1. Operazioni in logica binaria e porte logiche

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1. Operazioni in logica binaria e porte logiche"

Transcript

1 1. Operazioni in logica binaria e porte logiche Espressione di un numero in base 10 (notare a pedice p.es del numero 21); = ,98 10 = , = riflettendo per esprimere un qualsiasi numero in base 10 occorrono 10 coefficenti numerici delle potenze del 10 usate nelle espressioni sopra per definire centinaia decine e unità, decimi, centesimi e millesimi; tali coefficienti sono 0,1,2,3,4,5,6,7,8,9 cioè vanno da 0 a Se indichiamo con B la base Il teorema di numerazione si esprime nel modo seguente Un qualsiasi numero si esprime come somma di potenze intere decrescenti della base B aventi ognuna coefficente moltiplicativo (intero) che può assumere valori che vanno da 0 a B-1. In base B=2 un numero si può rappresentare come somma di potenze intere decrescenti del 2 ognuna delle quali può avere coefficiente moltiplicativo (intero) da 0 a 1: = = allostesso risultato si poteva arrivare per divisioni successive per duedel numero dato 21:2 1 10:2 0 5:2 1 2:2 0 1 =MSB (most significative bit) ed al medesimo risultato si poteva arrivare sommando 16 a 5 convertiti in binario = = = = la somma parte dalla colonna più a destra; ricordare 0+0=0 ; 1+0=1 e 1+1=0 con il riporto di 1 a sinistra facendo infatti fiferimento alle potenze del due convertite in binario che sono semplici da ricordare: 2 x =1 seguito da x zeri 2 ; x+1 bit 2 0 =1 10 =1 2 0 = =2 10 = = =4 10 = =

2 2 5 =32 10 = = (6 bit) = =1 K (11 bit) e fondamentali per stabilire immediatamente il numero di bit necessari per effettuare una codifica per esempio quella degli alunni di una classe: per es N=29 per poter codificare ciscuno è come assegnare ad ugnuno un numero, e in sostanza come riuscire a contare da 0 a 28 che osservando le potenze del 2 sopra espresse si riesce a fare con 5 bit. Se invece si considerasse una classe di 37 elementi la codifica siriesce a fare utilzzando 6 bit e lasciando inutilizzati tutti numeri dal 37 fino al 63 compresi. In generale 2 n bit 1 n elementi della codifica; (ovviamente n bit il più piccolo possibile). n bit è il numero di bit necessari per effettuare la codifica; n elementi della codifica sono per es glialunni da numerare. Se per esempio il numero degli alunni da codificare è 16 (basterà saper contare da 0 a 15) e si utilizzeranno 4 bit infatti dec bin ESA A B C D E F per convertire in base 16 esadecimale un numero binario p.es una parola "word" di 16 bit si scompone a gruppi di 4 bit partendo dal LSB (bit meno significativo) e se ne legge la codifica esadecimale riportata in tabella cosi il codice binario diventa B7E1 in base 16 il byte diventa AF in base 16. Le operazioni in logica binaria sono dette Booleane e sono la somma logica (OR) e il prodotto logico (AND) Queste operazioni sono definite attraverso la cosiddetta tabella di verità. Le tabelle di verità della porta AND e OR sono le seguenti A B AND U

3 A B U(AND) A B U(OR) Per ottenere l'espressione e l'operazione logica rappresentata da una certa tabella di verità si applica il teorema di De Morgan riguardante la prima espressione canonica detta somma di prodotti, oppure la seconda espressione canonica detta prodotti di somme. Per quanto riguarda la prima espressione canonica si selezionano le righe in cui l'uscita è pari a 1 (nel caso della Tab porta AND solo l'ultima riga), si fa il prodotto degli ingressi (nel ns caso A e B) mettendo A se nella riga considerata A=1 e mettendo Ā se nella riga considerata A=0 e poi si sommano fra loro i prodotti di tutte le righe (vedi calcolo porta OR); risulta per la porta AND la prima espressione canonica A B (Espressione algebrica porta AND detto prodotto logico) Per la porta OR la prima espressione canonica risulta A B+ A B+ A B difficile da semplificare; in quest caso meglio utilizzare la seconda forma dell'espressione canonica detta prodotti di somme: si selezionano le righe in cui l'uscita è pari a 0 (nel caso della Tab porta OR solo la prima riga), si fa la somma degli ingressi (nel ns caso A e B) mettendo A se nella riga considerata A=0 e mettendo Ā se nella riga considerata A=1 e poi si fa il prodotto delle somme di ogni riga; per la porta OR la seconda forma della espressione canonica è A +B (Espressione algebrica porta OR detta somma logica) Porta XOR A B U(XOR) A B+ A B= A. XOR. B

4 Porta NOT A Ᾱ A U(NOT) Vi sono poi le porte NAND, NOR e XNOR o EXNOR che sono le porte che danno uscita negata N rispetto alle porte AND, OR e XOR il loro schema è il seguente: esercizio 1. In una classe sono contenuti 16 studenti realizzare un circuito digitale con porte logiche che faccia accendere un led (suonare uno speaker ecc...) da 1.2 Volt e 10 ma di corrente nominale quando due studenti sono fuori posto. Si osserva che lo studio riguarda sia la realizzazione del circuito elettrico riguardante l'accensione del led in questo caso è il circuito attuatore, sia del circuito elettronico combinatorio di porte logiche senza elementi di memoria in cui l'uscita al rempo t dipende solo sallo stato degli ingressi al tempo t, sia del circuito trasduttore che è costituito ad esempio da interruttori a bottone monostabili normalmente aperti (NA) inseriti sulla sedia del banco di ogni studente: quando lo studente è seduto si schiaccia l'interuttore (è come l'interuttore del campanello) chiudendo il circuito ad esso collegata. Si osserva che il sistema in esame è molto simile all'es. Di pag 136 del libro di testo vol 1 e la cui soluzione è riportata sul sito nella parte delle esercitazioni. Ci sarà bisogno ovviamente di componentistica con un numero maggiore di ingressi con classi per es di 30 studenti e a cui si devolve allo studente il compito di identificare i chip o le architetture idonee previste nella vasta gamma di scelte.

