Confronto asintotico.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Confronto asintotico."

Transcript

1 AMA Ing.Edile - Prof. Colombo 1 Esercitazioni: Francesco Di Plinio - francesco.diplinio@libero.it Le soluzioni (complete) delle esercitazioni 5 e 6 saranno disponibili online a partire da lunedì. Confronto asintotico. 6.1 Limiti notevoli. I seguenti iti sono da considerare iti notevoli. La maggior parte è stata dimostrata ad esercitazione a partire da (i), (ii), (iii). sin (i) 0 ( (iii) + (v) 0 log(1 + ) e 1 = 1; (ii) ) = e; (iv) ± = 1; ( 1 + ) a = e a ; log = 1; (vi) = 0, α > 0. 0 α 6.2 Infinitesimi ed infiniti. Siano f e g due funzioni definite in un intorno di 0 (tranne che al più in 0 stesso): f è un infinitesimo per 0 se f() 0 per 0 ; f è uninfinito per 0 se f() + o per 0. Se f e g sono entrambe infinitesimi per 0, e g è diversa da zero in un intorno di 0 (tranne che al più in 0 ), consideriamo il ite per 0 di f/g. Esistono quattro possibilità: f() 0 g() = a. 0, b. L R, L 0, c. d. non esiste. In corrispondenza dei quattro casi sopra descritti si ha: a. f è infinitesimo di ordine superiore a g (per 0 ); b. f e g sono infinitesimi dello stesso ordine; c. f è infinitesimo di ordine inferiore a g (per 0 ); d. f e g non sono confrontabili. Se f e g sono entrambe infiniti per 0, e g è diversa da zero in un intorno di 0 (tranne che al più in 0 ), consideriamo il ite per 0 di f/g. In questo caso, in corrispondenza dei quattro casi di cui sopra, abbiamo invece che

2 2 Esercitazione 3 a. f è infinito di ordine inferiore a g (per 0 ); b. f e g sono infiniti dello stesso ordine; c. f è infinito di ordine superiore a g (per 0 ); d. f e g non sono confrontabili. Risulta comodo, allo scopo del calcolo dei iti, confrontare un infinitesimo (o un infinito) per 0 con un infinitesimo o infinito campione, scelto dalla tabella seguente. 0 infinitesimo campione infinito campione a R a ( a) 1 a = ± 1. A questo punto, se f è un infinito o un infinitesimo per 0, si definisce ordine di f() rispetto al corrispondente infinitesimo (o infinito) campione c() il numero α > 0, se esiste, tale per cui 0 f() = L R, L 0, (c()) α ossia per cui f e c risultano infinitesimi (o infiniti) dello stesso ordine. La parte principale di f per 0 è allora definita come L(c()) α. Si scrive, alternativamente, che f 0 L(c()) α, e si legge f è asintotica a L(c()) α. 6.3 Esempio. Dai iti notevoli segue che: per 0, sin e log(1 + ) sono infinitesimi di prim ordine (rispetto all infinitesimo campione ), e la loro parte principale è ; per 0, 1 cos() è un infinitesimo del second ordine, e la sua parte principale è 2 /2; dato che log = 0, α > 0, α log è infinito di ordine inferiore rispetto ad α, per ogni α > 0. Nota. Se, per 0 f 1, f, g 1, g sono infinitesimi, f 1 di ordine superiore a f, e g 1 di ordine superiore a g, risulta f 1 () + f() 0 g 1 () + g() = f() 0 g() ; nel calcolo del ite si possono quindi omettere, a numeratore e denominatore, gli infinitesimi di ordine superiore.

3 AMA Ing.Edile - Prof. Colombo Esempio. Calcoliamo il seguente ite: 2 + (sin ) 5 + log(1 + 3 ) cos + (tanh ) 3 Dato che (sin ) 5 = /2 (ite notevole), (sin 2 ) 5 è infinitesimo di ordine 5/2; log(1 + 3 ) = (sempre ite notevole), log(1 + 3 ) è infinitesimo di ordine 3, quindi entrambi sono infinitesimi di ordine superiore a 2, e possono essere trascurati. Per il denominatore, ricordiamo che osserviamo poi che 1 cos = ; + (tanh )3 0 = 1 3 (ite fatto in classe), log(1 + 3 ) è infinitesimo di ordine 3, e quindi di ordine inferiore a 1 cos, che ha ordine 2. Pertanto 2 + (sin ) 5 + log(1 + 3 ) 2 = cos + (tanh ) cos = 2. Nota. Se, per 0 f 1, f, g 1, g sono infiniti, f 1 di ordine inferiore a f, e g 1 di ordine inferiore a g, risulta f 1 () + f() 0 g 1 () + g() = f() 0 g() ; nel calcolo del ite si possono quindi omettere, a numeratore e denominatore, gli infiniti di ordine inferiore. 6.5 Esempio. Calcoliamo il ite (log ) sin arctan 2

