CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU FORZA DI LORENTZ E LEGGE DI BIOT SAVART Docente: Claudio Melis

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU FORZA DI LORENTZ E LEGGE DI BIOT SAVART Docente: Claudio Melis"

Transcript

1 CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU FORZA DI LORENTZ E LEGGE DI BIOT SAVART Docente: Claudio Melis 1) 2)

2 3) 4) Due correnti rispettivamente di intensità pari a 5 A e 4 A percorrono due fili conduttori che sono posti perpendicolarmente tra di loro. Considerando un punto P, interno ai due fili, che dista 15 cm dal filo percorso da 4 A e 10 cm da quello percorsi dai 5 A, calcolare il campo magnetico risultante in quel punto. Svolgimento

3 I due fili di cui parla il problema sono posti perpendicolarmente nel piano e le correnti che attraversano entrambi i conduttori sono dello stesso verso, in quanto positive. Ora è possibile determinare il valore del campo magnetico generato da un filo percorso da corrente tramite la legge di Biot Savart: mentre sappiamo che la direzione delle linee di campo sono circonferenze concentriche attorno al filo. Invece il verso delle linee di campo è legato al verso della corrente tramite la regola della mano destra: se il pollice segue il verso della corrente, allora le dita indicano il verso di quelle che sono le linee del campo magnetico: Ora, poichè ognuno dei due fili presenti nel problema sono percorsi da corrente, entrambi genereranno campi che saranno uno entrante nel foglio ed uno uscente, se stabiliamo che le correnti abbiano verso diretto verso l'alto: I dati a nostra disposizione sono: i1 = 5 A i2 = 4 A d1 = 10 cm = m = 10-1 m d2 = 15 cm = m Calcoliamo tramite la legge di Biot Savart l'intensità dei due campi magnetici:

4 Nell'ipotesi di correnti disposte come in figura, prendiamo come positivo il verso entrante nel foglio, quello di B1, e come negativo il verso di B2, per cui il campo risultante totale è la somma vettoriale dei due campi: L'equazione scalare corrispondente alla precedente equazione vettoriale è: Bris = B1 B2 = ( 1 0,53) 10-5 T = 0, T Per cui il campo magnetico risultante ha intensità pari a 0, T e verso entrante nel foglio 5) L'intensità del campo magnetico prodotto da una spira circolare di raggio R nel suo centro è pari al campo magnetico misurato a 40 cm di distanza da un filo rettilineo percorso da corrente. Determinare il raggio R della spira sapendo che essa ed il filo sono percorsi dalla stessa corrente i. Lo svolgimento del problema richiede la conoscenza del calcolo del modulo del campo magnetico per una spira circolare e per un filo percorso da corrente. Il campo magnetico creato da una spira circolare percorsa da una corrente è pari a: in cui R è il raggio della spira. Mentre in prossimità di un filo percorso da corrente il campo B vale: anche conosciuta come legge di Biot Savart. I dati forniti sono i seguenti: d = 40 cm

5 ispira = ifilo Bspira = Bfilo Per cui uguagliando i due campi otteniamo: in definitiva il raggio della spira percorsa dalla stessa corrente del filo, creante un campo magnetico di intensità pari a quella misurata a 40 cm dal filo, ha un raggio di 126 cm. 6) Un protone inizialmente fermo viene accelerato attraverso una ddp di 2500 V e viene immesso in una regione dello spazio in cui è presente un campo magnetico di intensità 0,3 T. Determinare il raggio della traiettoria circolare che il protone percorre nel campo Svolgimento I dati a nostra disposizione sono: ΔV = 2500 V mp = 1, Kg (massa del protone) q = 1, C (carica del protone) B = 0,3 T in seguito alla differenza di potenziale il protone acquisisce un'energia pari a: E = q ΔV = 1, = J Tale energia ha solo componente cinetica, per cui la velocità con cui il protone penetra nel campo è pari a: E = K = ½ m v 2 da cui All'interno del campo magnetico, la forza di Lorentz che agisce sulla carica in movimento eguaglierà la forza centripeta che permette il moto circolare per cui: Florentz = Fcentripeta da cui q V B senα = m V 2 / R in cui q è la carica della particella V la sua velocità

6 B l'intensità del campo magnetico α l'angolo tra v e B e dato che l'angolo è 90, sen90=1 m la massa della particella R il raggio della traiettoria circolare. Ricaviamo dunque il raggio della traiettoria: R = (m V)/( q B sen α) = (1, , ) / (1, ,3) = m Dunque il raggio della traiettoria descritta dal protone all'interno del campo magnetico è pari a m. 6) Un elettrone viene accelerato attraverso un campo elettrico facendogli raggiungere una velocità di 1, m/s. L'elettrone dunque percorre una zona di spazio in cui è presente un campo magnetico uniforme le cui linee di forza sono perpendicolari alla velocità della particella. Calcolare il modulo del campo magnetico necessario affinché l'orbita circolare percorsa dall'elettrone abbia un raggio di 9,1 cm. Svolgimento La situazione fisica descritta dal problema è quella relativa ad un elettrone dotato di velocità v che si muove in un campo magnetico le cui linee di forza sono perpendicolari alla velocità: I dati a nostra disposizione sono: m = 9, Kg (massa dell'elettrone) e = 1, C (carica dell'elettrone) v = 1, m/s R = 9,1 cm = 9, m

