Algebra di Boole. 1 Definizione formale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algebra di Boole. 1 Definizione formale"

Transcript

1 Algebra di Boole In matematica, informatica ed elettronica, l'algebra di Boole, anche detta algebra booleana o reticolo booleano, è un'algebra astratta che opera essenzialmente con i soli valori di verità 0 e 1. In una formulazione più generale, l'algebra booleana si fonda su un insieme K che non comprende solo i valori 0 e 1; tuttavia questa struttura algebrica nasce per elaborare matematicamente espressioni nell'ambito della logica proposizionale Matematicamente si dice algebra di Boole un qualunque reticolo dotato di proprietà, quali la distributività, l'esistenza di minimo e massimo e l'esistenza del complemento: l'algebra booleana risulta criptomorfa, cioè associata biunivocamente e in modo da risultare logicamente equivalente, a un insieme parzialmente ordinato reticolato. D'altra parte ogni algebra booleana risulta criptomorfa a un particolare tipo di anello, chiamato anello booleano. La struttura può essere specificata attraverso gruppi e anelli o attraverso i reticoli in modo del tutto equivalente. Tale algebra permette di definire gli operatori logici AND (prodotto logico), OR (somma logica) e poi NOT (negazione o complementazione), la cui combinazione permette di sviluppare qualsiasi funzione booleana (per questo AND, OR e NOT costituiscono un insieme funzionalmente completo) e consente di trattare in termini esclusivamente algebrici le operazioni insiemistiche dell'intersezione, dell'unione e della complementazione, oltre a questioni riguardanti singoli bit 0 e 1, sequenze binarie, matrici binarie e diverse altre funzioni binarie. L'algebra sviluppata nel 1854 all'university College di Cork da Boole per scrivere in forma algebrica la logica delle proposizioni, assume oggi un ruolo importante in vari ambiti, in particolare nella logica matematica e nell'elettronica digitale, dove nella progettazione dei circuiti elettronici rivestono grande importanza i teoremi deducibili dagli assiomi che fondando l'algebra e in particolare si ricordi il teorema di Shannon del 1940 utilizzato per scomporre una funzione booleana complessa in funzioni più semplici, o per ottenere un'espressione canonica da una tabella della verità o da un'espressione non canonica. 1 Definizione formale Si vuole introdurre l'algebra di Boole considerandola come reticolo. Si parla di algebra di Boole in riferimento a un insieme K sul quale sono definite le operazioni di somma logica (+, OR) e prodotto logico (*,AND), cioè una tripla (K,+,*), che costituisce un reticolo in cui sono inoltre soddisfatte la proprietà distributiva, l'esistenza del minimo e del massimo e l'esistenza del complemento. Nel dettaglio si ha un'algebra di Boole quando su (K, +, ) sono soddisfatte le seguenti proprietà: Commutativa a + b = b + a a b = b a Associativa a + (b + c) = (a + b) + c a (b c) = (a b) c Assorbimento a + (a b) = a Distributiva a (b + c) = (a b) + (a c) c) = (a + b) (a + c) Idempotenza a + a = a a a = a a (a + b) = a a + (b Esistenza di minimo e massimo a 0 = 0 a+1 = 1 Esistenza del complemento a!a = 0 a+!a = 1 Il modo in cui sono elencate le proprietà vuole mettere in evidenza la simmetria che c'è tra i due operatori che è poi all'origine della legge di dualità e altre proprietà molto importanti. Nell'elencare gli assiomi il complemento è stato indicato con un extquotedbl! extquotedbl (punto esclamativo) antecedente alla variabile booleana (notazione tipica della programmazione in C e C++); il complemento può anche essere indicato con un trattino sulla variabile (che è tipograficamente difficile da realizzare, anche se è la notazione migliore), con uno slash prima della variabile o addirittura con un segno meno antecedente a essa, quando non è una notazione equivoca. Il complemento corrisponde all'operazione logica NOT. Un'ultima osservazione riguarda il fatto che, le prime 4 proprietà riguardano i reticoli in generale, le restanti sono proprie dell'algebra di Boole che sarà quindi indicata con la sestupla (K,+,*,!,0,1). Data la formulazione generale, da questo momento in poi ci si riferisce all'algebra primordiale che considera K={0,1}, cioè l'insieme su cui si 1

2 2 1 DEFINIZIONE FORMALE basa l'algebra di Boole è composto solamente dal minimo e dal massimo. Si elencano ora la legge di dualità e alcune proprietà derivanti dagli assiomi ora visti con le relative dimostrazioni; oltre a queste conseguenze ci sono poi due importanti teoremi dell'algebra booleana che sono i teoremi di De Morgan e il teorema di Shannon. I teoremi che si dimostrano ora sono validi per qualsiasi porzione di realtà extquotedbl che soddisfa gli assiomi di quest'algebra astratta e in particolare saranno applicabili nell'algebra degli insiemi, nell'algebra della logica delle proposizioni e nell'algebra dei circuiti. 1.1 Legge di dualità Da qualsiasi identità booleana se ne può trarre un'altra per dualità, sostituendo cioè a ogni operatore e agli elementi 0 e 1 il rispettivo duale: il duale di + è *, il duale di 0 è 1 (la dimostrazione di questo sta al prossimo paragrafo), il duale di a è in generale!a (a negato, NOT a). Grazie a questa legge si può vedere come i 14 postulati dati per definire l'algebra booleana non sono tutti indipendenti tra loro: in particolare si vede che PX e PX' (per X=1,...,7) sono uno il duale dell'altro! 1.2 Complementi di 0 e 1 0 e 1 sono uno il complementare dell'altro: per dimostrarlo basta verificare la definizione di complemento, cioè che Per dimostrarlo basta considerare l'assioma di esistenza del complemento considerato su due elementi a e b=!a: a a = 0 a + a = 1 b b = a!a = 0 b + b = a+!a = 1 Essendo valida la proprietà commutativa e siccome il complemento esiste unico, se ne deduce facilmente che!a = a, che è quello che si voleva dimostrare. 1.4 Elementi neutri 0 è l'elemento neutro della somma e 1 è l'elemento neutro del prodotto. Per la dimostrazione basta sfruttare la proprietà dell'assorbimento grazie alla quale si deduce che: a + (a 0) = a a (a + 1) = a Ora, sfruttando la proprietà del massimo e minimo per la quale a*0=0 e a+1=1, si deduce facilmente che: a + 0 = a a 1 = a che è quello che si doveva dimostrare. 1.5 Assorbimento del complemento (secondo teorema dell'assorbimento) L'assorbimento del complemento dice che a a = 0 a + a = 1 Si vede immediatamente che 1 0 = = 1 applicando rispettivamente la proprietà del minimo e quella del massimo e il teorema ora enunciato risulta così dimostrato. Si nota che, per come è strutturata quest'algebra, questa dimostrazione ha permesso di dimostrare a partire dagli assiomi che l'elemento neutro esiste ed è unico (l'esistenza non è quindi postulata e l'unicità è insita nell'esistenza essendo solo 2 i valori con cui sta lavorando, cosa non vera per altri tipi di algebra e altre strutture algebriche!). 1.3 Convoluzione Negando due volte lo stesso elemento si ottiene l'elemento stesso (logica aristotelica: una doppia negazione corrisponde a un'affermazione). a + a b = a + b Per dimostrarlo basta applicare la proprietà distributiva secondo la quale: a + a b = (a + a) (a + b) dopodiché, notando che a+!a=1 e che 1 è l'elemento neutro del prodotto logico risulta dimostrato il teorema. Per la legge di dualità si capisce anche che esiste un teorema duale a questo che sarà: a (a + b) = a b Questo teorema può essere preso per vero accettando la validità della legge di dualità oppure può essere dimostrato in modo del tutto analogo al precedente. Si nota che, nello scrivere l'espressione duale, si è dovuta rispettare la precedenza di applicazione delle operazioni e perciò le parentesi intorno ad a+!b della seconda espressione sono necessarie!