4 4 Esercitazione 3 A tale ite corrisponde la forma indeterminata /. Se osserviamo che (log ) 10 (log ) 10 = ( = + ) 10 log = 0, 1/10 (l ultimo passaggio è un ite notevole), scopriamo che (log ) 10 è infinito di ordine inferiore a 2, possiamo quindi trascurarlo; 5 sin non è infinito per +, e possiamo pertanto trascurarlo senza problemi. Per il denominatore, è chiaro che arctan 2 arctan 2 = = 0, per il teorema sul prodotto di una funzione itata (arctan 2 ) per una funzione che tende a 0 (1/6), e quindi arctan è trascurabile rispetto a 6 2. Riassumendo, (log ) sin 2 = arctan = Esercizio. Calcolare l ordine (rispetto a ) dei seguenti infinitesimi per 0 + e scriverne la parte principale: (i) 3 + sin, (ii) ( 2 + ), (iii) tan + sin (iv) (sin(3 3 )), (v) 1 3 (1 cos ) (vi) 2 (sin ) 1/3 sin Esercizio. Calcolare l ordine (rispetto a ) dei seguenti infiniti per + : ( (i) 2 + 3, (ii) , (iii) sin ) (iv) 2 + 1, (v) 2 arctan, (vi) Esercizio. Mettere in ordine di rapidità decrescente i seguenti infinitesimi per + log, log log log, e, 1/3.

5 AMA Ing.Edile - Prof. Colombo o-piccoli. Siano f, g due funzioni definite in un intorno di 0, con g diversa da zero in tale intorno (tranne al più in 0 ). Si dice che f è o-piccolo di g per 0, e si scrive f() = o(g()), se f() 0 g() = 0. In particolare, se g è un infinitesimo, ciò equivale a dire che f è un infinitesimo di ordine superiore. Se g è invece un infinito, ciò equivale a dire che f è un infinito di ordine inferiore (o che è itata in un intorno di 0 ). Solitamente, la funzione g è un infinitesimo o un infinito campione. Utilizzando tale notazione è possibile semplificare il calcolo dei iti: a tale scopo, si sfruttano le seguenti proprietà di semplice dimostrazione (chi fosse interessato a vederne una, mi contatti: altrimenti, provate per esercizio). Nel seguito, m, n sono numeri reali e C è una costante diversa da zero 1. Se f() = o( m ), allora Cf() = o( m ); 2. Se 0, f() = o( m ) e g() = o( n ), allora f() + g() = o( α ), α = min{m, n}; 3. Se, f() = o( m ) e g() = o( n ), allora f() + g() = o( α ), α = ma{m, n}; 4. Come caso particolare di 2. e 3. ricaviamo che o( n ) + o( n ) = o( n ). 5. Se f() = o( m ), allora (f()) n = o( mn ); 6. Se f() = o( m ), g() = o( n ), allora f()g() = o( mn ); 7. o( m + o( m )) = o( m ) Esempio. Dimostriamo con la definizione che, per 0, Dato che = o() = 0 ( ) = 1 0 ( ) = 1 2, si ottiene /2 = 0,

6 6 Esercitazione 3 cioè da cui il risultato = o(), 6.11 Esempio. Usando le regole, dimostriamo che cosh() = o(2 ). Ricordiamo preinarmente (fatto in classe) che sinh 0 = 1. Quindi, come nell esempio precedente, si ricava sinh = + o(). A questo punto, ricordiamo che cosh = 1 + (sinh ) 2 : utilizzando il risultato dell esempio precedente, Ma dalla regola 5 segue cosh = 1 + (sinh )2 2 + o((sinh ) 2 ). (sinh ) 2 = ( + o()) 2 = 2 + 2o() + o() 2 = 2 + o( 2 ), ove nell ultimo passaggio si usano le regole 1. (per togliere il 2), 6. (o() = o( 2 )) e 4. Quindi, sostituendo e utilizzando infine la regola 7. come desiderato. cosh = o(2 + o( 2 )) = o(2 ) 6.12 Esercizio. Mostrare la validità dei seguenti sviluppi asintotici per 0: (i) tan = + o(); (ii) e sin2 = o( 2 ); ( ) tan 1 (iii) 1 = log + o( log ). (iv) log(1 + (sin ) 2 ) = 2 + o( 2 ) Esercizio. Calcolare il ite log(1 + + e2 ) λ,

7 AMA Ing.Edile - Prof. Colombo 7 al variare di λ R. ( 6.14 Esercizio. Determinare λ affinché λ ) + valga 2.

vuol dire che preso M > 0 sufficientemente grande, esiste δ = δ(m) > 0 tale per cui x 1 > M lim

vuol dire che preso M > 0 sufficientemente grande, esiste δ = δ(m) > 0 tale per cui x 1 > M lim AMA Ing.Edile - Prof. Colombo Esercitazioni: Francesco Di Plinio - francesco.diplinio@libero.it Limiti - Soluzioni. Esercizio 5.2. ii) Dire che x 5 x + x = +, vuol dire che preso M > 0 sufficientemente

Dettagli

Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/12/2006

Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/12/2006 Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/2/2006 COGNOME NOME MATRICOLA.) Determinare 2. + 2 Possibile svolgimento. Il ite proposto si presenta nella forma indeterminata [

Dettagli

CORSO DI LAUREA IN MATEMATICA

CORSO DI LAUREA IN MATEMATICA CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia

Dettagli

CORSO DI LAUREA IN FISICA

CORSO DI LAUREA IN FISICA CORSO DI LAUREA IN FISICA ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia di R quindi

Dettagli

Infinitesimi e loro proprietà fondamentali. Molto spesso il calcolo dei limiti conduce allo studio di forme indeterminate. lim f(x) = 0.