7 Sulla carica in moto nel campo magnetico agirà la forza di Lorentz, la cui direzione sarà perpendicolare alla velocità con cui l'elettrone penetra nel campo. Dunque la traiettoria seguita dall'elettrone sarà di tipo circolare e la composizione dei due moti (moto circolare uniforme e moto rettilineo uniforme), darà luogo ad una traiettoria elicoidale: Ora la forza di Lorentz eguaglierà la forza centripeta che permette il moto circolare per cui: Florentz = Fcentripeta Da cui q V B senα = m V 2 / R in cui q è la carica della particella V la sua velocità B l'intensità del campo magnetico α l'angolo tra v e B, essendo perpendicolari α = 90 e quindi sen90 = 1 m la massa della particella R il raggio della traiettoria circolare. Riordinando i termini e semplificando otteniamo che: B = (m V) / ( q R) = (9, , ) / (1, , ) = 10-4 T Per cui l'intensità del campo magnetico che permette di mantenere l'elettrone su un'orbita circolare di raggio 9,1 cm è pari a 10-4 T. 7) Uno spettrometro di massa è un particolare dispositivo per misurare la massa di particelle cariche. La particella dotata di carica, viene accelerata fornendole un'energia cinetica ben precisa e quindi una velocità. La carica penetra così in un campo B, noto, ortogonalmente e a causa della forza di Lorentz viene deviata e costretta a descrivere una traiettoria semicircolare, riemergendo in un punto ove è presente una lastra fotografica. Misurando la distanza tra l'ingresso e l'uscita della particella se ne può determinare la massa. In che modo?

8 Svolgimento Lo spettrometro di massa di cui parla il problema ha il seguente schema: La carica viene accelerata e portata alla velocità V. Una volta fatta entrare in una regione in cui è presente il campo B uscente dal foglio e con linee di forza perpendicolari alla velocità V, la carica risentirà della forza di Lorentz per cui devierà la sua traiettoria rettilinea in una curvilinea. Ora poichè la particella penetra perpendicolarmente nel campo, possiamo affermare che la distanza tra il punto di ingresso e quello di uscita è esattamente pari al diametro della circonferenza che la carica percorrerebbe per intero se rimanesse confinata all'interno del campo. La forza di Lorentz eguaglierà la forza centripeta che permette il moto circolare per cui: Florentz = Fcentripeta da cui q V B senα = m V 2 / R in cui q è la carica della particella V la sua velocità B l'intensità del campo magnetico α l'angolo tra v e B, essendo perpendicolari α = 90 e quindi sen90 = 1 m la massa della particella R il raggio della traiettoria circolare. Riordinando i termini e semplificando otteniamo che la massa è pari a: m = (q B R)/V q, B, R e V sono tutte variabili note. Combinandole in questo modo riusciamo pertanto a determinare la massa della particella carica. Due correnti di intensità pari a 4 A e 10 A percorrono due fili rettilinei paralleli che distano 4 cm tra di loro. Calcolare la forza per unità di lunghezza che ogni filo esercita sull'altro. Considerare il caso di correnti concordi e discordi per determinarne infine il verso. Svolgimento La situazione fisica descritta dal problema è quella di due fili infinitamente lunghi e paralleli percorsi da corrente.

9 In tale contesto sappiamo che due fili rettilinei paralleli percorsi da corrente si attraggono con una forza di modulo pari a i1 e i2 sono le correnti che percorrono i fili L la lunghezza dei fili d la loro distanza. Il problema chiede di calcolare la forza per unità di lunghezza per cui la formula precedente si modifica così: Scriviamo i dati del problema: i1 = 4 A i2 = 10 A d = 4 cm = m Dunque avremo: Per determinare infine il verso della forza, ovvero se questa è attrattiva o repulsiva tra i due fili, si ricorre alla regola della mano destra. Le forze di interazione tra i due fili sono attrattive se le due correnti sono concordi, repulsive se discordi: 2) All'interno di un avvolgimento formante un solenoide lungo 50 cm è misurato un campo magnetico pari a T. Se il solenoide è percorso da una corrente di 10 A calcolare il numero di avvolgimenti del solenoide.