3 3 1.6 Teorema dell'elemento unico 2 Funzioni booleane Se x + y = a e xy = 0, allora y è unico (o anche x è unico perché si vede che, essendo valida la proprietà commutativa, il ruolo di x e y nelle espressioni è lo stesso!). Per la dimostrazione si suppone per assurdo che esistano due valori distinti y e z che soddisfano le due espressioni, e cioè x + y = x + z = a xy = xz = 0 Essendo anche che xy = xx+xy = x(x+y) si è ottenuto che xz = xx+xz = x(x+z) xy = xz = 0 x(x+y) = x(x+z) x+y = x+z Nell'ultimo passaggio si è sfruttato il principio di equivalenza delle eguaglianze e non si è semplificato la x, cosa che non è stata dimostrata e non può essere dimostrata in quest'algebra. Allora, quello che si ha ora è che x + y = x + z x + y = x + z Moltiplicando membro a membro e utilizzando la proprietà distributiva si ha: cioè y=z e perciò l'elemento che soddisfa le due relazioni scritte sopra è unico. 1.7 Principio di eliminazione Come si è accennato prima, nell'algebra di Boole non valgono i principi di eliminazione, cioè non vale che: x + y = x + z y = z xy = xz y = z Vale che y=z solamente se queste due espressioni ora scritte valgono contemporaneamente! L'unica cosa che si può dire invece nel caso in cui valga solo la prima espressione è che: x + y = x + z xy = xz L'algebra di Boole è la trattazione dell'algebra universale a due stati e dei modelli di tale teoria, detti algebre booleane. L'algebra universale si occupa di studiare la famiglia di operazioni su un insieme, detto insieme fondamentale della famiglia algebrica, e nel caso della struttura algebrica booleana questo contiene i soli valori 0 e 1. In pratica le algebre booleane si occupano della trattazione delle funzioni booleane di cui ora si accennano le nozioni principali: lo studio di queste funzioni è fondamentale oggi per lo studio di circuiti e reti logiche, perciò se ne possono vedere subito gli scopi pratici, ma l'importanza di queste strutture algebriche non si limita solo a questo perché è anche fondamentale nello studio delle proposizioni e dell'insiemistica, che sono argomenti un po' più astratti ma altrettanto validi e importanti. Il numero degli argomenti che richiede una operazione definita sull'insieme fondamentale è detto arietà (un'addizione ad esempio è un'operazione di arietà 2, anche detta operazione binaria): un'operazione su {0,1} di arietà n può essere applicata a ognuno dei 2 n possibili valori dei suoi n argomenti (cioè basta calcolare le disposizioni di 2 elementi su n posti!), ad esempio se si ha un'operazione di arietà 3, dato che K={0,1}, gli argomenti possibili sono 000,001,010,011,100,101,110,111 che sono 8. Per ogni scelta di argomenti l'operazione può produrre i soli risultati 0 e 1 e per questo ci sono 2 2n operazioni di n argomenti: questo numero corrisponde quindi al numero totale di funzioni possibili di n variabili nell'algebra booleana. L'algebra a due stati possiede 2 operazioni con nessun argomento (2 20 ) che restituiscono i valori 0 e 1 senza considerare nessun argomento, e 4 operazioni con un so- (x+y) (x+y) = xx+xy+xy+y = 0+(x+x)y+y = y = (x+z) (x+z) = z lo argomento(2 21 ): le operazioni possibili sono due (2 1 ), l'identità e la negazione e perciò in totale le operazioni sono 4 in quanto si ha 0 0 (id.), 0 1 (neg.), 1 0 (neg.), 1 1 (id.). Vi sono poi 16 operazioni binarie, 256 operazioni ternarie, operazioni quaternarie e così via. Siccome l'algebra di cui sta parlando è fondata su un insieme finito, una funzione può essere rappresentata oltre che in forma algebrica (cioè composizione di AND, OR e NOT), in forma tabellare, cioè con una tabella in cui a ogni composizione delle variabili di input (usando una terminologia più informatica) si fa corrispondere l'uscita (o anche le uscite): tutte le funzioni, anche di altre algebre, possono in teoria essere rappresentate tramite tabelle ma se l'insieme su cui è fondata l'algebra è infinito (ad esempio l'insieme dei numeri reali) non è un modo comodo per studiare la funzione; per l'algebra booleana usare le tabelle è un modo utile per studiare le funzioni e ad esempio permette facilmente la costruzione di circuiti e reti logiche nelle applicazioni elettroniche. Un esempio di tabelle si ha considerando operazioni binarie che si è

4 4 3 BASI già visto essere 16: Una famiglia, detta anche indice, è indicizzata da un insieme di indici, che nel caso di una famiglia di operazioni costituenti un'algebra sono detti simboli dell'operazione e costituiscono il linguaggio dell'algebra in oggetto. L'operazione indicizzata da un dato simbolo è detta interpretazione di tale simbolo, e ogni simbolo definisce il numero univoco di argomenti delle rispettive interpretazioni possibili. Nel caso considerato vi è una corrispondenza biunivoca tra simbolo e interpretazione. L'algebra di Boole ha tanti simboli quante sono le operazioni possibili detti simboli di operazione booleana, anche se poche operazioni hanno simboli convenzionali, quali! per la negazione, + per la congiunzione e * per la disugiunzione. In generale si indica con n fi l'i-esimo simbolo di n argomenti. Nell'ultimo esempio considerato invece si dà un simbolo per ognuna delle 16 funzioni possibili o anche è possibile esprimere ogni funzione come opportuna combinazione dei simboli convenzionali fondamentali, cioè AND (*), OR (+) e NOT (!). 2.1 Funzione duale Data una funzione f(x 1, x 2,..., x n ) in qualsiasi forma si definisce funzione duale di f e si indica con δf una funzione che ha per forma la forma duale di f, ad esempio: y = a + b(c + 0) duale = a (b + c 1) La forma duale deve rispettare le precedenze di applicazione dell'operazione della forma di partenza, per questo motivo, laddove non c'erano delle parentesi perché la AND ha precedenza sulla OR, nel momento in cui la AND diventa OR e la OR diventa AND, può esserci bisogno di parentesi. Un'altra osservazione molto importante è che le variabili, e non le costanti 0 e 1, possono anche non essere negate perché comunque la variabile dovrà assumere tutti i valori possibili e perciò, che ci sia o meno la negazione, la funzione non cambia: nel caso visto prima allora la funzione duale può anche essere scritta come duale = a (b + c 1) dove Si nota che la costante è stata negata! Questa osservazione può essere importante nel momento in cui si va a progettare una rete logica perché significa risparmiare porte NOT, o anche in generale, nell'espressione algebrica è sempre utile avere operazioni in meno da fare. 3 Basi Un insieme funzionalmente completo è un insieme di operazioni la cui composizione permette di ottenere tutte le operazioni appartenenti all'algebra e a volte ci si riferisce a questi con il termine base, usato in accezione diversa rispetto alle basi di spazi vettoriali. Le tre principali basi usate nell'algebra booleana sono: Il reticolo, una base logica introdotta nel diciannovesimo secolo da George Boole, Charles Sanders Peirce e altri matematici che cercavano una formalizzazione algebrica dei processi logici. L'anello booleano, una base (non aritmetica) introdotta nel ventesimo secolo da Ivan Ivanovich Zhegalkin e Marshall Stone che proviene dall'algebra astratta. La base NAND, originata dal fatto che tramite l'operazione di NAND è possibile ottenere tutte le operazioni sull'insieme {0,1}. Tale base è utilizzata in particolare nella configurazione dei circuiti logici in elettronica digitale. Gli elementi comuni a reticolo e anello sono le costanti 0 e 1 e un'operazione binaria associativa e commutativa, che nella base del reticolo è detta incontro, dal termine inglese meet, e denotata tra due elementi x e y dal simbolo x y, mentre nella base dell'anello è detta moltiplicazione e denotata xy. La base del reticolo ha inoltre le operazioni algebriche di unione x y e complemento x, mentre la base dell'anello ha l'ulteriore operazione (non aritmetica) di addizione x y o x+y. 3.1 Reticolo Nella base del reticolo a un'algebra booleana (A,, ) si associa un insieme parzialmente ordinato (A, ), definendo: a b a = a b che è anche equivalente a b = a b È possibile anche associare un'algebra booleana a un reticolo distributivo (A, ), considerato come insieme parzialmente ordinato, dotato di elemento minimo 0 e di elemento massimo 1, in cui ogni elemento x ha un complementare x tale che x x = 0 e x x = 1 Qui e sono usati per denotare l'inf e il sup di due elementi. Se i complementi esistono, allora sono unici.