Infinitesimi e loro proprietà fondamentali. Molto spesso il calcolo dei limiti conduce allo studio di forme indeterminate. lim f(x) = 0. Infinitesimi e infiniti - B. Di Bella Infinitesimi e loro proprietà fondamentali Molto spesso il calcolo dei iti conduce allo studio di forme indeterminate del tipo 0 0,. Occorre quindi studiare i modi

Dettagli

Analisi matematica I. Confronto locale di funzioni. Simboli di Landau. Infinitesimi ed infiniti Politecnico di Torino 1

Analisi matematica I. Confronto locale di funzioni. Simboli di Landau. Infinitesimi ed infiniti Politecnico di Torino 1 Analisi matematica I Confronto locale di funzioni Infinitesimi ed infiniti 2 2006 Politecnico di Torino 1 Confronto locale di funzioni Definizioni dei simboli di Landau Proprietà dei simboli di Landau

Dettagli

QUINTA LEZIONE (11/11/2009) Argomenti trattati: calcolo di limiti, continuitá di una funzione.

QUINTA LEZIONE (11/11/2009) Argomenti trattati: calcolo di limiti, continuitá di una funzione. QUINTA LEZIONE //9) Argomenti trattati: calcolo di iti, continuitá di una funzione. Esercizi svolti. Calcolo di iti Nello svolgere i seguenti iti daremo per assodato la conoscenza di alcuni iti fondamentali:

Dettagli

LIMITI - CONFRONTO LOCALE Test di autovalutazione

LIMITI - CONFRONTO LOCALE Test di autovalutazione LIMITI - CONFRONTO LOCALE Test di autovalutazione 1. Per 0 le funzioni 1 cos e sin (a) sono infinitesime dello stesso ordine (b) 1 cos è infinitesima di ordine inferiore (c) 1 cos è infinitesima di ordine

Dettagli

Infiniti e Infinitesimi

Infiniti e Infinitesimi Infiniti e Infinitesimi Infiniti e Infinitesimi Def. Una funzione f() si dice infinitesima per (o per ), punto di accumulazione per il dominio di f(), se: f ( ) ( oppure f ( ) ) Infiniti e Infinitesimi

Dettagli

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI DERIVABILI Sia f : domf R una funzione e sia 0 domf di accumulazione per domf Chiamiamo derivata prima di

Dettagli

ESERCIZI SUI PUNTI DI DISCONTINUITÀ TRATTI DA TEMI D ESAME

ESERCIZI SUI PUNTI DI DISCONTINUITÀ TRATTI DA TEMI D ESAME ESERCIZI SUI PUNTI DI DISCONTINUITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI CONTINUE Sia f : domf R una funzione e sia x 0 domf (esista cioè f(x 0 ) R) Possono verificarsi due casi: il

Dettagli

Abbiamo già visto nel capitolo sulle funzioni che, negli estremi del suo dominio, una funzione può avere degli asintoti.

Abbiamo già visto nel capitolo sulle funzioni che, negli estremi del suo dominio, una funzione può avere degli asintoti. Capitolo 7 Limiti di funzioni Abbiamo già visto nel capitolo sulle funzioni che, negli estremi del suo dominio, una funzione può avere degli asintoti. Ricordiamo che un asintoto verticale = a si presenta

Dettagli

Esercizi con soluzioni dell esercitazione del 31/10/17

Esercizi con soluzioni dell esercitazione del 31/10/17 Esercizi con soluzioni dell esercitazione del 3/0/7 Esercizi. Risolvere graficamente la disequazione 2 x 2 2 cos(πx). 2. Determinare l insieme di definizione della funzione arcsin(exp( x 2 )). 3. Trovare

Dettagli

SVILUPPI DI TAYLOR Esercizi risolti

SVILUPPI DI TAYLOR Esercizi risolti Esercizio 1 SVILUPPI DI TAYLOR Esercizi risolti Utilizzando gli sviluppi fondamentali, calcolare gli sviluppi di McLaurin con resto di Peano delle funzioni seguenti fino all ordine n indicato: 1. fx log1

Dettagli

Analisi Matematica per Informatici Esercitazione 9 a.a

Analisi Matematica per Informatici Esercitazione 9 a.a Analisi Matematica per Informatici Esercitazione 9 a.a. 006-007 Dott. Simone Zuccher 0 Febbraio 007 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore

Dettagli

Infiniti e infinitesimi col simbolo di Laudau

Infiniti e infinitesimi col simbolo di Laudau E Infiniti e infinitesimi col simbolo di Laudau Nel capitolo dedicato ai iti abbiamo osservato che, quando esiste, il ite del rapporto di due successioni entrambe divergenti o entrambe infinitesime può

Dettagli

Esercizi sulle Funzioni

Esercizi sulle Funzioni AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sulle Funzioni Esercizio svolto. Trovare i domini di definizione delle seguenti funzioni: a) f) sin + cos ; b) g) log ) ; c) h) sin + e sin. Soluzione. a) La

Dettagli

Teorema degli zeri. Essendo f continua in a e in b, per il teorema della

Teorema degli zeri. Essendo f continua in a e in b, per il teorema della Teorema degli zeri Una funzione reale f continua nell intervallo chiuso e itato [a; b] che assuma valori di segno opposto negli estremi di tale intervallo, si annulla in almeno un punto ad esso interno

Dettagli

LIMITI - ESERCIZI SVOLTI

LIMITI - ESERCIZI SVOLTI LIMITI - ESERCIZI SVOLTI ) Verificare mediante la definizione di ite che a) 3 5) = b) = + ) c) 3n n + n+ = + d) 3+ = 3. ) Calcolare utilizzando i teoremi sull algebra dei iti a) 3 + ) b) + c) 0 + d) ±

Dettagli

M174sett.tex. 4a settimana Inizio 22/10/2007. Terzo limite fondamentale (sul libro, p. 113, è chiamato secondo ) lim x 1 x 0 x

M174sett.tex. 4a settimana Inizio 22/10/2007. Terzo limite fondamentale (sul libro, p. 113, è chiamato secondo ) lim x 1 x 0 x M74sett.te 4a settimana Inizio 22/0/2007 Terzo ite fondamentale (sul libro, p. 3, è chiamato secondo ) e 0 =. La tangente al grafico nel punto (0,0) risulta y = (vedremo poi perché). Ricordare che e è

Dettagli

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f).

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f). Teoremi sui iti Quando non espressamente detto, intendiamo che: f : R R 0 R è punto di accumulazione per dom(f). Teorema di unicità del ite. Supponiamo che f ammetta ite l (finito o infinito) per 0. Allora

Dettagli

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. D Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Correzione del secondo compitino di Analisi 1 e 2 A.A. 2014/2015

Correzione del secondo compitino di Analisi 1 e 2 A.A. 2014/2015 Correzione del secondo compitino di Analisi e 2 AA 20/205 Luca Ghidelli, Giovanni Paolini, Leonardo Tolomeo febbraio 206 Esercizio Testo Dire per quali valori del parametro reale α, < α 3, la funzione

Dettagli

1 Limiti e continuità per funzioni di una variabile

1 Limiti e continuità per funzioni di una variabile 1 Limiti e continuità per funzioni di una variabile Considerazioni introduttive Consideriamo la funzione f() = sin il cui dominio naturale è R\ {0}. Problema: non è possibile calcolare il valore di f per

Dettagli

lim Ricordiamo le seguenti de nizioni: Siano e funzioni in nitesime per! + 0 esia non nulla in un intorno destro di 4, se a] lim lim

lim Ricordiamo le seguenti de nizioni: Siano e funzioni in nitesime per! + 0 esia non nulla in un intorno destro di 4, se a] lim lim Esercizi Proposti - 4 Gli o-piccoli - prima parte In queste note con il termine innitesimo per! +, indichiamo una funzione reale (non necessariamente continua) denita in un intorno aperto di con la proprietà

Dettagli

Forme indeterminate e limiti notevoli

Forme indeterminate e limiti notevoli Forme indeterminate e iti notevoli Limiti e continuità Forme indeterminate e iti notevoli Forme indeterminate Teorema di sostituzione Limiti notevoli Altre forme indeterminate 2 2006 Politecnico di Torino

Dettagli

Successioni numeriche (II)

Successioni numeriche (II) Successioni numeriche (II) Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Successioni (II) Analisi A 1 / 52 Forme indeterminate associate a funzioni razionali fratte:

Dettagli

INFINITESIMI ed INFINITI a cura di Angelica Malaspina Università degli Studi della Basilicata

INFINITESIMI ed INFINITI a cura di Angelica Malaspina Università degli Studi della Basilicata INFINITESIMI ed INFINITI a cura di Angelica Malaspina Università degli Studi della Basilicata In queste pagine utilizzeremo il simbolo R = [, + ]. Se x 0 R, con la scrittura x x 0 intenderemo che x x 0

Dettagli

Limiti di funzioni. Parte 2 calcolo. prof. Paolo Sarti Liceo Scientifico Statale A. Volta Milano, 10/2016

Limiti di funzioni. Parte 2 calcolo. prof. Paolo Sarti Liceo Scientifico Statale A. Volta Milano, 10/2016 Limiti di funzioni Parte calcolo prof. Paolo Sarti Liceo Scientifico Statale A. Volta Milano, /6 L insieme R Il calcolo dei iti delle funzioni reali di variabile reale avviene nell insieme esteso dei numeri