10 Svolgimento Il campo creato da un solenoide percorso da corrente elettrica è pari a n cui N è il numero di avvolgimenti presenti nel solenoide ed L la sua lunghezza. Ora i dati che il problema ci fornisce sono i seguenti: i = 10 A L = 50 cm = 0,5 m B = T Ricaviamo dalla formula inversa di B l'espressione che ci consente di calcolare N:

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico II 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica

Dettagli

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI Magnete FENOMENI MAGNETICI Che cos è un magnete? Un magnete è un materiale in grado di attrarre pezzi di ferro Prof. Crosetto Silvio 2 Prof. Crosetto Silvio Quando si avvicina ad un pezzo di magnetite

Dettagli

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A,

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A, ebbraio 1. L intensità di corrente elettrica che attraversa un circuito in cui è presente una resistenza R è di 4 A. Se nel circuito si inserisce una ulteriore resistenza di 2 Ω la corrente diventa di

Dettagli

Esercitazione XII - Elettrostatica e magnetismo

Esercitazione XII - Elettrostatica e magnetismo Esercitazione XII - Elettrostatica e magnetismo Esercizio 1 Una particella di massa m = 10g e carica negativa q = 1mC viene posta fra le armature di un condensatore a piatti piani e paralleli, ed è inoltre

Dettagli

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Classico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz LEZIONE

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Elementi di Fisica 2CFU

Elementi di Fisica 2CFU Elementi di Fisica 2CFU III parte - Elettromagnetismo Andrea Susa MAGNETISMO 1 Magnete Alcune sostanze naturali, come ad esempio la magnetite, hanno la proprietà di attirare pezzetti di ferro, e per questo

Dettagli

Campo magnetico terrestre

Campo magnetico terrestre Magnetismo Vicino a Magnesia, in Asia Minore, si trovava una sostanza capace di attrarre il ferro Due sbarrette di questo materiale presentano poli alle estremità, che si attraggono o si respingono come

Dettagli

1 Prove esami Fisica II

1 Prove esami Fisica II 1 Prove esami Fisica II Prova - 19-11-2002 Lo studente risponda alle seguenti domande: 1) Scrivere il teorema di Gauss (2 punti). 2) Scrivere, per un conduttore percorso da corrente, il legame tra la resistenza

Dettagli

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio).

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). MAGNETISMO Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). Le proprietà magnetiche si manifestano alle estremità del magnete, chiamate

Dettagli

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico Il campo magnetico n Le prime osservazioni dei fenomeni magnetici risalgono all antichità n Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro n Un ago magnetico

Dettagli

CAMPO MAGNETICO E FORZA DI LORENTZ

CAMPO MAGNETICO E FORZA DI LORENTZ QUESITI 1 CAMPO MAGNETICO E FORZA DI LORENTZ 1. (Da Medicina e Odontoiatria 2013) Un cavo percorso da corrente in un campo magnetico può subire una forza dovuta al campo. Perché tale forza non sia nulla

Dettagli

2. Si pone una carica elettrica in prossimità di un filo percorso da corrente; cosa accadrà?

2. Si pone una carica elettrica in prossimità di un filo percorso da corrente; cosa accadrà? 1. Dei principali fenomeni dell elettromagnetismo può essere data una descrizione a diversi livelli ; in quale dei seguenti elenchi essi sono messi in ordine, dal più intuitivo al più astratto? (a) Forza,

Dettagli

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff Esercizio Un conduttore cilindrico in rame avente sezione di area S = 4mm è percorso da una corrente

Dettagli

1. La forza di Lorentz. Se un fascio catodico è in un campo magnetico:

1. La forza di Lorentz. Se un fascio catodico è in un campo magnetico: Il campo magnetico 1. La forza di Lorentz Se un fascio catodico è in un campo magnetico: La forza di Lorentz Gli elettroni risentono di una forza magnetica anche se non sono in un filo metallico; l'importante

Dettagli

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO Sappiamo che mettendo una carica positiva q chiamata carica di prova o carica esploratrice in un punto vicino all oggetto carico si manifesta un vettore campo

Dettagli

Campo magnetico B e correnti

Campo magnetico B e correnti Campo magnetico B e correnti Dalle lezioni precedenti appare evidente che: corrente elettrica B corrente elettrica Pertanto è importante saper calcolare il campo magnetico a partire da una distribuzione

Dettagli

Appunti di elettromagnetismo

Appunti di elettromagnetismo Appunti di elettromagnetismo Andrea Biancalana ottobre 1999 1 Magneti e correnti elettriche Magneti: esistono materiali che manifestano interazioni non-gravitazionali e non-elettriche; caratteristica dei

Dettagli

Problemi di Fisica I Vettori

Problemi di Fisica I Vettori Problemi di isica I Vettori PROBLEMA N. Determinare la risultante, sia dal punto di vista grafico che analitico, delle seguenti forze: (; 6) (-; ) 3 (-6; -3) (0; -) Metodo grafico Rappresentiamo graficamente

Dettagli

Il magnetismo. Il campo magnetico

Il magnetismo. Il campo magnetico Il magnetismo Un magnete (o calamita) è un corpo che genera intorno a sé un campo di forza che attrae il ferro Un magnete naturale è un minerale contenente magnetite, il cui nome deriva dal greco "pietra

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il capo agnetico 1. Fenoeni agnetici 2. Calcolo del capo agnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Prof. Giovanni Ianne 1/21 Fenoeni agnetici La agnetite è un inerale

Dettagli

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa 1 Olimpiadi di Fisica 015 ampo elettrico Franco illa 1. ate le cariche Q = -1 µ e Q = - µ (ale in cm O=0, O=10, =10, O=0) determinare: il potenziale elettrico ed il campo elettrico E (modulo, direzione