5 3.3 Sheffer stroke Anello La base dell'anello della generica algebra booleana (A,, ) è definita come (A, +, *), definendo a + b := (a b) ( b a ). In tale anello l'elemento neutro per la somma coincide con lo 0 dell'algebra booleana, mentre l'elemento neutro della moltiplicazione è l'elemento 1 dell'algebra booleana. Questo anello ha la proprietà che a * a = a per ogni a in A; gli anelli con questa proprietà sono chiamati anelli booleani. Viceversa, assegnato un anello booleano A, esso può essere trasformarlo in un'algebra booleana definendo x y = x + y x y e x y = x y. Poiché queste due operazioni sono l'una l'inversa dell'altra, si può affermare che ogni anello booleano è criptomorfo di un'algebra booleana e viceversa. Inoltre, una funzione f : A B è un omomorfismo tra algebre booleane se e soltanto se è un omomorfismo tra anelli booleani. La categoria degli anelli booleani e delle algebre booleane sono equivalenti. Un anello ideale dell'algebra booleana A è un sottoinsieme I tale che per ogni x, y in I si ha x y in I e per ogni a in A a x in I. Questa nozione di ideale coincide con la nozione di anello ideale negli anelli booleani. Un ideale I di A è detto primo se I A e se a b in I implica sempre a in I o b in I. Un ideale I di A è detto massimale se I A e se l'unico ideale proprio contenente I è A stesso. Questa notazione coincide con la notazione teorica del ideale primo e ideale massimale nell'anello booleano A. Il duale di un ideale è un filtro. Un filtro dell'algebra booleana A è un sottoinsieme F tale che per ogni x, y in F si ha x y in F e per ogni a in A se a x = a allora a è in F. L'operazione di complementazione * applicata ai sottoinsiemi manda dunque gli ideali in filtri e viceversa: se B è un'algebra booleana e I B un suo ideale (proprio), allora Ĩ = {x : x I} è il filtro (proprio) duale di I. Se invece F B è un filtro (proprio), F = {x : x F } l'ideale (proprio) duale di F. 3.3 Sheffer stroke La base Sheffer stroke o NAND si basa sulle operazioni NOT e AND, tramite le quali è possibile ottenere tutte le operazioni booleane. Un'algebra booleana può essere definita sia da NOT e AND sia da NOT e OR, essendo possibile definire OR attraverso NOT e AND così come AND attraverso NOT e OR: insiemi, che giocano rispettivamente il ruolo di OR, AND e NOT, costituisce un'algebra booleana. Più formalmente, se B è un insieme formato da almeno 2 elementi, l'algebra booleana avente B come supporto è la struttura algebrica costituita da B, da due operazioni binarie su B, OR e AND, da un'operazione unaria NOT su B e dall'elemento 0 di B, i quali godono delle seguenti proprietà: Simmetria di AND: a, b B : a AND b = b AND a Simmetria di OR: a, b B : a OR b = b OR a Involuzione di NOT: a B : NOT (NOT (a)) = a Leggi di De Morgan: a, b B : NOT (a OR b) = NOT (a) AND NOT (b) L'insieme B è inoltre limitato inferiormente, essendo: a B : a AND 0 = 0; a OR 0 = a L'elemento 1 è definito come la negazione, o il complementare, dello 0: 1 := NOT(0). L'insieme B è dunque limitato superiormente, essendo: a B : a OR 1 = 1; a AND 1 = a e in particolare 0 AND 1 = 0 ; 0 OR 1 = 1 Si definisce inoltre, come operazione derivata dalle precedenti, l'operatore binario OR esclusivo, denotato XOR: a, b B : a XOR b := (a OR b) AND (NOT (a AND b)) In questa algebra all'operatore XOR corrisponde la differenza simmetrica: a AND b = NOT ( NOT a OR NOT b) a OR b = NOT ( NOT a AND NOT b) La collezione di tutti i sottoinsiemi di un dato insieme, ovvero l'insieme delle parti o insieme ambiente, munita delle operazioni di unione, intersezione e complementazione di a, b B : a XOR b = b XOR a In elettronica la porta logica NAND è costituita da n ingressi e un'uscita che si porta a livello 0 solo se gli n ingressi si portano a livello 1. È corrispondente alla connessione in serie di una porta AND e di una NOT.

6 6 4 OPERATORI BOOLEANI 4 Operatori booleani Si è visto che gli operatori dell'algebra booleana possono essere rappresentati in vari modi, ma spesso sono scritti semplicemente come AND, OR e NOT che è la scrittura che utilizziamo ora per parlare degli operatori booleani. Nella descrizione dei circuiti, possono anche essere usati NAND (NOT AND), NOR (NOT OR) e XOR (OR esclusivo). Le diverse simbologie per rappresentare gli operatori sono scelte in base al campo in cui si lavora: i matematici usano spesso il simbolo + per l'or, e o * per l'and, in quanto per alcuni versi questi operatori lavorano in modo analogo alla somma e alla moltiplicazione. La negazione NOT viene rappresentata spesso da una linea disegnata sopra l'argomento della negazione, cioè dell'espressione che deve essere negata. Oppure in informatica si utilizza il simbolo o per l'or, & o && per l'and, e ~ o! per NOT (es. A OR B AND NOT C equivale a A B & ~C oppure a A+B*!C). Se ci riferisce agli operatori con i simboli di somma e moltiplicazione e poi intende la negazione come se fosse una elevazione a potenza, è facile da ricordare l'ordine di applicazione degli operatori: prima si applicano le negazioni, poi le AND e poi le OR. Nella progettazione di circuiti elettronici, vengono utilizzati anche gli operatori brevi NAND (AND negato), NOR (OR negato) e XNOR (XOR negato): questi operatori, come XOR, sono delle combinazioni dei tre operatori base e vengono usati solo per rendere la notazione più semplice. Operatori: NOT - simboli alternativi: x, ~,,! (in C e C++) AND - simboli alternativi: *,, &, && (in C e C++), BUT (usato nella logica booleana insieme al NOT) V, mentre viene definito falso un bit 0, sia in Input sia in Output, che assume il valore di 0 V. Di seguito sono indicati gli operatori più comuni e le rispettive porte logiche: 4.1 NOT L'operatore NOT restituisce il valore inverso a quello in entrata. Una concatenazione di NOT è semplificabile con un solo NOT in caso di dispari ripetizioni o con nessuno nel caso di pari.inoltre la porta logica NOT possiede una sola variabile binaria. Spesso, al fine di semplificare espressioni complesse, si usano operatori brevi che uniscono l'operazione di NOT ad altre: questi operatori sono NOR (OR + NOT), NAND (AND + NOT), XNOR (XOR + NOT). La negazione, in questi casi, viene applicata dopo il risultato dell'operatore principale (OR, AND, XOR). Il simbolo di una porta NOT è 4.2 Buffer Buffer è la negazione del risultato dell'operazione NOT; restituisce il valore uguale a quello in entrata. Il Buffer non è un vero e proprio operatore, poiché in realtà non manipola l'informazione che riceve, bensì la lascia passare invariata; il Buffer dunque è semplificabile con un collegamento privo di operatori. Il simbolo di una porta Buffer è: OR - simboli alternativi: +,,, (in C e C++) XOR - simboli alternativi:,,, ^, EOR, orr NAND - simbolo alternativo: NOR - simbolo alternativo: XNOR OUI Valori: vero - simboli alternativi: true, 1, ON, SI (YES), alto falso - simboli alternativi: false, 0, OFF, NO, basso In elettronica digitale viene definito vero un bit 1, sia in Input sia in Output, che di solito assume il valore di 5 composta da un NOT in serie a un altro NOT. La ragione per cui si parla di questo pseudo-operatore è data da questioni di sincronia dei segnali: quando si tratta di circuiti e reti logiche in modo più approfondito si rende necessario considerare anche il tempo in cui il segnale arriva e l'elemento buffer viene interpretato in questi casi come un ritardo applicato a un certo segnale. 4.3 AND L'operazione AND dà come valore 1 se tutti gli operandi hanno valore 1, mentre restituisce 0 in tutti gli altri casi come ad esempio quando una porta è alta mentre le altre sono basse e può essere messa in serie. Tale operazione

7 4.6 NAND 7 è anche detta prodotto logico. Di seguito la tabella rappresenta l'operatore AND nel caso di due entrate, ma la definizione data ora è generalizzata a n ingressi: Siccome questa operazione gode della proprietà associativa, è possibile realizzare un'operazione logica AND con un numero di proposizioni arbitrarie concatenando varie AND a due ingressi, per esempio: p 1 (p 2 (p 3 p 4 )) Nei circuiti digitali, la porta logica AND è un meccanismo comune per avere un segnale di vero se un certo numero di altri segnali sono tutti veri. Nella teoria degli insiemi corrisponde all'intersezione. Il simbolo di una porta AND è: A B = A!B+!A B dove è il simbolo di XOR. Il simbolo di una porta XOR è: 4.6 NAND L'operatore NAND, la negazione del risultato dell'operazione AND, restituisce 0 se e solo se tutti gli elementi sono 1, mentre restituisce 1 in tutti gli altri casi. Il simbolo di una porta NAND è: 4.4 OR L'operazione logica OR restituisce 1 se almeno uno degli elementi è 1, mentre restituisce 0 in tutti gli altri casi. Tale operazione è anche detta somma logica. Di seguito la tabella rappresenta l'operatore OR nel caso di due entrate, ma la definizione data ora è generalizzata a n ingressi: Siccome questa operazione gode della proprietà associativa, è possibile realizzare un'operazione logica OR con più ingressi concatenando varie OR a due ingressi, per esempio: (p 1 p 2 ) (p 3 p 4 ) Nei circuiti digitali, la porta logica OR è un meccanismo comune per avere un segnale alto se almeno un segnale è alto e un segnale basso se e solo se tutti i segnali sono bassi. Nella teoria degli insiemi corrisponde all'unione. Il simbolo di una porta OR a due ingressi è: 4.5 XOR L'operatore XOR, detto anche EX-OR, OR esclusivo o somma modulo 2, restituisce 1 se e solo se il numero degli operandi uguali a 1 è dispari, mentre restituisce 0 in tutti gli altri casi. La tabella rappresenta il caso in cui gli operatori siano 2, poi in generale ci si riferisce a questo operatore come operatore di disparità. Nella teoria degli insiemi corrisponde alla differenza simmetrica. Per passare nella forma canonica SP (somma di prodotti) basta applicare la regola: composta da un NOT in serie a un AND. Utilizzando le leggi di De Morgan, è possibile convertire una porta OR in NAND. Vale, dunque, la seguente relazione: A B = A B = A B 4.7 NOR L'operatore NOR, la negazione del risultato dell'operazione OR, restituisce 1 se e solo se tutti gli elementi sono 0, mentre restituisce 0 in tutti gli altri casi. Il simbolo di una porta NOR è: composta da un NOT in serie a un OR. Utilizzando le leggi di De Morgan, è possibile convertire una porta AND in NOR. Vale, dunque, la seguente relazione: A B = A B = A B 4.8 XNOR L'operatore XNOR, detto anche EX-NOR o EQU, è la negazione del risultato dell'operazione XOR; nella sua versione a due elementi restituisce 1 se tutti gli elementi sono uguali a 1 oppure se tutti gli elementi sono uguali a 0. Questo operatore viene generalizzato a n ingressi come operatore di parità, cioè è un'operazione che restituisce il valore 1 se il numero di 1 in ingresso è pari. Il simbolo di una porta XNOR è:

