati? Dipendenti? (b) Dimostrare che

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1 Introduzione Nella computer grafica, gli oggetti geometrici sono definiti a partire da un certo numero di elementi di base chiamati primitive grafiche Possono essere punti, rette e segmenti, curve, superfici

Dettagli