Dettagli

Temi di elettromagnetismo

Temi di elettromagnetismo Temi di elettromagnetismo Prova scritta del 12/04/1995 1) Una carica puntiforme q 1 = 5 µc e' fissata nell'origine ed una seconda carica q 2 = -2µC e' posta sull'asse x, a una distanza d = 3 m, come in

Dettagli

Unità 9. Il campo magnetico

Unità 9. Il campo magnetico Unità 9 Il campo magnetico 1. La forza di Lorentz Se un fascio catodico è in un campo magnetico: La forza di Lorentz Gli elettroni risentono di una forza magnetica anche se non sono in un filo metallico;

Dettagli

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira.

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira. Fenomeni Magnetici Campo Magnetico e Forza di Lorentz Moto di cariche in campo magnetico Momento e campo magnetico di una spira Legge di Ampère Solenoide Campo Magnetico I fenomeni magnetici possono essere

Dettagli

Esercizi con campi magnetici statici

Esercizi con campi magnetici statici Esercizi con campi magnetici statici Il problema più generale è il calcolo del campo magnetico generato da uno o più fili percorsi da corrente. In linea di principio, questo tipo di problema dovrebbe essere

Dettagli

Problemi di Fisica. Elettromagnetismo. La Carica Elettrica e la Legge di Coulomb

Problemi di Fisica. Elettromagnetismo. La Carica Elettrica e la Legge di Coulomb Problemi di isica Elettromagnetismo La arica Elettrica e la Legge di oulomb Data la distribuzione di carica rappresentata in figura, calcolare la forza totale che agisce sulla carica Q posta nell origine

Dettagli

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente?

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Si abbia una molla verticale al cui estremo inferiore

Dettagli

Il campo magnetico. Le prime osservazioni dei fenomeni magnetici

Il campo magnetico. Le prime osservazioni dei fenomeni magnetici Il campo magnetico Le prime osservazioni dei fenomeni magnetici la magnetite (Fe 3 O 4 ) attira la limatura di ferro un ago magnetico libero di ruotare intorno ad un asse verticale si orienta con una delle

Dettagli

Il magnetismo magnetismo magnetite

Il magnetismo magnetismo magnetite Magnetismo Il magnetismo Fenomeno noto fin dall antichità. Il termine magnetismo deriva da Magnesia città dell Asia Minore dove si era notato che un minerale, la magnetite, attirava a sé i corpi ferrosi.

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

Soluzioni della prova scritta di Fisica Generale

Soluzioni della prova scritta di Fisica Generale Scienze e Tecnologie dell Ambiente Soluzioni della prova scritta di Fisica Generale 9 Luglio 2010 Parte 1 Esercizio 1 Un astronauta di massa m=80 Kg atterra su un pianeta dove il suo peso vale P=200 N.

Dettagli

Unità 8. Fenomeni magnetici fondamentali

Unità 8. Fenomeni magnetici fondamentali Unità 8 Fenomeni magnetici fondamentali 1. La forza magnetica e le linee del campo magnetico Già ai tempi di Talete (VI sec. a.c.) era noto che la magnetite, un minerale di ferro, attrae piccoli oggetti

Dettagli

(a) ;

(a) ; Corso di Fisica Generale II - A.A. 2005/2006 Proff. S. Amoruso, M. Iacovacci, G. La Rana Esercizi di preparazione alle prove intercorso ------------------------- Cap. VIII Campi elettrici e magnetici variabili

Dettagli

Misura del rapporto carica massa dell elettrone

Misura del rapporto carica massa dell elettrone Relazione di: Pietro Ghiglio, Tommaso Lorenzon Laboratorio di fisica del Liceo Scientifico L. da Vinci - Gallarate Misura del rapporto carica massa dell elettrone Lezioni di maggio 2015 Lo scopo dell esperienza

Dettagli

4. FORZE TRA CORRENTI

4. FORZE TRA CORRENTI 19 IL CAMPO MAGNETICO Pael L Photo and Video/Shutterstock 4. FORZE TRA CORRENTI La definizione dell ampere Il alore della costante non è misurato con un esperimento, ma è stato scelto conenzionalmente

Dettagli

LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio Campo magnetico e suoi effetti

LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio Campo magnetico e suoi effetti LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio 2012 Campo magnetico e suoi effetti Alunno:................................................ Domande a risposta

Dettagli

Campi Elettromagnetici Stazionari - a.a

Campi Elettromagnetici Stazionari - a.a Campi Elettromagnetici Stazionari - a.a. 2005-06 I Compitino - 17 Novembre 2005 Due anelli di raggio a=1 cm e sezione trascurabile, disposte come in Figura 1, coassiali tra loro e con l'asse x, in posizione

Dettagli

Elettromagnetismo: soluzioni. Scheda 11. Ripetizioni Cagliari di Manuele Atzeni

Elettromagnetismo: soluzioni. Scheda 11. Ripetizioni Cagliari di Manuele Atzeni Elettromagnetismo: soluzioni Problema di: Elettromagnetismo - E0001 Scheda 11 Ripetizioni Cagliari di Manuele Atzeni - 3497702002 - info@ripetizionicagliari.it Problema di: Elettrotecnica - E0002 Testo