8 8 6 ESEMPI 6 Esempi composta da un NOT in serie a un XOR. 5 Algebra dei circuiti L'Algebra di Boole si presta bene allo studio degli insiemi, delle proposizioni e dei circuiti. Ci si vuole soffermare su come quest'algebra diventa uno strumento per l'analisi e la sintesi delle reti di commutazione (in elettrotecnica il termine viene usato per indicare un cambio d'ordine della chiusura di due o più contatti elettrici, in telecomunicazioni ha un'accezione diversa). L'algebra booleana consente di descrivere in forma algebrica le funzioni dei circuiti componenti e delle reti, fornendo altresì i metodi per la realizzazione del progetto logico: è stabilita quindi una corrispondenza biunivoca fra espressioni algebriche e reti di commutazione. La corrispondenza è facilmente realizzabile avendo già parlato di #Operatori booleani: si parte ad esempio da un'espressione algebrica per realizzare un circuito, basta sostituire a ogni operatore logico la corrispondente porta logica e applicare agli ingressi di queste opportunamente le variabili booleane in gioco; inoltre, avendo visto l'esistenza di porte logiche come ad esempio la XOR, che sono combinazioni degli operatori booleani elementati AND, OR e NOT, è possibile manipolare opportunamente un'espressione algebrica in modo da utilizzare il minor numero possibile di porte nella realizzazione del circuito. Viceversa un circuito può essere espresso da una funzione y=f(x1,x2,...xn) dove y è l'uscita, le x sono le entrate e la funzione f è una combinazione di porte logiche. Nell'algebra dei circuiti si associa il valore 0 al livello logico basso e il valore 1 al livello logico alto. In una visione semplificata il valore 0 corrisponde nella pratica a una tensione di 0 V mentre il valore 1 corrisponde a 5 V, oppure 3,5 V o addirittura 1,5 V: il motivo per cui si preferisce associare il valore alto a 5 V piuttosto che a 1,5 V è che la tensione nella pratica non è stabile e perciò il valore 0 si può confondere con il valore 1 causando una perdita di informazione; d'altra parte però, una tensione di 1,5 V per indicare il valore alto significa minor dispendio di energia ed è un vantaggio molto significativo. Volendo approfondire il discorso sui valori logici alto e basso e sulla loro realizzazione pratica, si può dire che, a seconda della tecnologia ci sono diversi range di valori possibili: per esempio, la tecnologia TTL associa il valore logico 0 a una tensione compresa tra 0 V e 0,8 V, tra 0 e 2 V c'è una banda vietata, cioè un insieme di valori che non devono essere asunti, e il valore logico 1 è associato al range di valori 1,5 V - 5 V. Come si è accennato, la tecnologia odierna spinge sull'abbassare la soglia dei 5 V cercando di stabilizzare sempre di più il potenziale. Questa algebra ha applicazioni nella logica, dove 0 è interpretato come falso, 1 come vero, è OR, è AND e è NOT. Le espressioni che coinvolgono le variabili e le operazioni booleane rappresentano forme dichiarative; due espressioni possono essere equivalenti utilizzando i suddetti assiomi se e soltanto se le forme dichiarative corrispondenti sono logicamente equivalenti. L'algebra booleana binaria, inoltre, è usata per il disegno di circuiti nell'ingegneria elettronica; qui 0 e 1 rappresentano le due condizioni differenti di un bit in un circuito digitale, in genere bassa e alta tensione. I circuiti sono descritti da espressioni che contengono delle variabili e due espressioni sono uguali per tutti i valori delle variabili se e soltanto se i circuiti corrispondenti hanno la stessa funzione di trasferimento. Ogni combinazione dei segnali in ingresso in uscita dal componente può essere rappresentata da un'adeguata espressione booleana L'algebra booleana a due stati è inoltre importante nella teoria generale delle algebre booleane, perché un'equazione che coinvolge parecchie variabili è generalmente vera in ogni algebra booleana se e soltanto se è vera nell'algebra booleana a due stati. Ciò può, per esempio, essere usato per indicare che le seguenti leggi (teorema del consenso) sono generalmente valide in ogni algebra booleana: (a b) ( a c) (b c) = (a b) ( a c) (a b) ( a c) (b c) = (a b) ( a c) Il raggruppamento di un generico insieme S, forma un'algebra booleana con le due operazioni = unione e = intersezione. Il più piccolo elemento 0 è l'insieme vuoto e il più grande elemento 1 è l'insieme S stesso. L'insieme di tutti i sottoinsiemi di un insieme S che sono limitati è un'algebra booleana. Per ogni numero naturale n, l'insieme di tutti i divisori positivi di n forma un reticolo distributivo se scrive a b per a divide b. Questo reticolo è un'algebra booleana se e soltanto se per ogni n non vi sono divisori quadrati. Il più piccolo elemento, che in generale si indica con lo 0, in questa algebra booleana è il numero naturale 1; mentre l'elemento che usualmente indica con l'1 in questi insiemi è l'elemento n. Altri esempi di algebre booleane sono dati dagli spazi topologici: se X è uno spazio topologico, allora l'insieme di tutti i sottoinsiemi di X che siano aperti o chiusi formano un'algebra booleana con le operazioni = unione e = intersezione. Se R è un anello arbitrario dove è definito un insieme idempotente tipo:

9 9 A = { a in R : a 2 = a e a x = x a per ogni x in R } L'insieme A diventa un'algebra booleana con le operazioni a b = a + b a b e a b = a b. 7 Omomorfismi e isomorfismi Un omomorfismo tra due algebre booleane A e B è una funzione f: A B tale che per ogni a, b in A: 1. f( a b ) = f( a ) f( b ) 2. f( a b ) = f( a ) f( b ) 3. f(0) = 0 4. f(1) = 1 Da queste proprietà segue anche f( a) = f(a) per ogni a in A. Ogni algebra booleana, con la definizione di omomorfismo, forma una categoria. Un isomorfismo da A su B è un omomorfismo da A su B che è biiettivo. L'inverso di un isomorfismo è ancora un isomorfismo, e le due algebre booleane A e B si dicono isomorfe. Dal punto di vista della teoria dell'algebra booleana, due algebre booleane isomorfe non sono distinguibili, ma differiscono soltanto nella notazione dei loro elementi. 8 Espressioni booleane All'interno di ciascuna algebra di Boole, dato un insieme di variabili e le operazioni correlate, è possibile definire delle espressioni che vengono ad assumere un determinato valore ottenibile anche sotto forme diverse. Possono esistere cioè delle espressioni che, pur essendo differenti, si rivelino equivalenti. Oltre al fatto che le espressioni booleane assumono una particolare importanza per quanto riguarda il calcolo proposizionale, in cui le variabili sono proposizioni legate tramite congiunzioni, disgiunzioni, negazioni e altre operazioni più complesse, possono esistere moltissime altre espressioni, accomunate sempre dalle proprietà e dagli assiomi booleani, nelle quali si sostituisce spesso l'operazione + (comunemente detta somma) con e * (comunemente detta prodotto) con e in cui la complementazione è indicata col simbolo '. Per poter presentare nel modo più efficiente una espressione booleana, la si riduce in somma di prodotti fondamentali o forma normale disgiuntiva. Un prodotto fondamentale è un prodotto in cui ciascuna variabile, o il suo complemento, appaia una sola volta e rigorosamente fuori da parentesi o complementazioni complesse. Ad esempio, date le variabili x, y, z all'interno di un'algebra di Boole, sono prodotti fondamentali P(x,y,z) = xy P(x,y,z) = x'yz' Mentre non sono prodotti fondamentali yyz yy'z (xy)' È così possibile avere una somma di prodotti fondamentali, forma in cui ogni espressione può essere ridotta, ma che non è unica. Un esempio è: xy + xz + z'. Nel momento in cui ogni singola variabile, o il suo complemento, siano contenuti in tutti i prodotti fondamentali della forma normale disgiuntiva, si ha allora una somma di prodotti fondamentali completa o forma normale disgiuntiva completa. Tale scrittura è unica, pertanto se due espressioni sono equivalenti avranno la stessa forma normale disgiuntiva completa. Se si desidera invece che un'espressione sia scritta nel modo più corto possibile, allora la si esprime in somma di implicanti prime o minimali (Minimizzazione di Quine- McQluskey). Un'implicante prima (o minimale) rispetto a un'espressione è un prodotto fondamentale che non altera l'espressione se sommato per intero a essa, cioè restituisce un risultato equivalente a quella iniziale; sommando un prodotto strettamente contenuto nell'implicante, tuttavia, non si ottiene un'equivalenza. Per individuare tutte le implicanti prime, esistono varie tecniche, tra cui il metodo del consenso, che si basa sull'applicazione ciclica delle proprietà di assorbimento, idempotenza, involuttività e di De Morgan accompagnate a ogni passo dall'opportuna addizione di un consenso. Dati due prodotti fondamentali, se solo e solo se una variabile appare in uno di essi non negata e nell'altro negata si chiama consenso il risultato della moltiplicazione delle restanti variabili. Ad esempio: dati P = xyz, Q = x'z il consenso sarà C = yzz = yz dati P = xy' Q= xy il consenso sarà C = xx = x dati P = xyz e Q = x'yz' non esiste consenso, in quanto due diverse variabili appaiono una volta negate e una volta no. La somma di implicanti prime è unica, pertanto due espressioni equivalenti avranno la stessa. Nel momento in cui, completando ogni singola implicante prima, l'apporto all'espressione di una o più di esse è inutile in quanto contenuta nelle altre, la si può eliminare ottenendo la più essenziale delle scritture, la forma minimale. Essa, pur essendo comoda, ha l'inconveniente di non essere unica, e dunque di non consentire l'individuazione di equivalenze tra più espressioni.