5 con U1= interuttori monostabili NA ; X1 Encoder (codificatore) decimale-binario; X2 porta NOT; X5 decoder Decodificatore binario display sette segmenti; X6 Decoder binario decimale. Per risolvere espressioni di tabelle di verità in molte variabili di ingresso e composte da molti monomi di semplificare è necessario conoscere il metodo di minimizzazione delle espressioni di Karnaugh; Di seguito si riporta la tabella di verità dell'esercizio 1 (uscita 1 quando 2 studenti sono in piedi): A B C D U

6 AB CD+C D( A B+B A)+AB CD+DC ( A B+B A)= ABCD+ ABCD+( A B+B A)(C D+DC ) che si può scrivere [(A-AND-B) -XOR- (C-AND-D )]OR[(A-XOR-B)AND(C-XOR-D)

7 Esercizio 2 Si considerino i numeri da 1 a 15 e si realizzi un circuito che accenda un led con le caratteristiche dell'es.1 quando il decimale codificato in binario corrisponde ad un numero primo. d A B C D U si possono eseguire raggruppamenti di 2,4,8,16... celle adiacenti orizzontalmente o verticalmente, si osserva che le colonne terminali sono da considerarsi adiacenti come se il piano fosse in realtà un cilindro con asse verticale rispetto al foglio e unito attraverso gli estremi delle colonne iniziale e finale. I tre raggruppamenti (uno da 4 elementi e due da 2 elementi )originano la seguente espressione della tabella di verità proposta nell'es.2

8 B CD+ A D+B C D= A D+D(B C+C B) che si può scrivere (NOT A -AND-D) OR [D-AND-(B -XOR-C)] es-3 Progettare un circuito combinatorio con 8 ingressi numerati da 0 a 7 tale che in uscita si abbia la codifica binaria corrispondente all'ingresso considerato che viene all'istante alimentato. NB solo un ingresso per volta. Disegno dello schema funzionale es 3 Disegno dello schema funzionale es 4 CE (chip Enable) CE N0 N0 N1 MSB... N2 U0 1 U0... N3 U1 0 U1... N4 U2 0 U2 N4 N5 LSB... N6... N7 N7 Codificatore decimale binario Decodificatore Binario Decimale

9 Esercizio 4 Progettare il circuito che esegua l'operazione opposta rispetto all'esercizio precedente ossia un sistema combinatorio con tre ingressi che quando corrispondono alla codifica binaria della linea in uscita corrispondente al numero decimale codificato, attiva tale uscita Esercizio 5 Multiplexer digitale Progettare un circuito combinatorio tale da avere 8 ingressi sui quali può essere presente o meno un segnale 5V o GND (in logica diretta rispettivamente 1 e 0 logico) ed una sola linea di uscita U Il circuito deve essere tale, mediante delle linee di selezione in codice binario dell'ingresso desiderato numerato decimale, da collegare tale ingresso con l'uscita(multiplexer digitale). Esercizio 6 Demultiplexer digitale Progettare il circuito che svolge l'operazione inversa ossia 1 solo ingresso e mediante canali di selezione binari metterlo in collegamento con l'uscita desiderata numerata in decimale (Demultiplexer Digitale) Disegno dello schema funzionale es 5 Disegno dello schema funzionale es 6 CE (chip Enable) CE N0 N0 N1... N2... N3 U I... N4 N4 N5... N6... N7 N7 MSB S0 S1 S2 MSB S0 S1 S

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi:

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi: Modulo 8 Elettronica Digitale Contenuti: Introduzione Sistemi di numerazione posizionali Sistema binario Porte logiche fondamentali Porte logiche universali Metodo della forma canonica della somma per

Dettagli

Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche

Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche 3.1 LE PORTE LOGICHE E GLI OPERATORI ELEMENTARI 3.2 COMPORTAMENTO A REGIME E IN TRANSITORIO DEI CIRCUITI COMBINATORI I nuovi

Dettagli

APPUNTI DI ELETTRONICA DIGITALE

APPUNTI DI ELETTRONICA DIGITALE APPUNTI DI ELETTRONICA DIGITALE ITIS MARCONI-GORGONZOLA docente :dott.ing. Paolo Beghelli pag.1/24 Indice 1.ELETTRONICA DIGITALE 4 1.1 Generalità 4 1.2 Sistema di numerazione binario 4 1.3 Operazioni con

Dettagli

Variabili logiche e circuiti combinatori

Variabili logiche e circuiti combinatori Variabili logiche e circuiti combinatori Si definisce variabile logica binaria una variabile che può assumere solo due valori a cui si fa corrispondere, convenzionalmente, lo stato logico 0 e lo stato

Dettagli

CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I)

CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I) CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I) DIS - Università degli Studi di Napoli Federico II Codifica delle Informazioni T insieme delle informazioni da rappresentare E insieme