Dettagli

Lez. 20 Magnetismo. Prof. Giovanni Mettivier

Lez. 20 Magnetismo. Prof. Giovanni Mettivier Lez. 20 Magnetismo Prof. Giovanni Mettivier 1 Dott. Giovanni Mettivier, PhD Dipartimento Scienze Fisiche Università di Napoli Federico II Compl. Univ. Monte S.Angelo Via Cintia, I-80126, Napoli mettivier@na.infn.it

Dettagli

1 CAMPI MAGNETICI PRODOTTI DA COR- RENTI STAZIONARIE. 2 Il campo magnetico prodotto da una carica in moto uniforme

1 CAMPI MAGNETICI PRODOTTI DA COR- RENTI STAZIONARIE. 2 Il campo magnetico prodotto da una carica in moto uniforme 1 CAMPI MAGNETICI PRODOTTI DA COR- RENTI STAZIONARIE Abbiamo studiato gli effetti di un campo B, prodotto da un magnete su cariche in moto e su circuiti percorsi da corrente. Abbiamo visto che le spire

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

Elementi di Fisica Il Campo Magnetico

Elementi di Fisica Il Campo Magnetico Prerequisiti e strumenti matematici e fisici per l elettronica delle telecomunicazioni Elementi di Fisica Il Campo Magnetico Ing. Nicola Cappuccio 2014 U.F.5 ELEMENTI SCIENTIFICI ED ELETTRONICI APPLICATI

Dettagli

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi 1) Una sfera conduttrice di raggio r = 5 cm possiede una carica q = 10 8 C ed è posta nel centro di un guscio sferico conduttore, di raggio interno R = 20 cm, posto in contatto con la terra (a massa).

Dettagli

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A MODULO D ELETTROMAGNETSMO Prova Pre-Esame del 28 GENNAO 2009 A.A. 2008-2009 FSCA GENERALE Esercizi FS GEN: Punteggio in 30 esimi 1 8 Fino a 4 punti COGNOME: NOME: MATR: 1. Campo elettrostatico La sfera

Dettagli

SCHEDARIO: I FENOMENI MAGNETICI: IL CAMPO MAGNETICO

SCHEDARIO: I FENOMENI MAGNETICI: IL CAMPO MAGNETICO SCHEDARO: ENOMEN MAGNETC: L CAMPO MAGNETCO 1. LE PRME OSSERVAZON GENERALTA Analogamente ai fenomeni elettrici anche i fenomeni magnetici furono osservati fino dall antichità. Già ai tempi dei Greci si

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1 Liceo Scientifico L. Cremona - Milano. Classe: TEST DI FISICA. Magnetismo. Docente: M. Saita Cognome: Nome: Dicembre 2015 ispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova:

Dettagli

2. L unità di misura della costante k che compare nella legge di Coulomb è:

2. L unità di misura della costante k che compare nella legge di Coulomb è: Fatti sperimentali e loro descrizione fenomenologica 1 Vero o falso 2 Quesiti a risposta multipla 1. Si considerino due cariche elettriche, q 1 = +2 10 4 C e q 2 = 3 10 5 C, poste alla distanza d = 1,

Dettagli

7. Il campo magnetico di una spira e di un solenoide

7. Il campo magnetico di una spira e di un solenoide 7. Il campo magnetico di una spira e di un solenoide Il campo di una spira (filo circolare) non è uniforme, ma sull'asse della spira il campo B ha direzione perpendicolare al piano della spira (cioè parallela

Dettagli

Istituto di Istruzione Superiore LICEO SCIENTIFICO TECNOLOGICO L. da Vinci-De Giorgio LANCIANO

Istituto di Istruzione Superiore LICEO SCIENTIFICO TECNOLOGICO L. da Vinci-De Giorgio LANCIANO Istituto di Istruzione Superiore LICEO SCIENTIFICO TECNOLOGICO L. da Vinci-De Giorgio LANCIANO LABORATORIO DI FISICA ELETTROMAGNETISMO ALUNNO: Di Giuseppe Orlando CLASSE: V LSTA DATA: 23/01/2013 Docenti:

Dettagli

df = I dl B df = dq v B

df = I dl B df = dq v B Forza Magnetica su un conduttore Forza magnetica agente su un filo percorso da corrente Consideriamo un filo percorso da una corrente in presenza di un campo magnetico. Agirà una forza su ciascuna delle

Dettagli

FENOMENI MAGNETICI NATURALI

FENOMENI MAGNETICI NATURALI MAGNETISMO l Il magnetismo è una caratteristica di certi corpi, detti magneti, grazie alla quale essi esercitano una forza a distanza su sostanze come il ferro, attirandole. FENOMENI MAGNETICI NATURALI