10 10 13 COLLEGAMENTI ESTERNI 9 Rappresentazione delle algebre booleane Si può dimostrare che ogni reticolo booleano finito è isomorfo al reticolo booleano di tutti i sottoinsiemi di un insieme finito. Di conseguenza, il numero di elementi di ogni reticolo booleano finito ha un sostegno che contiene un numero di elementi uguale a una potenza di 2. Marshall Stone ha enunciato il celebre teorema di rappresentazione per le algebre booleane dimostrando che ogni algebra booleana A è isomorfa a tutte le algebre booleane aperte-chiuse in un certo spazio topologico compatto non connesso di Hausdorff 10 Bibliografia (EN) Steven Givant e Paul Halmos, Introduction to Boolean Algebras, Undergraduate Texts in Mathematics, Springer, 2009, ISBN (EN) George Boole, An Investigation of the Laws of Thought, Prometheus Books [1854], 2003, ISBN (EN) Steven Givant e Paul Halmos, Introduction to Boolean Algebras, Undergraduate Texts in Mathematics, Springer, 2009, ISBN (EN) John A. Camara, Electrical and Electronics Reference Manual for the Electrical and Computer PE Exam, 2010, p. 41, ISBN Teorema di Shannon (elettronica) Teoremi di De Morgan Teoria degli insiemi 12 Altri progetti Commons contiene immagini o altri file su Algebra di Boole Questa voce è inclusa nel libro di Wikipedia Paradossi. 13 Collegamenti esterni Panoramica sull'algebra Booleana Facoltà di Ingegneria Energetica - Univ. del Sannio - Elementi di Informatica: Algebra di Boole 2008/2009 Corso di Laurea a distanza - Fondamenti di Informatica: Algebra di Boole, Operatori Logici, Teoremi Fondamentali Descrizione dell'algebra booleana su Okpedia Algebra di Boole in Tesauro del Nuovo Soggettario, BNCF, marzo Voci correlate 06-XX, sezione primaria dello schema di classificazione MSC 2000 Algebra di insiemi Diagramma di Venn Forma canonica Funzione booleana Mappa di Karnaugh Operazione bit a bit Porta logica Sistema formale Sistema numerico binario Tabella della verità Teorema dell'assorbimento

11 11 14 Fonti per testo e immagini; autori; licenze 14.1 Testo Algebra di Boole Fonte: Contributori: Snowdog, Robbot, Davide, Blakwolf, Alberto da Calvairate, Marius, Salvatore Ingala, AnyFile, Marcel Bergeret, TierrayLibertad, Depagen, Ilario, Luisa, Gionnico, Pegua, Luki-Bot, Lucat, Klemen Kocjancic, YurikBot, Contezero, Pietrodn, Ketersephirot, Qualc1, MartinoK, Trovatore, Zwobot, RamsesII, Fabexplosive, Chobot, FlaBot, Beta16, SunBot, CruccoBot, Claudev8, Automatik (riassegnato), Ylebru, Paolovenezia, SkY`,.snoopy., Rojelio, Eumolpo, Tridim, Piddu, LiljaBot, Fede Reghe, Alecobbe, Thijs!bot, Filbot, Francesco Betti Sorbelli, Ulisse0, Mess, Sesquipedale, Rossa1, JAnDbot, TekBot, Angelorenzi, Avemundi, RevertBot, Mizardellorsa, Afnecors, Toobazbot, SanniBot, Fioravante Patrone, Phantomas, Pracchia-78, Buggia, KSBot, The Black, DnaX, Marco Plassio, Kibira, ^musaz, Durras, FixBot, Goemon, FrescoBot, MapiVanPelt, Gabstef, Red Power, AttoBot, AKappa, DaniDF1995, AushulzBot, RibotBOT, Digitalone, Woodstock1, Luigicaiffa, RCantoroBot, Frigotoni, DixonDBot, Enry17, EmausBot, Taueres, ChuispastonBot, Fiox, Luca88w, MerlIwBot, Atarubot, Pil56-bot, Botcrux, Anthony.rock, Quaaludes, Tommasucci, Feder raz, JosipPepp, Addbot, Thotu e Anonimo: Immagini File:AND_ANSI.svg Fonte: Licenza: Public domain Contributori: File:Buffer_ANSI.svg Fonte: Licenza: Public domain Contributori: Own Drawing, made in Inkscape 0.43 Artista originale: Inductiveload File:Commons-logo.svg Fonte: Licenza: Public domain Contributori: This version created by Pumbaa, using a proper partial circle and SVG geometry features. (Former versions used to be slightly warped.) Artista originale: SVG version was created by User:Grunt and cleaned up by 3247, based on the earlier PNG version, created by Reidab. File:Computer_n_screen.svg Fonte: Licenza: LGPL Contributori: All Crystal icons were posted by the author as LGPL on kde-look Artista originale: Everaldo Coelho and YellowIcon File:Exquisite-kfind.png Fonte: Licenza: GPL Contributori: Artista originale: Guppetto File:Math.svg Fonte: Licenza: Public domain Contributori: Opera propria Artista originale: Johannes Rössel (talk) File:NAND_ANSI.svg Fonte: Licenza: Public domain Contributori: File:NOR_ANSI.svg Fonte: Licenza: Public domain Contributori: File:NOT_ANSI.svg Fonte: Licenza: Public domain Contributori: File:Nuvola_apps_ksim.png Fonte: Licenza: LGPL Contributori: Artista originale: David Vignoni / ICON KING File:Nuvola_mimetypes_charnotfound.PNG Fonte: PNG Licenza:? Contributori:? Artista originale:? File:OR_ANSI.svg Fonte: Licenza: Public domain Contributori: File:Open_book_nae_02.svg Fonte: Licenza:? Contributori: OpenClipart Artista originale: nae File:Question_book-4.svg Fonte: Licenza: CC-BY-SA-3.0 Contributori: Created from scratch in Adobe Illustrator. Originally based on Image:Question book.png created by User:Equazcion. Artista originale: Tkgd2007 File:XNOR_ANSI.svg Fonte: Licenza: Public domain Contributori: File:XOR_ANSI.svg Fonte: Licenza: Public domain Contributori: 14.3 Licenza dell'opera Creative Commons Attribution-Share Alike 3.0

Variabili logiche e circuiti combinatori

Variabili logiche e circuiti combinatori Variabili logiche e circuiti combinatori Si definisce variabile logica binaria una variabile che può assumere solo due valori a cui si fa corrispondere, convenzionalmente, lo stato logico 0 e lo stato

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Algebra di Boole. Le operazioni, nell algebra booleana sono basate su questi tre operatori: AND ( ), OR ( + ),NOT ( )

Algebra di Boole. Le operazioni, nell algebra booleana sono basate su questi tre operatori: AND ( ), OR ( + ),NOT ( ) Algebra di Boole L algebra di Boole prende il nome da George Boole, matematico inglese (1815-1864), che pubblicò un libro nel 1854, nel quale vennero formulati i principi dell'algebra oggi conosciuta sotto

Dettagli

L algebra di Boole. Cenni Corso di Reti Logiche B. Mariagiovanna Sami

L algebra di Boole. Cenni Corso di Reti Logiche B. Mariagiovanna Sami L algebra di Boole Cenni Corso di Reti Logiche B Mariagiovanna Sami Algebra Booleana: sistema algebrico Operazione: Operazione α sull'insieme S={s1,s2,...} = funzione che da SxS (prodotto cartesiano S

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

Algebra Di Boole. Definiamo ora che esiste un segnale avente valore opposto di quello assunto dalla variabile X.