Dettagli

Circuiti logici combinatori

Circuiti logici combinatori Circuiti logici combinatori - Prof. G. Acciari - M.M. Mano C.R.Kime, RETI LOGICHE IV ed, Pearson Prentice Hall Cap..,.,.6,.7,.8,.9 Ing. G. Acciari - Circuiti Logici (ver..) A.A. / Circuiti logici combinatori

Dettagli

Sintesi dei circuiti logici:

Sintesi dei circuiti logici: SCUOLA DI SPECIALIZZAZIONE INTERATENEO PER LA FORMAZIONE DEGLI INSEGNANTI DI SCUOLA SECONDARIA INDIRIZZO TECNOLOGICO Tesina finale di abilitazione in Elettronica ( A034 ) Sintesi dei circuiti logici: minimizzazione

Dettagli

ELEMENTI PROGETTAZIONE LOGICA

ELEMENTI PROGETTAZIONE LOGICA UNIVERSITA DEGLI STUDI DI MILANO BICOCCA CORSO DI LAUREA IN INFORMATICA ELEMENTI PROGETTAZIONE DI LOGICA Dispense per il Corso di PROGETTAZIONE LOGICA Prof. Giuliano F. BOELLA 2 i PREMESSA Queste dispense

Dettagli

ALGEBRA BOOLEANA FONDAMENTI DI INFORMATICA 1. Algebra di Boole. Definizione NOT, AND, OR

ALGEBRA BOOLEANA FONDAMENTI DI INFORMATICA 1. Algebra di Boole. Definizione NOT, AND, OR Università degli Studi di Cagliari Corso di Laurea in Ingegneria Biomedica, Chimica, Elettrica e Meccanica FONDAMENTI DI INFORMATICA 1 http://www.diee.unica.it/~marcialis/fi1 A.A. 2010/2011 Docente: Gian

Dettagli

PROGRAMMA SVOLTO E L E T T R O N I C A Anno Scolastico 2014/2015 Classe III Ae Prof. Boldrini Renato Prof. Procopio Sostene

PROGRAMMA SVOLTO E L E T T R O N I C A Anno Scolastico 2014/2015 Classe III Ae Prof. Boldrini Renato Prof. Procopio Sostene PROGRAMMA SVOLTO E L E T T R O N I C A Anno Scolastico 2014/2015 Classe III Ae Prof. Boldrini Renato Prof. Procopio Sostene LIBRI DI TESTO: Autore: Conte/Ceserani/Impallomeni Titolo: ELETTRONICA ED ELETTROTECNICA

Dettagli

I.I.S. Primo Levi Badia Polesine A.S. 2012-2013

I.I.S. Primo Levi Badia Polesine A.S. 2012-2013 LGEBR DI BOOLE I.I.S. Primo Levi Badia Polesine.S. 2012-2013 Nel secolo scorso il matematico e filosofo irlandese Gorge Boole (1815-1864), allo scopo di procurarsi un simbolismo che gli consentisse di

Dettagli

PROGRAMMAZIONE MODULARE

PROGRAMMAZIONE MODULARE PROGRAMMAZIONE MODULARE ANNO SCOLASTICO 2013-2014 Indirizzo: ELETTROTECNICA - SIRIO Disciplina: ELETTRONICA Classe: 3^ Sezione: AES Numero di ore settimanali: 2 ore di teoria + 2 ore di laboratorio Modulo

Dettagli

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( )

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( ) Algebra di Boole Circuiti logici: componenti hardware preposti all'elaborazione delle informazioni binarie. PORTE LOGICHE (logical gate): circuiti di base. Allo scopo di descrivere i comportamenti dei

Dettagli

Logica combinatoria. La logica digitale

Logica combinatoria. La logica digitale Logica combinatoria La logica digitale La macchina è formata da porte logiche Ogni porta riceve in ingresso dei segnali binari (cioè segnali che possono essere 0 o 1) e calcola una semplice funzione (ND,

Dettagli

Le Mappe di Karnaugh.

Le Mappe di Karnaugh. Le Mappe di Karnaugh. Introduzione Le mappe di Karnaugh rappresentano un metodo grafico-sistematico per la semplificazione di qualsiasi funzione booleana. Questo metodo si basa su poche regole e se applicate

Dettagli

Comparatori. Comparatori di uguaglianza

Comparatori. Comparatori di uguaglianza Comparatori Scopo di un circuito comparatore é il confronto tra due codifiche binarie. Il confronto può essere effettuato per verificare l'uguaglianza oppure una relazione d'ordine del tipo "maggiore",

Dettagli

Architettura dei Calcolatori Algebra delle reti Logiche

Architettura dei Calcolatori Algebra delle reti Logiche Architettura dei Calcolatori Algebra delle reti Logiche Ing. dell Automazione A.A. 20/2 Gabriele Cecchetti Algebra delle reti logiche Sommario: Segnali e informazione Algebra di commutazione Porta logica

Dettagli

Aritmetica dei Calcolatori 1

Aritmetica dei Calcolatori 1 Architettura degli Elaboratori e Laboratorio 1 Marzo 2013 1 Sistema di numerazione sistema posizionale 2 rappresentazione binaria cambio di base basi potenze di 2 3 Rappresentazione binaria con segno Sistema

Dettagli

RETI COMBINATORIE CON USCITE MULTIPLE 1 GENERALITÀ SUI CONVERTITORI DI CODICE Un uso delle porte logiche nei sistemi digitali è quello dei convertitori di codice. I codici più usati comunemente sono: binario,

Dettagli

LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 2. http://digilander.libero.it/rosario.cerbone

LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 2. http://digilander.libero.it/rosario.cerbone LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 2 Prof. Rosario Cerbone rosario.cerbone@libero.it http://digilander.libero.it/rosario.cerbone a.a. 2007-2008 Logica Combinatoria una rete combinatoria

Dettagli

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND.