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003

Facoltà di Ingegneria Prova scritta di Fisica II - VO 15-Aprile-2003 Facoltà di Ingegneria Prova scritta di Fisica II - VO 5-Aprile-003 Esercizio n. Un campo magnetico B è perpendicolare al piano individuato da due fili paralleli, cilindrici e conduttori, distanti l uno

Dettagli

Principio di inerzia

Principio di inerzia Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual

Dettagli

Il moto. Studiamo il moto del punto materiale, definito come un oggetto estremamente piccolo rispetto al contesto

Il moto. Studiamo il moto del punto materiale, definito come un oggetto estremamente piccolo rispetto al contesto Il moto Studiamo il moto del punto materiale, definito come un oggetto estremamente piccolo rispetto al contesto Traiettoria: è il luogo dei punti occupati dall oggetto nel suo movimento Spazio percorso:

Dettagli

CAMPO ELETTRICO. F r e = q E r. Newton ;

CAMPO ELETTRICO. F r e = q E r. Newton ; 1 CAMPO ELETTRICO Si definisce campo elettrico (o elettrostatico) una qualunque regione dello spazio nella quale si manifestano azioni su cariche elettriche. 1. DESCRIZIONE DEL CAMPO Per descrivere un

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI IOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

DE MAGNETE. 1. Fino al 1820

DE MAGNETE. 1. Fino al 1820 DE MAGNETE 1. Fino al 1820 Che i magneti esistano lo sanno anche i sassi fin dai tempi dei greci. In particolare è assodato che: come accade per l elettricità, esistono anche due tipi di magnetismo; ciò

Dettagli

differenza di potenziale della batteria lavoro richiesto per spostare la carica dal polo negativo a quello positivo

differenza di potenziale della batteria lavoro richiesto per spostare la carica dal polo negativo a quello positivo Esercizio n 1 di pagina 72 q = +6µC V = 9.0 V carica spostata differenza di potenziale della batteria lavoro richiesto per spostare la carica dal polo negativo a quello positivo L'' AYB =? lavoro richiesto

Dettagli

Istituto Villa Flaminia 27 Aprile 2015 IV Scientifico Simulazione Prova di Fisica (400)

Istituto Villa Flaminia 27 Aprile 2015 IV Scientifico Simulazione Prova di Fisica (400) Istituto Villa Flaminia 27 Aprile 2015 IV Scientifico Simulazione Prova di Fisica (400) 1 Teoria In questa prima parte le domande teoriche; in una seconda parte troverete un paio di esempi di esercizi.

Dettagli

POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a I appello, 12 luglio 2016

POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a I appello, 12 luglio 2016 POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a. 015-16 I appello, 1 luglio 016 Giustificare le risposte e scrivere in modo chiaro e leggibile. Scrivere in stampatello nome, cognome, matricola

Dettagli

i. Calcolare le componenti del campo in un generico punto P dell asse z. i. Calcolare la densità superficiale di corrente che fluisce nella lamina.

i. Calcolare le componenti del campo in un generico punto P dell asse z. i. Calcolare la densità superficiale di corrente che fluisce nella lamina. Esercizio 1: Una cilindro dielettrico di raggio R = 10 cm e lunghezza indefinita ha una delle sue basi che giace sul piano xy, mentre il suo asse coincide con l asse z. Il cilindro possiede una densità

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O Facoltà di Ingegneria Prova scritta di Fisica II - 3 Settembre 003 - Compito A Esercizio n.1 Quattro cariche di uguale valore q, due positive e due negative, sono poste nei vertici di un quadrato di lato

Dettagli

Compito di prova - risolti

Compito di prova - risolti Compito di prova - risolti A P B q A q P q B 1. La carica positiva mobile q P si trova tra le cariche positive fisse q A, q B dove AB = 1 m. Se q A = 2 C e all equilibrio AP = 0.333 m, la carica q B vale

Dettagli

Lezione 8. Campo e potenziale elettrici

Lezione 8. Campo e potenziale elettrici Lezione 8. Campo e potenziale elettrici Legge di Coulomb: Unitá di misura: F = 1 q 1 q 2 4πɛ 0 r 2 1 4πɛ 0 = 8.99 10 9 Nm 2 /C 2 Campi elettrici E = F/q 1 F = qe Unitá di misura del campo elettrico: [E]

Dettagli

Magnetismo. Fisica x Biologi 2017 Fabio Bernardini

Magnetismo. Fisica x Biologi 2017 Fabio Bernardini Magnetismo Il magnetismo entra nella nostra esperiemza a partire dalla bussola. Si può verificare che lʼorientamento dellʼago della bussola può essere modificato in due modi: avvicinando un magnete alla

Dettagli

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA Esercizio 1 Due cariche q 1 e q 2 sono sull asse x, una nell origine e l altra nel punto x = 1 m. Si trovi il campo elettrico

Dettagli

Forze su cariche nei fili: il motore elettrico

Forze su cariche nei fili: il motore elettrico Forze su cariche nei fili: il motore elettrico In presenza di un campo magnetico B, un tratto di filo (d l) percorsa da una corrente i è soggetto ad una forza F = id l B. Un tratto rettilineo di filo di

Dettagli

Moto degli elettroni di conduzione per effetto di un campo elettrico.