Algebra Di Boole. Definiamo ora che esiste un segnale avente valore opposto di quello assunto dalla variabile X. Algebra Di Boole L algebra di Boole è un ramo della matematica basato sul calcolo logico a due valori di verità (vero, falso). Con alcune leggi particolari consente di operare su proposizioni allo stesso

Dettagli

La Logica Proposizionale. (Algebra di Boole)

La Logica Proposizionale. (Algebra di Boole) 1 ISTITUTO DI ISTRUZIONE SUPERIORE ANGIOY La Logica Proposizionale (Algebra di Boole) Prof. G. Ciaschetti 1. Cenni storici Sin dagli antichi greci, la logica è intesa come lo studio del logos, che in greco

Dettagli

G. Pareschi ALGEBRE DI BOOLE. 1. Algebre di Boole

G. Pareschi ALGEBRE DI BOOLE. 1. Algebre di Boole G. Pareschi ALGEBRE DI BOOLE 1. Algebre di Boole Nel file precedente abbiamo incontrato la definizione di algebra di Boole come reticolo: un algebra di Boole e un reticolo limitato, complementato e distributivo.

Dettagli

Architettura dei Calcolatori Algebra delle reti Logiche

Architettura dei Calcolatori Algebra delle reti Logiche Architettura dei Calcolatori Algebra delle reti Logiche Ing. dell Automazione A.A. 20/2 Gabriele Cecchetti Algebra delle reti logiche Sommario: Segnali e informazione Algebra di commutazione Porta logica

Dettagli

1. Operazioni binarie e loro proprietà.

1. Operazioni binarie e loro proprietà. INTRODUZIONE ALLE STRUTTURE ALGEBRICHE Lo studio delle strutture algebriche astratte innanzitutto consente economia di pensiero, mediante l'unificazione in teorie generali degli esempi particolari già

Dettagli

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( )

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( ) Algebra di Boole Circuiti logici: componenti hardware preposti all'elaborazione delle informazioni binarie. PORTE LOGICHE (logical gate): circuiti di base. Allo scopo di descrivere i comportamenti dei

Dettagli

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) [# Aii [10 pagine]] Algebre di Boole Un algebra di Boole è una struttura 1. Definizione e proprietá B =< B,,, ν, 0, 1 > in cui B è un insieme non

Dettagli

ALGEBRA DELLE PROPOSIZIONI

ALGEBRA DELLE PROPOSIZIONI Università di Salerno Fondamenti di Informatica Corso di Laurea Ingegneria Corso B Docente: Ing. Giovanni Secondulfo Anno Accademico 2010-2011 ALGEBRA DELLE PROPOSIZIONI Fondamenti di Informatica Algebra

Dettagli

Prodotto elemento per elemento, NON righe per colonne Unione: M R S

Prodotto elemento per elemento, NON righe per colonne Unione: M R S Relazioni binarie Una relazione binaria può essere rappresentata con un grafo o con una matrice di incidenza. Date due relazioni R, S A 1 A 2, la matrice di incidenza a seguito di varie operazioni si può

Dettagli

Codifica binaria e algebra di Boole

Codifica binaria e algebra di Boole Codifica binaria e algebra di Boole Corso di Programmazione A.A. 2008/09 G. Cibinetto Contenuti della lezione Codifica binaria dell informazione Numeri naturali, interi, frazionari, in virgola mobile Base

Dettagli

Operatori logici e porte logiche

Operatori logici e porte logiche Operatori logici e porte logiche Operatori unari.......................................... 730 Connettivo AND........................................ 730 Connettivo OR..........................................

Dettagli

I.I.S. Primo Levi Badia Polesine A.S. 2012-2013

I.I.S. Primo Levi Badia Polesine A.S. 2012-2013 LGEBR DI BOOLE I.I.S. Primo Levi Badia Polesine.S. 2012-2013 Nel secolo scorso il matematico e filosofo irlandese Gorge Boole (1815-1864), allo scopo di procurarsi un simbolismo che gli consentisse di

Dettagli

Prodotto libero di gruppi

Prodotto libero di gruppi Prodotto libero di gruppi 24 aprile 2014 Siano (A 1, +) e (A 2, +) gruppi abeliani. Sul prodotto cartesiano A 1 A 2 definiamo l operazione (x 1, y 1 ) + (x 2, y 2 ) := (x 1 + x 2, y 1 + y 2 ). Provvisto

Dettagli

APPENDICE NOZIONI BASE E VARIE

APPENDICE NOZIONI BASE E VARIE pag. 131 Appendice: Nozioni base e varie G. Gerla APPENDICE NOZIONI BASE E VARIE 1. Funzioni e relazioni di equivalenza Questi appunti sono rivolti a persone che abbiano già una conoscenza elementare della

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

R X X. RELAZIONE TOTALE Definizione: Si definisce relazione totale tra x e y se dati X,Y diversi dall'insieme vuoto

R X X. RELAZIONE TOTALE Definizione: Si definisce relazione totale tra x e y se dati X,Y diversi dall'insieme vuoto PRODOTTO CARTESIANO Dati due insiemi non vuoti X e Y si definisce prodotto cartesiano: X Y ={ x, y x X, y Y } attenzione che (x,y) è diverso da (y,x) perchè (x,y)={x,{y}} e (y,x)={y,{x}} invece sono uguali

Dettagli

Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche

Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche Cap. 3 Reti combinatorie: analisi e sintesi operatori logici e porte logiche 3.1 LE PORTE LOGICHE E GLI OPERATORI ELEMENTARI 3.2 COMPORTAMENTO A REGIME E IN TRANSITORIO DEI CIRCUITI COMBINATORI I nuovi

Dettagli

A L'operatore NOT si scrive con una linea sopra la lettera indicante la variabile logica A ; 0 1 1 0. NOT di A =

A L'operatore NOT si scrive con una linea sopra la lettera indicante la variabile logica A ; 0 1 1 0. NOT di A = ALGEBRA DI BOOLE L'algebra di Boole è un insieme di regole matematiche; per rappresentare queste regole si utilizzano variabili logiche, funzioni logiche, operatori logici. variabili logiche: si indicano

Dettagli

Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN zkiziltan@deis.unibo.it

Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN zkiziltan@deis.unibo.it Esercitazioni di Reti Logiche Lezione 2 Algebra Booleana e Porte Logiche Zeynep KIZILTAN zkiziltan@deis.unibo.it Argomenti Algebra booleana Funzioni booleane e loro semplificazioni Forme canoniche Porte

Dettagli

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi:

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi: Modulo 8 Elettronica Digitale Contenuti: Introduzione Sistemi di numerazione posizionali Sistema binario Porte logiche fondamentali Porte logiche universali Metodo della forma canonica della somma per

Dettagli

Algebra booleana. Si dice enunciato una proposizione che può essere soltanto vera o falsa.

Algebra booleana. Si dice enunciato una proposizione che può essere soltanto vera o falsa. Algebra booleana Nel lavoro di programmazione capita spesso di dover ricorrere ai principi della logica degli enunciati e occorre conoscere i concetti di base dell algebra delle proposizioni. L algebra

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Corso: Fondamenti Informatica I Prof. Paolo Nesi A.A. 2002/2003

Corso: Fondamenti Informatica I Prof. Paolo Nesi A.A. 2002/2003 Dispense Introduzione al calcolatore Corso: Fondamenti Informatica I Prof. Paolo Nesi A.A. 2002/2003 Nota: Queste dispense integrano e non sostituiscono quanto scritto sul libro di testo. 1 Sistemi di

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Alcune nozioni di base di Logica Matematica

Alcune nozioni di base di Logica Matematica Alcune nozioni di base di Logica Matematica Ad uso del corsi di Programmazione I e II Nicola Galesi Dipartimento di Informatica Sapienza Universitá Roma November 1, 2007 Questa é una breve raccolta di

Dettagli

Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche

Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche Matematica Computazionale Lezione 4: Algebra di Commutazione e Reti Logiche Docente: Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi 089-963334 ALGEBRA DI COMMUTAZIONE Lo scopo di questa algebra

Dettagli

Algoritmo = Dati e Azioni Sistema numerico binario Rappresentazioni di numeri binari Rappresentazione in modulo e segno

Algoritmo = Dati e Azioni Sistema numerico binario Rappresentazioni di numeri binari Rappresentazione in modulo e segno Algoritmo = Dati e Azioni Dati: Numeri (naturali, interi, reali, ) Caratteri alfanumerici (a, b, c, ) Dati logici (vero, falso) Vettori di elementi, matrici, ([1,2,3], [[1,1],[1,2], ]) Azioni o istruzioni:

Dettagli

Algebra Booleana ed Espressioni Booleane

Algebra Booleana ed Espressioni Booleane Algebra Booleana ed Espressioni Booleane Che cosa è un Algebra? Dato un insieme E di elementi (qualsiasi, non necessariamente numerico) ed una o più operazioni definite sugli elementi appartenenti a tale

Dettagli

Logica combinatoria. La logica digitale

Logica combinatoria. La logica digitale Logica combinatoria La logica digitale La macchina è formata da porte logiche Ogni porta riceve in ingresso dei segnali binari (cioè segnali che possono essere 0 o 1) e calcola una semplice funzione (ND,

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un

Dettagli

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni

Dettagli

Dispense del corso di ALGEBRA 1 a.a. 2008 2009

Dispense del corso di ALGEBRA 1 a.a. 2008 2009 Dispense del corso di ALGEBRA 1 a.a. 2008 2009 2 Indice I INSIEMI E NUMERI 5 1 Insiemi e applicazioni 7 1.1 Insiemi..................................... 7 1.2 Operazioni tra insiemi.............................