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND. IPSI G. Plana Via Parenzo 46, Torino efinizione di Mintermine onsiderata una qualunque riga della tabella di verità in cui la funzione booleana di uscita Q vale, si definisce mintermine il prodotto logico

Dettagli

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Fondamenti di Informatica Michele Ceccarelli Università del Sannio ceccarelli@unisannio.it Angelo Ciaramella DMI-Università degli

Dettagli

SISTEMI DI NUMERAZIONE E CODICI

SISTEMI DI NUMERAZIONE E CODICI SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema

Dettagli

Rappresentazione e Memorizzazione dei Dati

Rappresentazione e Memorizzazione dei Dati Rappresentazione e Memorizzazione dei Dati Giuseppe Nicosia CdL in Matematica (Laurea Triennale) Facoltà di Scienze MM.FF.NN. Università di Catania Bit e loro Memorizzazione Definizioni Algoritmo: una

Dettagli

Componenti combinatori

Componenti combinatori Componenti combinatori Reti combinatorie particolari (5.., 5.3-5.8, 5.) Reti logiche per operazioni aritmetiche Decoder ed encoder Multiplexer Dispositivi programmabili: PROM e PLA Reti combinatorie particolari

Dettagli

Reti Logiche. Le reti logiche sono gli elementi architettonici di base dei calcolatori, e di tutti gli apparati per elaborazioni digitali.

Reti Logiche. Le reti logiche sono gli elementi architettonici di base dei calcolatori, e di tutti gli apparati per elaborazioni digitali. Reti Logiche Le reti logiche sono gli elementi architettonici di base dei calcolatori, e di tutti gli apparati per elaborazioni digitali. - Elaborano informazione rappresentata da segnali digitali, cioe

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Università degli Studi di Messina Facolta di Ingegneria - 98100 Messina Tel. (090) 393229 - Fax (090) 393502 Fondamenti di Informatica Ing. delle Tecnologie Industriali Docente: Ing. Mirko Guarnera 1 Sistemi

Dettagli

Codifica binaria e algebra di Boole

Codifica binaria e algebra di Boole Codifica binaria e algebra di Boole Corso di Programmazione A.A. 2008/09 G. Cibinetto Contenuti della lezione Codifica binaria dell informazione Numeri naturali, interi, frazionari, in virgola mobile Base

Dettagli

ENCODER. Fig. 1. attivi C B A. APPUNTI DI ELETTRONICA ENCODER DECODER rel. 01/06 Prof. Domenico Di Stefano pag. 19

ENCODER. Fig. 1. attivi C B A. APPUNTI DI ELETTRONICA ENCODER DECODER rel. 01/06 Prof. Domenico Di Stefano pag. 19 ENCODER Gli encoder (codificatori) sono dispositivi elettronici che trasformano una informazione non binaria ( ottale, decimale, codice gray, ecc.) in un codice binario. Ad esempio l encoder di Fig. 1

Dettagli

Rappresentazione delle informazioni

Rappresentazione delle informazioni Rappresentazione delle informazioni Abbiamo informazioni (numeri, caratteri, immagini, suoni, video... ) che vogliamo rappresentare (e poter elaborare) in un calcolatore. Per motivi tecnologici un calcolatore

Dettagli

FONDAMENTI DI LOGICA DIGITALE 1 DL 3155E20 LOGICA. Blocchi funzionali. Argomenti teorici

FONDAMENTI DI LOGICA DIGITALE 1 DL 3155E20 LOGICA. Blocchi funzionali. Argomenti teorici L1 LOGICA FONDAMENTI DI LOGICA DIGITALE 1 Concetti di logica: teoremi fondamentali dell'algebra booleana Sistema binario Funzioni logiche Descrizione algebrica delle reti logiche e le tavole della verità

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Esercizi di Informatica Generale

Esercizi di Informatica Generale Esercizi di Informatica Generale Edizione 1 Gennaio 2010 di Luca Andrea Ludovico Insegnamento di Informatica Generale Scienze e tecnologie per i Beni Culturali SOMMARIO SOMMARIO... 1 1 Circuiti digitali

Dettagli

LA NUMERAZIONE BINARIA

LA NUMERAZIONE BINARIA LA NUMERAZIONE BINARIA 5 I SISTEMI DI NUMERAZIONE Fin dalla preistoria l uomo ha avuto la necessità di fare calcoli, utilizzando svariati tipi di dispositivi: manuali (mani, bastoncini, sassi, abaco),

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

Macchine combinatorie: encoder/decoder e multiplexer/demultiplexer

Macchine combinatorie: encoder/decoder e multiplexer/demultiplexer Corso di Calcolatori Elettronici I A.A. 20-202 Macchine combinatorie: encoder/decoder e multiplexer/demultiplexer Lezione 5 Prof. Roberto Canonico Università degli Studi di Napoli Federico II Facoltà di