Dettagli

Confronto locale di funzioni

Confronto locale di funzioni Confronto locale di funzioni Equivalenza di funzioni in un punto Sia A R ed f, g due funzioni definite in A a valori in R. Sia x 0 R un punto di accumulazione per A. Definizione. Si dice che f è equivalente

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A ST) V I foglio di esercizi ESERCIZIO. Si calcoli + sin t) dt t cos t + log + t))dt e + tg t + e t )dt cos t dt t. Calcoliamo il primo dei due. Si tratta di un ite della

Dettagli

Scritto d esame di Matematica I

Scritto d esame di Matematica I Capitolo 2: Scritti d esame 139 Pisa, 19 Gennaio 2005 x 1 + (x + 1) log x (x 1)(2x 2). 2. Studiare la convergenza dei seguenti integrali impropri 1 dx e 2x 1, 0 dx e 2x 1, e, nel caso in cui convergano,

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

ESERCIZIO SULLE FUNZIONI DI DUE VARIABILI. g(x, y). x arctan x + y 2.

ESERCIZIO SULLE FUNZIONI DI DUE VARIABILI. g(x, y). x arctan x + y 2. Sia f : R R la funzione definita da ESERCIZIO SULLE FUNZIONI DI DUE VARIABILI f, y = + y 4 y + 4, y R e sia g la funzione di due variabili reali definita da g, y = f, y + y.. Determinare il dominio D di

Dettagli

AM110 - ESERCITAZIONI XIX - XX

AM110 - ESERCITAZIONI XIX - XX AM0 - ESERCITAZIONI XIX - XX DICEMBRE 0 Esercizio svolto. Calcolare i seguenti itii: a 0 tan sin 3 ; b 0 cose e arctan ; c 0 + tan ; d π + cos tan ; e log3+sin 3 ; f + sin ; g 0 +tan tan sin ; h + [ e

Dettagli

Risoluzione del compito n. 4 (Giugno 2014)

Risoluzione del compito n. 4 (Giugno 2014) Risoluzione del compito n. 4 Giugno 2014) PROBLEMA 1 Determinate le soluzioni z, w), con z, w C,delsistema { z = w 2 w i Dalla prima equazione ricaviamo 2iz +4i z = w 2. che sostituito nella seconda la

Dettagli

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza + Svolgimento (cenno) a) Dominio={ R,6= }. Non ci sono simmetrie. b)! f() = 4,! + f() = 4. La funzione non può essere prolungata per continuità in =, dove c è un salto.!+1 f() =!+1 arctan + = 1, f()!+1

Dettagli

Esercizi riguardanti limiti di successioni e di funzioni

Esercizi riguardanti limiti di successioni e di funzioni Esercizi riguardanti iti di successioni e di funzioni Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 0 Novembre 20. Come tali sono ben lungi dall essere esenti da errori,

Dettagli

Una funzione è continua in un intervallo chiuso e limitato [a,b] se e solo se è continua in ogni punto dell intervallo.

Una funzione è continua in un intervallo chiuso e limitato [a,b] se e solo se è continua in ogni punto dell intervallo. FUNZIONI CONTINUE. PUNTI DI DISCONTINUITA. OPERAZIONI SUI LIMITI. CALCOLO DI LIMITI CHE SI PRESENTANO IN FORMA INDETERMINATA LIMITI NOTEVOLI E APPLICAZIONI Angela Donatiello DEF. di Funzione Continua in

Dettagli

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2 CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I ESERCIZI SUI LIMITI CALCOLARE IL VALORE DEI SEGUENTI LIMITI sine 4 log e e sin e 5 tan sin 5 7 tan 9 sin + e e + 4 6 8 + 0 n + log +

Dettagli

41 POLINOMI DI TAYLOR

41 POLINOMI DI TAYLOR 4 POLINOMI DI TAYLOR DERIVATE DI ORDINI SUCCESSIVI Allo stesso modo della derivata seconda si definiscono per induzione le derivate di ordine k: la funzione derivata 0-ima di f si definisce ponendo f (0

Dettagli

Il polinomio di Taylor di grado 1.

Il polinomio di Taylor di grado 1. Analisi Matematica Ingegneria Informatica Gruppo 4, canale 6 Argomenti 26 ottobre 207 Il polinomio di Taylor di grado.. Esercizio. Sia f() una funzione derivabile in a. Se poniamo otteniamo con facili

Dettagli

(File scaricato da lim. x 1. x + ***

(File scaricato da  lim. x 1. x + *** Esercizio 35 File scaricato da http://www.etrabyte.info) Calcolare: 3 ) 3 + Risulta: 3 ) 3 = + La forma indeterminata può essere rimossa determinando un fattore razionalizzante. In generale, se il fattore

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

25 IL RAPPORTO INCREMENTALE - DERIVATE

25 IL RAPPORTO INCREMENTALE - DERIVATE 25 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 06/7 Corso di Analisi Matematica - professore Alberto Valli foglio di esercizi - ottobre 06 iti.