Dettagli

ALGEBRA BOOLEANA FONDAMENTI DI INFORMATICA 1. Algebra di Boole. Definizione NOT, AND, OR

ALGEBRA BOOLEANA FONDAMENTI DI INFORMATICA 1. Algebra di Boole. Definizione NOT, AND, OR Università degli Studi di Cagliari Corso di Laurea in Ingegneria Biomedica, Chimica, Elettrica e Meccanica FONDAMENTI DI INFORMATICA 1 http://www.diee.unica.it/~marcialis/fi1 A.A. 2010/2011 Docente: Gian

Dettagli

Sommario. Teoremi Maxterm Forme Canoniche Mappe di Karnaugh Fine lezione

Sommario. Teoremi Maxterm Forme Canoniche Mappe di Karnaugh Fine lezione Algebra di Boole e Funzioni Binarie Lezione Prima Sommario Variabili Binarie Negazione Somma Logica Prodotto Logico Relazioni- proprietà Funzioni Minterm Teoremi Maxterm Forme Canoniche Mappe di Karnaugh

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

APPUNTI DI ELETTRONICA DIGITALE

APPUNTI DI ELETTRONICA DIGITALE APPUNTI DI ELETTRONICA DIGITALE ITIS MARCONI-GORGONZOLA docente :dott.ing. Paolo Beghelli pag.1/24 Indice 1.ELETTRONICA DIGITALE 4 1.1 Generalità 4 1.2 Sistema di numerazione binario 4 1.3 Operazioni con

Dettagli

Capitolo 2 - Algebra booleana

Capitolo 2 - Algebra booleana ppunti di Elettronica Digitale Capitolo - lgebra booleana Introduzione... Postulati di Huntington... Reti di interruttori... Esempi di algebra booleana... 4 Teoremi ondamentali dell'algebra booleana...

Dettagli

I Polinomi. Michele Buizza. L'insieme dei numeri interi lo indicheremo con Z. è domenica = non vado a scuola. signica se e solo se.

I Polinomi. Michele Buizza. L'insieme dei numeri interi lo indicheremo con Z. è domenica = non vado a scuola. signica se e solo se. I Polinomi Michele Buizza 1 Insiemi In questa prima sezione ricordiamo la simbologia che useremo in questa breve dispensa. Iniziamo innanzitutto a ricordare i simboli usati per i principali insiemi numerici.

Dettagli

L'algebra di Boole falso vero livello logico alto livello logico basso Volts

L'algebra di Boole falso vero livello logico alto livello logico basso Volts L algebra di Boole L'algebra di Boole comprende una serie di regole per eseguire operazioni con variabili logiche. Le variabili logiche possono assumere solo due valori. I due possibili stati che possono

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

ALGEBRA E LOGICA (v1.5)

ALGEBRA E LOGICA (v1.5) ALGEBRA E LOGICA (v1.5) Iniettività e suriettività: Per dimostrare che una funzione è iniettiva basta provare che se a1 = a2 => f(a1) = f(a2) per ogni valore di a (la cardinalità del codominio è maggiore

Dettagli

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive.

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Lezione 6 Prerequisiti: L'insieme dei numeri interi. Lezione 5. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Questa è la prima lezione dedicata all'anello

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) Un insieme è una collezione di oggetti. Il concetto di insieme è un concetto primitivo. Deve esistere un criterio chiaro, preciso, non ambiguo, inequivocabile,

Dettagli

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità.

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. I METODI DI NUMERAZIONE I numeri naturali... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. Il numero dei simboli usati per valutare la numerosità costituisce la base

Dettagli

LOGICA PER LA PROGRAMMAZIONE. Franco Turini turini@di.unipi.it

LOGICA PER LA PROGRAMMAZIONE. Franco Turini turini@di.unipi.it LOGICA PER LA PROGRAMMAZIONE Franco Turini turini@di.unipi.it IPSE DIXIT Si consideri la frase: in un dato campione di pazienti, chi ha fatto uso di droghe pesanti ha utilizzato anche droghe leggere. Quali

Dettagli

Algebra booleana e circuiti logici. a cura di: Salvatore Orlando

Algebra booleana e circuiti logici. a cura di: Salvatore Orlando lgebra booleana e circuiti logici a cura di: Salvatore Orlando rch. Elab. - S. Orlando lgebra & Circuiti Elettronici I calcolatori operano con segnali elettrici con valori di potenziale discreti sono considerati

Dettagli

la "macchina" universale di Turing

la macchina universale di Turing la "macchina" universale di Turing Nel 1854, il matematico britannico George Boole (1815-1864), elaborò una matematica algebrica che da lui prese il nome. Nell'algebra booleana le procedure di calcolo

Dettagli

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND.

Utilizzo I mintermini si usano quando si considererà la funzione di uscita Q come Somma di Prodotti (S. P.) ossia OR di AND. IPSI G. Plana Via Parenzo 46, Torino efinizione di Mintermine onsiderata una qualunque riga della tabella di verità in cui la funzione booleana di uscita Q vale, si definisce mintermine il prodotto logico

Dettagli

Cenni di logica & algebra booleana

Cenni di logica & algebra booleana Cenni di algebra booleana e dei sistemi di numerazione Dr. Carlo Sansotta - 25 2 Parte Cenni di logica & algebra booleana 3 introduzione L elaboratore elettronico funziona secondo una logica a 2 stati:

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione

Dettagli

L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI

L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI Scienza ed industria hanno oggi costituito legami molto forti di collaborazione che hanno portato innovazione tecnologica sia a livello organizzativo-amministrativo

Dettagli

CAPITOLO 3 TRASFORMARE FORMULE E DEDURRE DA TEORIE.

CAPITOLO 3 TRASFORMARE FORMULE E DEDURRE DA TEORIE. pag. 1 Capitolo 3 CAPITOLO 3 TRASFORMARE FORMULE E DEDURRE DA TEORIE. 1. Sistemi di trasformazione. La nozione di relazione binaria che abbiamo già esaminato nel capitolo precedente è anche alla base della

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Fondamenti di Informatica Michele Ceccarelli Università del Sannio ceccarelli@unisannio.it Angelo Ciaramella DMI-Università degli

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa 05 La rappresentazione dell informazione Carla Limongelli Ottobre 2011 http://www.dia.uniroma3.it/~java/fondinf/ La rappresentazione

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Introduzione ai microcontrollori

Introduzione ai microcontrollori Introduzione ai microcontrollori L elettronica digitale nasce nel 1946 con il primo calcolatore elettronico digitale denominato ENIAC e composto esclusivamente di circuiti a valvole, anche se negli anni

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE 1. Operazioni algebriche binarie Dato un insieme M, chiamiamo operazione algebrica binaria definita su M una qualunque applicazione f che associa ad ogni coppia ordinata (a, b) di

Dettagli

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme:

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: Lezione 1 Gli Insiemi La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: degli iscritti ad un corso di laurea delle stelle in cielo dei punti di un piano

Dettagli

Corso di Laurea in Matematica. Dispense del corso di ALGEBRA I

Corso di Laurea in Matematica. Dispense del corso di ALGEBRA I Corso di Laurea in Matematica Dispense del corso di ALGEBRA I a.a. 2012 2013 2 Cos è l anima?. Al negativo è facile da definire: per l appunto ciò che si affretta a rintanarsi quando sente parlare di serie

Dettagli

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1 SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x, y, z) è un vettore in coordinate ortonormali,

Dettagli

Dispense del corso di ALGEBRA 1 a.a. 2007 2008. Parte 1: NOZIONI DI BASE

Dispense del corso di ALGEBRA 1 a.a. 2007 2008. Parte 1: NOZIONI DI BASE Dispense del corso di ALGEBRA 1 a.a. 2007 2008 Parte 1: NOZIONI DI BASE 1 Indice 1 Nozioni introduttive 3 1.1 Insiemi..................................... 3 1.2 Operazioni tra insiemi.............................