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un

Dettagli

Istituto Tecnico Industriale Statale E. Majorana

Istituto Tecnico Industriale Statale E. Majorana Istituto Tecnico Industriale Statale E. Majorana Cassino *** Corso Abilitante A034 Elettronica A.S.: 2000/2001 U.D. : Mappe di Karnaugh e minimizzazione delle reti logiche. Proposta di un piano di lavoro

Dettagli

Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN zkiziltan@deis.unibo.it

Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN zkiziltan@deis.unibo.it Esercitazioni di Reti Logiche Lezione 2 Algebra Booleana e Porte Logiche Zeynep KIZILTAN zkiziltan@deis.unibo.it Argomenti Algebra booleana Funzioni booleane e loro semplificazioni Forme canoniche Porte

Dettagli

"Elettronica di Millman 4/ed" Jacob Millman, Arvin Grabel, Pierangelo Terreni Copyright 2008 The McGraw-Hill Companies srl. 16 to 1 MUX.

Elettronica di Millman 4/ed Jacob Millman, Arvin Grabel, Pierangelo Terreni Copyright 2008 The McGraw-Hill Companies srl. 16 to 1 MUX. Copyright 008 The McGraw-Hill Companies srl Esercizi Cap 6 6 Disegnare lo schema a blocchi di una OM 04 x 4 bit con un indirizzamento bidimensionale a) Quante porte NAND sono necessarie? b) Quanti transistori

Dettagli

Circuiti logici. Parte xxv

Circuiti logici. Parte xxv Parte xxv Circuiti logici Operatori logici e porte logiche....................... 729 Operatori unari....................................... 730 Connettivo AND...................................... 730

Dettagli

Introduzione ai microcontrollori

Introduzione ai microcontrollori Introduzione ai microcontrollori L elettronica digitale nasce nel 1946 con il primo calcolatore elettronico digitale denominato ENIAC e composto esclusivamente di circuiti a valvole, anche se negli anni

Dettagli

Logica e codifica binaria dell informazione

Logica e codifica binaria dell informazione Politecnico di Milano Corsi di Laurea in Ingegneria Matematica e Ingegneria Fisica Dipartimento di Elettronica ed Informazione Logica e codifica binaria dell informazione Anno Accademico 2002 2003 L. Muttoni

Dettagli

Lezione 3 Prof. Angela Bonifati

Lezione 3 Prof. Angela Bonifati Lezione 3 Prof. Angela Bonifati Complemento a 2 Algebra booleana Le infrastrutture hardware Esercizi sulla codifica dei numeri Eseguire le seguenti conversioni: Da base 2 e 16 in base 10: 110 2 =???? 10

Dettagli

ESERCITAZIONI PRATICHE: Ø Creazione di un decoder BCD/DEC con porte logiche. Ø Esercitazione con decoder 4511 e display 7 segmenti.

ESERCITAZIONI PRATICHE: Ø Creazione di un decoder BCD/DEC con porte logiche. Ø Esercitazione con decoder 4511 e display 7 segmenti. BCD 7 SEGMENTI Il display BCD 7 segmenti è un visualizzatore di numeri che possono andare da zero a nove, ed è un dispositivo optoelettrico, cioè fornisce luce all applicazione di tensione ai suoi capi.

Dettagli

Algebra booleana e circuiti logici. a cura di: Salvatore Orlando

Algebra booleana e circuiti logici. a cura di: Salvatore Orlando lgebra booleana e circuiti logici a cura di: Salvatore Orlando rch. Elab. - S. Orlando lgebra & Circuiti Elettronici I calcolatori operano con segnali elettrici con valori di potenziale discreti sono considerati

Dettagli

Lezione 3. Sommario. Le operazioni aritmetiche binarie. L aritmetica binaria. La somma La sottrazione La moltiplicazione

Lezione 3. Sommario. Le operazioni aritmetiche binarie. L aritmetica binaria. La somma La sottrazione La moltiplicazione Lezione 3 Le operazioni aritmetiche binarie Sommario L aritmetica binaria La somma La sottrazione La moltiplicazione 1 Definizione Si indica con il termine bit più significativo il bit più a sinistra,

Dettagli

Macchine combinatorie

Macchine combinatorie Corso di Calcolatori Elettronici I A.A. 2010-2011 Macchine combinatorie Lezione 10 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Analisi e Sintesi di un sistema 1/2 Per analisi di

Dettagli

Lezione 2 OPERAZIONI ARITMETICHE E LOGICHE ARCHITETTURA DI UN ELABORATORE. Lez2 Informatica Sc. Giuridiche Op. aritmetiche/logiche arch.

Lezione 2 OPERAZIONI ARITMETICHE E LOGICHE ARCHITETTURA DI UN ELABORATORE. Lez2 Informatica Sc. Giuridiche Op. aritmetiche/logiche arch. Lezione 2 OPERAZIONI ARITMETICHE E LOGICHE ARCHITETTURA DI UN ELABORATORE Comunicazione importante dalla prossima settimana, la lezione del venerdì si terrà: dalle 15:00 alle 17.15 in aula 311 l orario

Dettagli

MAPPE DI KARNAUGH e sintesi ottima

MAPPE DI KARNAUGH e sintesi ottima MAPPE DI KARNAUGH e sintesi ottima (prima stesura da rivedere) Sappiamo che una funzione logica può essere espressa in diverse forme, tra loro equivalenti e noi siamo già in grado di passare da una all

Dettagli

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896 2 Esercizio 2.2 La rappresentazione esadecimale prevede 16 configurazioni corrispondenti a 4 bit. Il contenuto di una parola di 16 bit può essere rappresentato direttamente con 4 digit esadecimali, sostituendo

Dettagli

Operazioni Aritmetiche e Codici in Binario Giuseppe Talarico 23/01/2013

Operazioni Aritmetiche e Codici in Binario Giuseppe Talarico 23/01/2013 Operazioni Aritmetiche e Codici in Binario Giuseppe Talarico 23/01/2013 In questo documento vengono illustrate brevemente le operazioni aritmetiche salienti e quelle logiche ad esse strettamente collegate.