Dettagli

Esercizi con i teoremi di de L Hôpital e la formula di Taylor. Mauro Saita Versione provvisoria.

Esercizi con i teoremi di de L Hôpital e la formula di Taylor. Mauro Saita  Versione provvisoria. Esercizi con i teoremi di de L Hôpital e la formula di Taylor. Mauro Saita e-mail maurosaita@tiscalinet.it Versione provvisoria. Novembre 05 Esercizi proposti durante le esercitazioni del corso di Analisi

Dettagli

Limiti di funzione - svolgimenti

Limiti di funzione - svolgimenti Limiti di funzione - svolgimenti Useremo la notazione f f g per 0 0 g =. Inoltre ricordiamo la definizione di o piccolo: f f = og f è o piccolo di g per 0 0 g =0. Dalla definizione abbiamo subito: og+og

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013 ANALISI VETTORIALE COMPITO IN CLASSE DEL 8//3 Premessa (Cfr. gli Appunti di Analisi Vettoriale / del Prof. Troianiello) Nello studio degli integrali impropri il primo approccio all utilizzo del criterio

Dettagli

Integrali impropri - svolgimento degli esercizi

Integrali impropri - svolgimento degli esercizi Integrali impropri - svolgimento degli esercizi La funzione integranda è continua su [, + e quindi localmente integrabile. Esaminiamone il segno: si ha < < sin5 > log 2 + 2 log log 2 + log 2 > ; quindi

Dettagli

Limiti di funzioni di una variabile

Limiti di funzioni di una variabile Capitolo 6 Limiti di funzioni di una variabile 6.1 Limiti all infinito La definizione di ite data per le successioni si può immediatamente trasportare al caso di una funzione definita in un qualunque insieme

Dettagli

23 INVERTIBILITÀ E CONTINUITÀ

23 INVERTIBILITÀ E CONTINUITÀ 23 INVERTIBILITÀ E CONTINUITÀ Ricordiamo che se A, B sono insiemi e f : A B è una funzione iniettiva, ovvero a 1 a 2 = fa 1 ) fa 2 ), allora la relazione gb) = a fa) = b definisce una funzione g : Im f

Dettagli

Corso di Laurea in Scienze Biologiche Prova scritta di Matematica del 26/01/2007

Corso di Laurea in Scienze Biologiche Prova scritta di Matematica del 26/01/2007 Corso di Laurea in Scienze Biologiche Prova scritta di Matematica del 6/0/007 COGNOME NOME MATRICOLA 3 sin( ) e 3 + ) Determinare ( cos()) Possibile svolgimento Il ite proposto si presenta nella forma

Dettagli

Calcolo integrale: esercizi svolti

Calcolo integrale: esercizi svolti Calcolo integrale: esercizi svolti Integrali semplici................................ Integrazione per parti............................. Integrazione per sostituzione......................... 4 4 Integrazione

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

Lezioni sullo studio di funzione.

Lezioni sullo studio di funzione. Lezioni sullo studio di funzione. Schema. 1. Calcolare il dominio della funzione D(f).. Comportamento della funzione agli estremi del dominio. Ad esempio se D(f) = [a, b] si dovrà calcolare f(a) e f(b),

Dettagli

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ANALISI MATEMATICA I-A CORSO DI LAUREA IN FISICA Prova scritta del /9/009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ESERCIZIO. Punti 8 Risolvere la seguente equazione nel campo complesso w 6 w 64 = 64 3

Dettagli

19 LIMITI FONDAMENTALI - II

19 LIMITI FONDAMENTALI - II 19 LIMITI FONDAMENTALI - II 3. Il ite che permette il calcolo di forme indeterminate in cui sono presenti funzioni logaritmiche è: log1 + = 1. La dimostrazione di questo ite si ha subito dal ite Esempio.

Dettagli

Infinitesimi e loro proprietà fondamentali

Infinitesimi e loro proprietà fondamentali 6 Infinitesimi e loro proprietà fondamentali Definizione Sia f () una funzione definita in un intorno del punto 0, tranne eventualmente nel punto 0 Si dice che f() è un infinitesimo per 0 se f ( ) 0 0

Dettagli

Polinomio di Taylor.

Polinomio di Taylor. Polinomio di Taylor. Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva Università degli Studi di Padova 20 novembre 2015 Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva Polinomio di Taylor. 1/

Dettagli

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014 Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I Prova scritta del 8 Gennaio 214 Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile. (1) (Punti 8)

Dettagli

Prove scritte di Analisi I - Informatica

Prove scritte di Analisi I - Informatica Prove scritte di Analisi I - Informatica Prova scritta del 3 gennaio Esercizio Stabilire il comportamento delle seguenti serie: n= n + 3 sin n, n= ( ) n n + 3 sin n, n= (n)! (n!), n= n + n 9 n + n. Esercizio

Dettagli

AM210 - Analisi Matematica 3: Soluzioni Tutorato 1

AM210 - Analisi Matematica 3: Soluzioni Tutorato 1 AM210 - Analisi Matematica 3: Soluzioni Tutorato 1 Università degli Studi Roma Tre - Dipartimento di Matematica Docente: Luca Biasco Tutori: Patrizio Caddeo, Davide Ciaccia 19 ottobre 2016 1 Se z = (1

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 9.7.8 Esercizio Si consideri la funzione TEMA f log e. i Si determini il dominio D e si studi il segno di f; ii si determininio i iti

Dettagli

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f).