Dettagli

Esercitazioni (a cura di R. Basili)

Esercitazioni (a cura di R. Basili) Esercitazioni (a cura di R. Basili) E1. Elementi di Algebra Insiemi Nozione intuitiva di insieme L'insieme vuoto Operazioni tra insiemi Domini Prodotto Cartesiano Proprieta' delle operazioni tra insiemi

Dettagli

f: AxB f(x)=y, f={ per ogni x in A esiste unica y in B f(x)=y} f={<1,2>, <2,3>, <3,3>} : {1,2,3} {1,2,3} f(1)=2, f(2)=3, f(3)=3

f: AxB f(x)=y, f={<x,y> per ogni x in A esiste unica y in B f(x)=y} f={<1,2>, <2,3>, <3,3>} : {1,2,3} {1,2,3} f(1)=2, f(2)=3, f(3)=3 Insieme delle parti di A : Funzione : insieme i cui elementi sono TUTTI i sottoinsiemi di A f: AxB f(x)=y, f={ per ogni x in A esiste unica y in B f(x)=y} f={, , } : {1,2,3} {1,2,3}

Dettagli

Sintesi di reti combinatorie. Sommario. Motivazioni. Sommario. Funzioni Espressioni. M. Favalli

Sintesi di reti combinatorie. Sommario. Motivazioni. Sommario. Funzioni Espressioni. M. Favalli Sommario Sintesi di reti combinatorie Funzioni Espressioni 1 Teorema di espansione di Shannon (Boole) M. Favalli Engineering Department in Ferrara 2 Forme canoniche 3 Metriche per il costo di una rete

Dettagli

LOGICA DEI PREDICATI. Introduzione. Predicati e termini individuali. Termini individuali semplici e composti

LOGICA DEI PREDICATI. Introduzione. Predicati e termini individuali. Termini individuali semplici e composti Introduzione LOGICA DEI PREDICATI Corso di Intelligenza Artificiale A.A. 2009/2010 Prof. Ing. Fabio Roli La logica dei predicati, o logica del primo ordine (LPO) considera schemi proposizionali composti

Dettagli

NUMERI E SUCCESSIONI

NUMERI E SUCCESSIONI NUMERI E SUCCESSIONI Giovanni Maria Troianiello 1 Notazioni insiemistiche. Numeri naturali, interi, razionali Notazioni insiemistiche Si sa cosa s intende quando si parla di insieme (o famiglia, o classe)

Dettagli

Insiemi con un operazione

Insiemi con un operazione Capitolo 3 Insiemi con un operazione 3.1 Gruppoidi, semigruppi, monoidi Definizione 309 Un operazione binaria su un insieme G è una funzione: f : G G G Quindi, un operazione binaria f su un insieme G è

Dettagli

Circuiti logici. Parte xxv

Circuiti logici. Parte xxv Parte xxv Circuiti logici Operatori logici e porte logiche....................... 729 Operatori unari....................................... 730 Connettivo AND...................................... 730

Dettagli

Fondamenti di Informatica II

Fondamenti di Informatica II Fondamenti di Informatica II Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Introduzione, A.A. 2009/2010 1/8

Dettagli

Architettura degli Elaboratori Implementazione di funzioni booleane

Architettura degli Elaboratori Implementazione di funzioni booleane Architettura degli Elaboratori Implementazione di funzioni booleane Giacomo Fiumara giacomo.fiumara@unime.it Anno Accademico 2012-2013 1 / 34 Introduzione /1 Ogni funzione booleana può essere implementata

Dettagli

ME410 MEPVS A.A. 2012/2013 Prof. Marco Fontana Matematiche Elementari da un Punto di Vista Superiore

ME410 MEPVS A.A. 2012/2013 Prof. Marco Fontana Matematiche Elementari da un Punto di Vista Superiore ME410, I Semestre, Crediti 7 ME410 MEPVS A.A. 2012/2013 Prof. Marco Fontana Matematiche Elementari da un Punto di Vista Superiore 1. Teoria della Cardinalità Introduzione alla teoria della cardinalità.

Dettagli

Due dimostrazioni alternative nella teoria di Ramsey

Due dimostrazioni alternative nella teoria di Ramsey Due dimostrazioni alternative nella teoria di Ramsey 28 Marzo 2007 Introduzione Teoria di Ramsey: sezione della matematica a metà tra la combinatoria e la teoria degli insiemi. La questione tipica è quella

Dettagli

Indecidibilità, indefinibilità e incompletezza. 1

Indecidibilità, indefinibilità e incompletezza. 1 Indecidibilità, indefinibilità e incompletezza. 1 Possiamo ora trattare unitariamente alcuni dei principali risultati negativi della logica: il teorema di Church sull'indecidibilità della logica, il teorema

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

I sistemi di numerazione

I sistemi di numerazione I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono

Dettagli

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

Corso introduttivo pluridisciplinare Strutture algebriche

Corso introduttivo pluridisciplinare Strutture algebriche Corso introduttivo pluridisciplinare Strutture algebriche anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Corso introduttivo pluridisciplinare 1 / 17 index

Dettagli

APPUNTI DEL CORSO DI ANALISI MATEMATICA 1

APPUNTI DEL CORSO DI ANALISI MATEMATICA 1 APPUNTI DEL CORSO DI ANALISI MATEMATICA 1 Gino Tironi Stesura provvisoria del 24 settembre, 2007. ii Indice 1 Insiemi e logica 1 1.1 Preliminari......................................... 1 1.2 Cenni di

Dettagli

Corso di Laurea in INFORMATICA

Corso di Laurea in INFORMATICA Corso di Laurea in INFORMATICA Algoritmi e Strutture Dati MODULO 2. Algebre di dati Dati e rappresentazioni, requisiti delle astrazioni di dati, costrutti. Astrazioni di dati e dati primitivi. Specifica

Dettagli

Parte 1. Vettori di bit - AA. 2012/13 1.1

Parte 1. Vettori di bit - AA. 2012/13 1.1 1.1 Parte 1 Vettori di bit 1.2 Notazione posizionale Ogni cifra assume un significato diverso a seconda della posizione in cui si trova Rappresentazione di un numero su n cifre in base b: Posizioni a n

Dettagli

Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine

Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine Università di Bergamo Anno accademico 2006 2007 Ingegneria Informatica Foglio Algebra e Logica Matematica Calcolo delle proposizioni Logica del primo ordine Esercizio.. Costruire le tavole di verità per

Dettagli

ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI

ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI 1. CLASSI DI RESTO E DIVISIBILITÀ In questa parte sarò asciuttissimo, e scriverò solo le cose essenziali. I commenti avete potuto ascoltarli a lezione.

Dettagli

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà :

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà : RELAZIONI INARIE Dati due insiemi non vuoti, A detto dominio e detto codominio, eventualmente coincidenti, si chiama relazione binaria (o corrispondenza) di A in, e si indica con f : A, (oppure R ) una

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Precorsi: Introduzione naïve alla logica ed alla teoria degli insiemi. Carlo Collari, Lapo Dini, Daniele Angella

Precorsi: Introduzione naïve alla logica ed alla teoria degli insiemi. Carlo Collari, Lapo Dini, Daniele Angella Precorsi: Introduzione naïve alla logica ed alla teoria degli insiemi. Carlo Collari, Lapo Dini, Daniele Angella CAPITOLO 1 Introduzione Per poter seguire un corso universitario di matematica, uno studente,

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2015/2016

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2015/2016 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2015/2016 CLASSE 3 I Discip lina: Elettrotecnica ed Elettronica PROGETTAZIONE DIDATTICA ANNUALE Elaborata e sottoscritta dai docenti: cognome

Dettagli

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Indice. 1 Rappresentazione dei dati... 3

Indice. 1 Rappresentazione dei dati... 3 INSEGNAMENTO DI INFORMATICA DI BASE LEZIONE II CODIFICA DELL'INFORMAZIONE PROF. GIOVANNI ACAMPORA Indice 1 Rappresentazione dei dati... 3 1.1. Rappresentazione dei numeri... 3 1.1.1 Rappresentazione del

Dettagli

1 Insiemi e terminologia

1 Insiemi e terminologia 1 Insiemi e terminologia Assumeremo come intuitiva la nozione di insieme e ne utilizzeremo il linguaggio come strumento per studiare collezioni di oggetti. Gli Insiemi sono generalmente indicati con le

Dettagli

I Insiemi e funzioni

I Insiemi e funzioni I Insiemi e funzioni 1. INSIEMI ED OPERAZIONI SU DI ESSI 1.1. Insiemi Dal punto di vista intuitivo, il concetto di insieme può essere fatto corrispondere all atto mentale mediante il quale associamo alcuni

Dettagli

LA NUMERAZIONE BINARIA

LA NUMERAZIONE BINARIA LA NUMERAZIONE BINARIA 5 I SISTEMI DI NUMERAZIONE Fin dalla preistoria l uomo ha avuto la necessità di fare calcoli, utilizzando svariati tipi di dispositivi: manuali (mani, bastoncini, sassi, abaco),

Dettagli