Moto degli elettroni di conduzione per effetto di un campo elettrico. LA CORRENTE ELETTRICA: Moto degli elettroni di conduzione per effetto di un campo elettrico. Un filo metallico, per esempio di rame, da un punto di vista microscopico, è costituito da un reticolo di ioni

Dettagli

Nuova Forza. La forza Gravitazionale è attrattiva ed agisce su ogni MASSA La forza elettrica è attrattiva o repulsiva ed agisce sulle CARICHE

Nuova Forza. La forza Gravitazionale è attrattiva ed agisce su ogni MASSA La forza elettrica è attrattiva o repulsiva ed agisce sulle CARICHE Nuova Forza La forza Gravitazionale è attrattiva ed agisce su ogni MASSA La forza elettrica è attrattiva o repulsiva ed agisce sulle CARICHE Come Agisce? Può essere attrattiva Un metallo (la magnetite)

Dettagli

Tutorato di Fisica 2 Anno Accademico 2010/2011

Tutorato di Fisica 2 Anno Accademico 2010/2011 Matteo Luca Ruggiero DIFIS@Politecnico di Torino Tutorato di Fisica 2 Anno Accademico 2010/2011 () 2 1.1 Una carica q è posta nell origine di un riferimento cartesiano. (1) Determinare le componenti del

Dettagli

Angolo polare, versori radiale e trasverso

Angolo polare, versori radiale e trasverso Angolo polare, versori radiale e trasverso Desideriamo descrivere il moto di un corpo puntiforme che ruota su una circonferenza attorno ad un asse fisso. Nella figura l asse di rotazione coincide con l

Dettagli

CAMPI MAGNETICI DELLE CORRENTI

CAMPI MAGNETICI DELLE CORRENTI CAMPI MAGNETICI DELLE CORRENTI Esperienza di Oersted ----------------- Nel 1820 una esperienza storica segnò la data di nascita dell'elettromagnetismo, una teoria unificata che dimostra come i fenomeni

Dettagli

Interazioni di tipo magnetico

Interazioni di tipo magnetico INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico 1 Il campo magnetico In natura vi sono alcune sostanze, quali la magnetite, in grado di esercitare una forza

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

Riassunto lezione 11

Riassunto lezione 11 Riassunto lezione 11 Forza di Coloumb attrattiva o repulsiva F A B = 1 4 π ϵ 0 q A q B r 2 Consideriamo effetto di una carica sola campo elettrico: E Q = F Qq q = 1 4 π ϵ 0 Q r 2 ^u A B Come si rappresenta?

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

Prova scritta di Fisica - Faenza, 28/01/2016 CdS in Chimica e Tecnologie per l'ambiente e per i materiali - curriculum materiali Nota:

Prova scritta di Fisica - Faenza, 28/01/2016 CdS in Chimica e Tecnologie per l'ambiente e per i materiali - curriculum materiali Nota: Prova scritta di Fisica - Faenza, 28/01/2016 CdS in Chimica e Tecnologie per l'ambiente e per i materiali - curriculum materiali Punteggio: Problemi Vero/Falso: +1 risposta corretta, 0 risposta sbagliata

Dettagli

Prof.ssa Garagnani Elisa - Correnti indotte. Campi magnetici variabili e correnti indotte

Prof.ssa Garagnani Elisa - Correnti indotte. Campi magnetici variabili e correnti indotte Campi magnetici variabili e correnti indotte Campi elettromagnetici lentamente variabili 1-7 Esperienze di Faraday (1831) che evidenziano gli effetti di campi elettrici e magnetici variabili nel tempo.

Dettagli

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis 1) Un generatore di tensione reale da 20 V provvisto di resistenza interna r pari a 2 Ω è connesso in

Dettagli

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 1 La forza di Lorentz è: una forza conservativa. una forza radiale. una forza

Dettagli

Esercizi di magnetismo

Esercizi di magnetismo Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]

Dettagli

CAMPO MAGNETICO Proprietà della magnetite (Fe 3 O 4 ): attira a sé materiali ferrosi o altre sostanze dette magnetiche Poli del magnete = parti in

CAMPO MAGNETICO Proprietà della magnetite (Fe 3 O 4 ): attira a sé materiali ferrosi o altre sostanze dette magnetiche Poli del magnete = parti in CAMPO MAGNETICO Proprietà della magnetite (Fe 3 O 4 ): attira a sé materiali ferrosi o altre sostanze dette magnetiche Poli del magnete = parti in cui si evidenzia tale proprietà Proprietà magnetiche possono

Dettagli

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)!