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f). Teoremi sui iti Quando non espressamente detto, intendiamo che: f : R R 0 R è punto di accumulazione per dom(f). Teorema di unicità del ite. Supponiamo che f ammetta ite l (finito o infinito) per 0. Allora

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3..7 TEMA Esercizio Calcolare l integrale log(3) 4 dx Svolgimento. Si ha log(3) 4 dx = (ponendo ex = t, per cui dx = dt/t) e = 4 3

Dettagli

Analisi Matematica 1 Soluzioni prova scritta n. 1

Analisi Matematica 1 Soluzioni prova scritta n. 1 Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a

Dettagli

LA FORMULA DI TAYLOR

LA FORMULA DI TAYLOR LA FORMULA DI TAYLOR LORENZO BRASCO Indice. Definizioni e risultati. Sviluppi notevoli 3.. Esponenziale 4.. Seno 4.3. Coseno 4.4. Una funzione razionale 5.5. Logaritmo 6 3. Esercizi 6. Definizioni e risultati

Dettagli

MATEMATICA MATEMATICA FINANZIARIA

MATEMATICA MATEMATICA FINANZIARIA MATEMATICA e MATEMATICA FINANZIARIA a.a. 7-8 Corso di laurea in Economia Aziendale Fascicolo n. Limite di funzioni e applicazioni. Limite di una funzione Funzioni continue Calcolo dei iti Asintoti Prof.ssa

Dettagli

Risoluzione del compito n. 1 (Gennaio 2018)

Risoluzione del compito n. 1 (Gennaio 2018) Risoluzione del compito n. (Gennaio 208 PROBLEMA Calcolate 3(2 i 2 i(5i 6 4+2i 2 5(3 + i. Determinate le soluzioni z C dell equazione z 2 + z = + i. Osserviamo che (2 i 2 = 4 4i = 3 4i e che 4+2i 2 = 6+4

Dettagli

1 Note ed esercizi risolti a ricevimento

1 Note ed esercizi risolti a ricevimento 1 Note ed esercizi risolti a ricevimento Nota 1. Il polinomio di Taylor della funzione f x, y) due variabili), del secondo ordine, nel punto x 0, y 0 ), è P 2 x, y) = f x 0, y 0 ) + f x x 0, y 0 ) x x

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 07/8 Corso di Analisi Matematica - professore Alberto Valli 7 foglio di esercizi - 8 novembre 07

Dettagli

Limiti di successioni

Limiti di successioni Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche

Dettagli

Esercitazione di AM120

Esercitazione di AM120 Università degli Studi Roma Tre - Corso di Laurea in Matematica Esercitazione di M0.. 07 08 - Esercitatore: Luca Battaglia Soluzioni dell sercitazione 3 4 del 4 Marzo 08 rgomento: Derivate, Massimi e minimi,

Dettagli

ANALISI MATEMATICA 1 - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza ANALISI MATEMATICA 1 - Parte B Commissione F Albertini, L Caravenna e M Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza Vicenza, 4 luglio 017 TEMA1 Esercizio 1 [1 unti] Si consideri la funzione

Dettagli

21 IL RAPPORTO INCREMENTALE - DERIVATE

21 IL RAPPORTO INCREMENTALE - DERIVATE 21 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

1 Primitive e integrali indefiniti

1 Primitive e integrali indefiniti Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 2 CALCOLO INTEGRALE Primitive e integrali indefiniti. Definizione di primitiva e di integrale indefinito Data una funzione

Dettagli

Analisi Matematica per Bio-Informatici Esercitazione 09 a.a

Analisi Matematica per Bio-Informatici Esercitazione 09 a.a Analisi Matematica per Bio-Informatici Esercitazione 09 a.a. 2007-2008 Dott. Simone Zuccher 3 Gennaio 2008 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all

Dettagli

Limiti di funzioni. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Limiti di funzioni. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Limiti di funzioni Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi Matematica 1 1 / 38 Cenni di topologia La nozione di intorno

Dettagli

1.3. Se esistono i limiti sinistro e destro della funzione in un punto, allora esiste anche il limite della funzione nel punto stesso.

1.3. Se esistono i limiti sinistro e destro della funzione in un punto, allora esiste anche il limite della funzione nel punto stesso. Esercitazione 8 Novembre 018 1. Stabilire quali delle seguenti affermazioni sono vere e quali false. 1.1. Se una funzione f(x) è definita in un intervallo aperto (a, b), ha senso chiedersi se esistono

Dettagli

Esercitazione n 2. 1 dx = lim e x + e x ω. t dt t=ex = [arctan t]eω 1 = arctan(e ω ) arctan 1. (1 + x) dx = ε ε.