Dettagli

Operazioni binarie fondamentali

Operazioni binarie fondamentali Operazioni binarie fondamentali Operazioni fondamentali: operazioni elementari sui bit. Sono definite le operazioni aritmetiche più le operazioni logiche (AND, OR, NOT). Le operazioni possono essere descritte

Dettagli

Sistemi di Numerazione

Sistemi di Numerazione Fondamenti di Informatica per Meccanici Energetici - Biomedici 1 Sistemi di Numerazione Sistemi di Numerazione I sistemi di numerazione sono abitualmente posizionali. Gli elementi costitutivi di un sistema

Dettagli

LE RETI COMBINATORIE

LE RETI COMBINATORIE 2-1 CAPITOLO II LE RETI COMBINATORIE 2.1 INTRODUZIONE Le reti combinatorie sono reti logiche caratterizzate dal fatto che lo stato dell'uscita all'istante t dipende solo dallo stato delle entrate allo

Dettagli

Aritmetica dei Calcolatori 2

Aritmetica dei Calcolatori 2 Laboratorio di Architettura 13 aprile 2012 1 Operazioni bit a bit 2 Rappresentazione binaria con segno 3 Esercitazione Operazioni logiche bit a bit AND OR XOR NOT IN OUT A B A AND B 0 0 0 0 1 0 1 0 0 1

Dettagli

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità.

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. I METODI DI NUMERAZIONE I numeri naturali... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. Il numero dei simboli usati per valutare la numerosità costituisce la base

Dettagli

SISTEMI DI NUMERAZIONE DECIMALE E BINARIO

SISTEMI DI NUMERAZIONE DECIMALE E BINARIO SISTEMI DI NUMERAZIONE DECIMALE E BINARIO Il sistema di numerazione decimale (o base dieci) possiede dieci possibili valori (0, 1, 2, 3, 4, 5, 6, 7, 8 o 9) utili a rappresentare i numeri. Le cifre possiedono

Dettagli

Indice. 1 Rappresentazione dei dati... 3

Indice. 1 Rappresentazione dei dati... 3 INSEGNAMENTO DI INFORMATICA DI BASE LEZIONE II CODIFICA DELL'INFORMAZIONE PROF. GIOVANNI ACAMPORA Indice 1 Rappresentazione dei dati... 3 1.1. Rappresentazione dei numeri... 3 1.1.1 Rappresentazione del

Dettagli

Logica binaria. Porte logiche.

Logica binaria. Porte logiche. Logica binaria Porte logiche. Le porte logiche sono gli elementi fondamentali su cui si basa tutta la logica binaria dei calcolatori. Ricevono in input uno, due (o anche più) segnali binari in input, e

Dettagli

Sistemi di numerazione

Sistemi di numerazione Sistemi di numerazione 1 Sistemi di numerazione 2 Sistemi di numerazione I primi esempi di utilizzo di sistemi di numerazione risalgono al neolitico, ovvero a circa 50.000 anni fa. In epoca preistorica,

Dettagli

la conversione digitale/analogica

la conversione digitale/analogica Conversione A/D-D/A Esiste la possibilità di mettere in comunicazione un dispositivo analogico con uno digitale. -Un segnale analogico è un segnale che varia con continuità, al quale possono essere associate

Dettagli

Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche

Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche Docente: Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi 089-963334 ALGEBRA DI COMMUTAZIONE Lo scopo di questa algebra

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Definizioni iniziali

Definizioni iniziali Fondamenti di Informatica: Codifica Binaria dell Informazione 1 Definizioni iniziali BIT: unita elementare di informazione Due soli valori: 0 e 1 Byte: sequenza di 8 bit Fondamenti di Informatica: Codifica

Dettagli

Le componenti fisiche di un computer: l hardware

Le componenti fisiche di un computer: l hardware Le componenti fisiche di un computer: l hardware In questa sezione ci occuperemo di come è strutturato e come funziona l hardware di un computer. In particolare, nella Sezione ci occuperemo del punto di

Dettagli

I Sistemi di numerazione e la rappresentazione dei dati

I Sistemi di numerazione e la rappresentazione dei dati I Sistemi di numerazione e la rappresentazione dei dati LA RAPPRESENTAZIONE DELLE INFORMAZIONI (1) Per utilizzare un computer è necessario rappresentare in qualche modo le informazioni da elaborare e il

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori Informazione e computer Si può rappresentare l informazione attraverso varie forme: Numeri Testi Suoni Immagini 0001010010100101010 Computer Cerchiamo di capire come tutte queste informazioni possano essere

Dettagli

PROGRAMMAZIONE DISCIPLINARE ( modulo redatto da prof. A. Rossi)

PROGRAMMAZIONE DISCIPLINARE ( modulo redatto da prof. A. Rossi) DISCIPLINA A.S. 2011-12 di dipartimento individuale del/i docenti Sarro Alessandro Mete Nicola per la classe 4TIEL 1) PREREQUISITI Concetti di matematica,fisica ed elettrotecnica. 2) SITUAZIONE DI PARTENZA