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! FISICA SPERIMENTALE II Corso di laurea in Chimica (6CFU, 48 ORE) ì Docente: Claudio Melis, Ricercatore a tempo determinato presso il Dipartimento di Fisica Email: claudio.melis@dsf.unica.it Telefono Ufficio

Dettagli

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014 Prova scritta del corso di Fisica con soluzioni Prof. F. icci-tersenghi 14/11/214 Quesiti 1. Si deve trascinare una cassa di massa m = 25 kg, tirandola con una fune e facendola scorrere su un piano scabro

Dettagli

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2)

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2) 1 Esercizio (tratto dal Problema.8 del Mazzoldi ) Una particella si muove lungo una circonferenza di raggio R 50 cm. Inizialmente parte dalla posizione A (θ 0) con velocità angolare nulla e si muove di

Dettagli

PROBLEMA N.2 Il motorino elettrico

PROBLEMA N.2 Il motorino elettrico PROBLEMA N.2 Il motorino elettrico Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della dinamica in presenza

Dettagli

(adattamento da Bergamaschini-Marazzini-Mazzoni- Fisica 3 Carlo Signorelli Editore)

(adattamento da Bergamaschini-Marazzini-Mazzoni- Fisica 3 Carlo Signorelli Editore) Interpretazione relativistica del Campo Magnetico (adattamento da Bergamaschini-Marazzini-Mazzoni- Fisica 3 Carlo Signorelli Editore) Obiettivi Osservare, mediante un esempio, che è possibile che in un

Dettagli

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti]; 1 Esercizio Una ruota di raggio e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

FORZE MAGNETICHE SU CORRENTI ELETTRICHE

FORZE MAGNETICHE SU CORRENTI ELETTRICHE Fisica generale, a.a. 013/014 SRCTAZON D: FORZ MAGNTCH SU FORZ MAGNTCH SU CORRNT LTTRCH D.1. Una spira rettangolare di dimensioni a 10 cm e b 5 cm, percorsa da una corrente s 5 A, è collocata in prossimità

Dettagli

(4 π 2 /kt) m t / r 2 = (4 π 2 /ks) m s / r 2

(4 π 2 /kt) m t / r 2 = (4 π 2 /ks) m s / r 2 Le leggi di Keplero Lo studio del moto dei pianeti, tramite accurate misure, permise a Keplero tra il 1600 ed il 1620 di formulare le sue tre leggi: I legge: I pianeti percorrono orbite ellittiche intorno

Dettagli

Cenni di magnetostatica nel Vuoto 1.1 (Lezione L14 Prof. Della Valle) 1. Effetti Meccanici del Campo Magnetico

Cenni di magnetostatica nel Vuoto 1.1 (Lezione L14 Prof. Della Valle) 1. Effetti Meccanici del Campo Magnetico Cenni di magnetostatica nel Vuoto 11 (Lezione L14 Prof Della Valle) 1 Effetti Meccanici del Campo Magnetico 11 La Magnetostatica L elettrostatica studia le forze di interazione fra cariche elettriche ferme

Dettagli

Esercitazione 1. Matteo Luca Ruggiero 1. Anno Accademico 2010/ Dipartimento di Fisica del Politecnico di Torino

Esercitazione 1. Matteo Luca Ruggiero 1. Anno Accademico 2010/ Dipartimento di Fisica del Politecnico di Torino Esercitazione 1 Matteo Luca Ruggiero 1 1 Dipartimento di Fisica del Politecnico di Torino Anno Accademico 2010/2011 ML Ruggiero (DIFIS) Esercitazione 1: Elettrostatica E1.2010/2011 1 / 29 Sommario 1 Riferimenti

Dettagli

GRANDEZZE SCALARI E VETTORIALI

GRANDEZZE SCALARI E VETTORIALI GRANDEZZE SCALARI E VETTORIALI Una grandezza scalare è definita da un numero reale con dimensioni (es.: massa, tempo, densità,...) Una grandezza vettoriale è definita da un modulo (numero reale non negativo

Dettagli

Lezione 5 Moti di particelle in un campo magnetico

Lezione 5 Moti di particelle in un campo magnetico Lezione 5 Moti di particelle in un campo magnetico G. Bosia Universita di Torino G. Bosia - Fisica del plasma confinato Lezione 5 1 Moto di una particella carica in un campo magnetico Il confinamento del

Dettagli

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm.

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm. 1. Una slitta, che parte da ferma e si muove con accelerazione costante, percorre una discesa di 60,0 m in 4,97 s. Con che velocità arriva alla fine della discesa? 2. Un punto materiale si sta muovendo

Dettagli

L effetto delle correnti

L effetto delle correnti D A T O S P R I M N T A L L effetto delle correnti n Un filo percorso da corrente elettrica ha la proprietà di orientare la limatura di ferro come fa una calamita n Due fili percorsi da correnti nello

Dettagli

Cinematica in una dimensione

Cinematica in una dimensione Esercizi di ripasso La luce viaggia nel vuoto a 300000 km/s. Quanto spazio percorre in un anno (anno-luce)? Un lombrico percorre 1 cm in 3 s. Qual è la sua velocità in km/h? Un ghepardo insegue un'antilope

Dettagli

e campi magnetici Domande

e campi magnetici Domande Capitolo Interazioni magnetiche Domande 1. Se si usa la mano sinistra per determinare il verso della forza magnetica che agisce su una carica positiva in moto in un campo magnetico, si ottiene il verso

Dettagli