Esercitazione n 2. 1 dx = lim e x + e x ω. t dt t=ex = [arctan t]eω 1 = arctan(e ω ) arctan 1. (1 + x) dx = ε ε. Esercitazione n Integrali impropri Esercizio : Calcolare d. e +e Sol.: Dalla definizione di integrale improprio Allora e + e Dunque e + e ω e e ω e + d e + e t + dt t=e = arctan t]eω = arctane ω arctan

Dettagli

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) = STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali

Dettagli

Istituzioni di Matematiche terza parte

Istituzioni di Matematiche terza parte Istituzioni di Matematiche terza parte anno acc. 2013/2014 Univ. degli Studi di Milano D.Bambusi, C.Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 45 index Il concetto di ite 1 Il

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 08/9 Corso di Analisi Matematica - professore Alberto Valli 7 foglio di esercizi - 7 novembre 08

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 00/ Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica e TWM Esercizi di Analisi Matematica Esercizi sul primo semestre del

Dettagli

1. Scrivere il termine generale a n delle seguenti successioni e calcolare lim n a n:

1. Scrivere il termine generale a n delle seguenti successioni e calcolare lim n a n: Serie numeriche.6 Esercizi. Scrivere il termine generale a n delle seguenti successioni e calcolare a n: a),, 4, 4 5,... b), 9, 4 7, 5 8,... c) 0,,,, 4,.... Studiare il comportamento delle seguenti successioni

Dettagli

a j n + convergente divergente irregolare.

a j n + convergente divergente irregolare. Serie numeriche Definizione Data una successione reale {a j } + successione delle somme parziali n esime come: n s n a j, jj il cui limite, per n + : jj R, si definisce la s lim s n n + jj a j è detto

Dettagli

Limiti di funzioni di due variabili

Limiti di funzioni di due variabili Limiti di funzioni di due variabili Definizione 1 Sia f : A R 2 R e x 0 = (x 0, y 0 ) punto di accumulazione di A. Diciamo che se e solo se Diciamo che se e solo se f(x) = f(x, y) = L x x 0 (x,y) (x 0,y

Dettagli

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino 1 o compitino 1 febbraio 215 1 Si consideri la funzione f : R R definita da { f) = 2 log se se = a) Si dimostri che f è continua e derivabile su tutto R b) Si dica se f ammette derivata seconda in ogni

Dettagli

tele limite è unico. Ciò significa che se non può accadere che una funzione abbia limiti diversi per x. Se per assurdo si avesse che lim f ( x)

tele limite è unico. Ciò significa che se non può accadere che una funzione abbia limiti diversi per x. Se per assurdo si avesse che lim f ( x) Calcolo dei iti (C. DIMAURO) Per il calcolo dei iti ci serviamo di alcuni teoremi. Tali teoremi visti nel caso in cui, valgono anche quando Teorema dell unicità del ite: se una funzione ammette ite per

Dettagli

Argomento 6 Derivate

Argomento 6 Derivate Argomento 6 Derivate Derivata in un punto Definizione 6. Data una funzione f definita su un intervallo I e 0 incrementale di f in 0 di incremento h = 0 = il rapporto I, si chiama rapporto per = 0 + h =

Dettagli

40 ESERCIZI SUL CALCOLO DIFFERENZIALE ECONCETTICOLLEGATI

40 ESERCIZI SUL CALCOLO DIFFERENZIALE ECONCETTICOLLEGATI 40 ESERCIZI SUL CALCOLO DIFFERENZIALE ECONCETTICOLLEGATI Derivate parziali e piani tangenti Scrivere l equazione del piano tangente al grafico delle funzioni: f(, y) = (y ) + log nel punto = y = y + f(,

Dettagli

8. Successioni. Davide Catania Esercitazioni di Analisi Matematica 1

8. Successioni. Davide Catania Esercitazioni di Analisi Matematica 1 8. Successioni Davide Catania davide.catania@unibs.it Esercitazioni di Analisi Matematica 1 Successione reale. È una funzione a: J k R, con J k = {n N : n k }, k N. Si indica con (a n ) n Jk, avendo posto

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

Analisi Matematica 1. Serie numeriche. (Parte 2) Dott. Ezio Di Costanzo.

Analisi Matematica 1. Serie numeriche. (Parte 2) Dott. Ezio Di Costanzo. Facoltà di Ingegneria Civile e Industriale Analisi Matematica 1 Serie numeriche (Parte 2) Dott. Ezio Di Costanzo ezio.dicostanzo@sbai.uniroma1.it Definizione Data la serie + n=0 a n si definisce resto

Dettagli

Derivate. Def. Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come

Derivate. Def. Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come Lezioni 21-22 72 Derivate Def. Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y) = f(x) f(y). x y OSSERVAZIONI:

Dettagli