Dettagli

2.12 Esercizi risolti

2.12 Esercizi risolti Codifica dell'informazione 55 Lo standard IEEE prevede cinque cause di eccezione aritmetica: underflow, overflow, divisione per zero, eccezione per inesattezza, e eccezione di invalidità. Le eccezioni

Dettagli

90.1 Sistemi di numerazione. 90.1.1 Sistema decimale. 605 Capitolo 90 Dai sistemi di numerazione all organizzazione della memoria

90.1 Sistemi di numerazione. 90.1.1 Sistema decimale. 605 Capitolo 90 Dai sistemi di numerazione all organizzazione della memoria 605 Capitolo 90 Dai sistemi di numerazione all organizzazione della memoria 90.1 Sistemi di numerazione.................................................... 605 90.1.1 Sistema decimale..................................................

Dettagli

Algoritmo = Dati e Azioni Sistema numerico binario Rappresentazioni di numeri binari Rappresentazione in modulo e segno

Algoritmo = Dati e Azioni Sistema numerico binario Rappresentazioni di numeri binari Rappresentazione in modulo e segno Algoritmo = Dati e Azioni Dati: Numeri (naturali, interi, reali, ) Caratteri alfanumerici (a, b, c, ) Dati logici (vero, falso) Vettori di elementi, matrici, ([1,2,3], [[1,1],[1,2], ]) Azioni o istruzioni:

Dettagli

L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI

L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI Scienza ed industria hanno oggi costituito legami molto forti di collaborazione che hanno portato innovazione tecnologica sia a livello organizzativo-amministrativo

Dettagli

ELETTRONICA DIGITALE PRATICA V

ELETTRONICA DIGITALE PRATICA V Roberto Berardi (Robert8) ELETTRONICA DIGITALE PRATICA V COMPARATOR & 7 SEGMENT DISPLAY 26 July 2012 Introduzione Oggi ci divertiamo con qualche esperimento col comparatore digitale 74LS85. Potrebbe sempre

Dettagli

Sistemi di Numerazione e Algebra Booleana

Sistemi di Numerazione e Algebra Booleana Sistemi di Numerazione e Algebra Booleana Laura Farinetti Claudio Fornaro Antonio Lioy Massimo Poncino Dipartimento di Automatica e Informatica Politecnico di Torino Sistemi di numerazione Il sistema di

Dettagli

Corso: Fondamenti Informatica I Prof. Paolo Nesi A.A. 2002/2003

Corso: Fondamenti Informatica I Prof. Paolo Nesi A.A. 2002/2003 Dispense Introduzione al calcolatore Corso: Fondamenti Informatica I Prof. Paolo Nesi A.A. 2002/2003 Nota: Queste dispense integrano e non sostituiscono quanto scritto sul libro di testo. 1 Sistemi di

Dettagli

Codifica dell informazione

Codifica dell informazione Codifica dell informazione Il calcolatore memorizza ed elabora vari tipi di informazioni Numeri, testi, immagini, suoni Occorre rappresentare tale informazione in formato facilmente manipolabile dall elaboratore

Dettagli

La Logica Proposizionale. (Algebra di Boole)

La Logica Proposizionale. (Algebra di Boole) 1 ISTITUTO DI ISTRUZIONE SUPERIORE ANGIOY La Logica Proposizionale (Algebra di Boole) Prof. G. Ciaschetti 1. Cenni storici Sin dagli antichi greci, la logica è intesa come lo studio del logos, che in greco

Dettagli

Algebra Di Boole. Definiamo ora che esiste un segnale avente valore opposto di quello assunto dalla variabile X.

Algebra Di Boole. Definiamo ora che esiste un segnale avente valore opposto di quello assunto dalla variabile X. Algebra Di Boole L algebra di Boole è un ramo della matematica basato sul calcolo logico a due valori di verità (vero, falso). Con alcune leggi particolari consente di operare su proposizioni allo stesso

Dettagli

Nel seguito verranno esaminati i diversi tipi di dato e il modo in cui essi sono rappresentati all interno del calcolatore.

Nel seguito verranno esaminati i diversi tipi di dato e il modo in cui essi sono rappresentati all interno del calcolatore. In una delle molteplici possibili definizioni di informazione, questa viene fatta corrispondere a qualunque elemento, in grado di essere rappresentato e comunicato, che consenta di fornire o aumentare

Dettagli

Sistemi di numerazione: generalità

Sistemi di numerazione: generalità Sistemi di numerazione: generalità Nel corso della storia sono stati introdotti diversi sistemi di numerazione, dettati di volta in volta dalle specifiche esigenze dei vari popoli. Poiché ogni numero maggiore

Dettagli

Fondamenti di Informatica 2. Esercizi sulle codifiche numeriche e di testo con soluzioni

Fondamenti di Informatica 2. Esercizi sulle codifiche numeriche e di testo con soluzioni Corso di per il corso di Laurea di Ingegneria Gestionale Esercizi sulle codifiche numeriche e di testo con soluzioni Università degli Studi di Udine - A.A. 2010-2011 Docente Ing. Sandro Di Giusto Ph.D.

Dettagli

Elettronica. Anno Accademico 2013/2014 Massimo Barbaro

Elettronica. Anno Accademico 2013/2014 Massimo Barbaro Elettronica Anno Accademico 2013/2014 Massimo Barbaro Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Microelettronica e Bioingegneria (EOLAB) Informazioni sul

Dettagli

Informazione analogica e digitale

Informazione analogica e digitale L informazione L informazione si può: rappresentare elaborare gestire trasmettere reperire L informatica offre la possibilità di effettuare queste operazioni in modo automatico. Informazione analogica

Dettagli

Università degli Studi di Cassino Corso di Fondamenti di Informatica Codifica di dati e istruzioni. Anno Accademico 2010/2011 Francesco Tortorella

Università degli Studi di Cassino Corso di Fondamenti di Informatica Codifica di dati e istruzioni. Anno Accademico 2010/2011 Francesco Tortorella Corso di Fondamenti di Informatica Codifica di dati e istruzioni Anno Accademico 2010/2011 Francesco Tortorella La codifica dei dati e delle istruzioni La più piccola unità di informazione memorizzabile

Dettagli

Sottrazione Logica. Sottrattore Parallelo

Sottrazione Logica. Sottrattore Parallelo Sottrazione Logica Il progetto digitale deve provvedere, con sofisticate macchine combinatorie, al supporto di tutte le operazioni aritmetiche; in questa puntata ci occupiamo dei dispositivi chiamati a

Dettagli

Fondamenti di Informatica 2

Fondamenti di Informatica 2 Corso di Fondamenti di Informatica 2 per il corso di Laurea di Ingegneria Gestionale Università degli Studi di Udine - A.A. 2009-2010 Docente Ing. Sandro Di Giusto 1 Esercizi vari su codifiche numeriche

Dettagli

Reti combinatorie: Codificatori

Reti combinatorie: Codificatori Reti combinatorie: Codificatori P. Marincola (Rev..2) Come si ricorderà, i decodificatori hanno essenzialmente il compito di convertire un codice binario a n bit in un codice -su-m, dovem =2 n. In molte

Dettagli

Architettura degli elaboratori - modulo A Anno Accademico 2000 / 2001. Capitolo 6 - Memorie

Architettura degli elaboratori - modulo A Anno Accademico 2000 / 2001. Capitolo 6 - Memorie Architettura degli elaboratori - modulo A Anno Accademico 2 / 2 Capitolo 6 - Memorie Una cella di memoria in un sistema digitale è un qualcosa in grado di memorizzare il valore booleano che una variabile

Dettagli

Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri

Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri 1 Da base 2 a base 10 I seguenti esercizi richiedono di convertire in base 10 la medesima stringa binaria codificata rispettivamente

Dettagli

Dispense di Informatica per l ITG Valadier

Dispense di Informatica per l ITG Valadier La notazione binaria Dispense di Informatica per l ITG Valadier Le informazioni dentro il computer All interno di un calcolatore tutte le informazioni sono memorizzate sottoforma di lunghe sequenze di

Dettagli

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata Lezione n.6 Unità di controllo microprogrammata 1 Sommario Unità di controllo microprogrammata Ottimizzazione, per ottimizzare lo spazio di memoria occupato Il moltiplicatore binario Esempio di architettura

Dettagli

Università degli Studi di Ferrara Corso di Laurea in Informatica A.A. 2007/2008

Università degli Studi di Ferrara Corso di Laurea in Informatica A.A. 2007/2008 Università degli Studi di Ferrara Corso di Laurea in Informatica A.A. 2007/2008 Tutorato di Architettura degli Elaboratori e Laboratorio Cambio di base Operazioni binarie Dott.ssa Ambra Giovannini 15 Aprile

Dettagli

La codifica dell informazione

La codifica dell informazione La codifica dell informazione Parte I Sui testi di approfondimento: leggere dal Cap. del testo C (Console, Ribaudo):.,. fino a pg.6 La codifica delle informazioni Un calcolatore memorizza ed elabora informazioni

Dettagli

I SISTEMI DI NUMERAZIONE (esercizi svolti)

I SISTEMI DI NUMERAZIONE (esercizi svolti) ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE (esercizi svolti) Prof. G. Ciaschetti Conversione di un numero da binario a decimale Esercizio 1. Convertire in decimale

Dettagli

Informatica. Rappresentazione dei numeri Numerazione binaria

Informatica. Rappresentazione dei numeri Numerazione binaria Informatica Rappresentazione dei numeri Numerazione binaria Sistemi di numerazione Non posizionali: numerazione romana Posizionali: viene associato un peso a ciascuna posizione all interno della rappresentazione

Dettagli

L'algebra di Boole falso vero livello logico alto livello logico basso Volts

L'algebra di Boole falso vero livello logico alto livello logico basso Volts L algebra di Boole L'algebra di Boole comprende una serie di regole per eseguire operazioni con variabili logiche. Le variabili logiche possono assumere solo due valori. I due possibili stati che possono

Dettagli

Codifica binaria dei numeri relativi

Codifica binaria dei numeri relativi Codifica binaria dei numeri relativi Introduzione All interno di un calcolatore, è possibile utilizzare solo 0 e 1 per codificare qualsiasi informazione. Nel caso dei numeri, non solo il modulo ma anche

Dettagli

PROVA INTRACORSO TRACCIA A Pagina 1 di 6

PROVA INTRACORSO TRACCIA A Pagina 1 di 6 PROVA INTRACORSO DI ELEMENTI DI INFORMATICA MATRICOLA COGNOME E NOME TRACCIA A DOMANDA 1 Calcolare il risultato delle seguenti operazioni binarie tra numeri interi con segno rappresentati in complemento

Dettagli