Modelli reologici. Romano Lapasin. Dipartimento di Ingegneria e Architettura Università di Trieste

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Modelli reologici. Romano Lapasin. Dipartimento di Ingegneria e Architettura Università di Trieste"

Transcript

1 Modell reologc Romano Lapasn Dparmeno d Ingegnera e Archeura

2 Approcc fenomenologc e approcc molecolar/mcroreologc Problema cenrale della reologa: defnzone dell equazone cosuva (relazone ra ensore degl sforz e uno o pù ensor cnemac approcc fenomenologc approcc molecolar o mcroreologc Approcco fenomenologco: l obevo prmaro è la defnzone d un modello capace d descrvere nel modo mglore possble l comporameno reologco d un ssema prescndendo dalla sua naura e dalle sue condzon sruural (n emp successv l evenuale rcerca delle correlazon paramer reologc e paramer molecolar o mcroscopc Approcco molecolare o mcroreologco: l obevo è la defnzone d un modello capace d correlare l comporameno reologco d un ssema con paramer che ne caraerzzano la sruura su scala molecolare o superore

3 Approcc e modell fenomenologc Comporameno shear-dpendene Modello d fludo Newonano generalzzao Comporameno shear- e empo-dpendene Approcc ssoropc e approcc vscoelasc Approcco ssoropco anelasco Approcc vscoelasc Modell vscoelasc lnear Modell coroazonal quas-lnear Modell coroazonal non lnear Modell codeformazonal

4 Modello d fludo Newonano generalzzao L approcco fenomenologco pù semplce è basao sulla generalzzazone della relazone valda per flud Newonan D ( ( II D D ( ( La vscosà è una grandezza scalare che può dpendere solano da alre grandezze scalar (componen del ensore I II j j j III j k j jk k Per un fludo ncomprmble n condzon d flusso a aglo: I III v II (

5 Modello d fludo Newonano generalzzao ( equazon ( ( ( ( m n / dfferen k modell ada a descrvere comporamen pseudoplasc, plasc o dlaan k n - n- modell ada alla soluzone d problem rguardan condzon sazonare d flusso a aglo, qual l calcolo d DP nel moo lamnare n ub, o alre condzon approssmabl ad esse non a condzon non sazonare e dverse da quelle a aglo

6 Modello CEF (Crmnale Ercksen Flbey Le dverse verson del modello d fludo Newonano generalzzao possono essere consdera cas parcolar d un modello pù generale valdo per una classe esesa d flud D D D D,, f u nzon : dervaa d Jaumann o dervaa coroazonale rspeo al empo D D D D Omeendo ermn conenen, dall equazone CEF e s rcava l modello d fludo Newonano generalzzao d v D D

7 dal modello CEF al modello d fludo Newonano generalzzao v condzon d flusso a aglo sazonaro ra pan parallel T v = - D D yx xy yy xx zz yy

8 Approcc ssoropc e vscoelasc I modell d fludo Newonano generalzzao sono nada all anals del comporameno empo-dpendene d flud non Newonan Occorre dsporre d un modello n grado d ener cono della memora che l fludo ha della sora cnemaca precedene, ovvero degl effe che essa produce sulla sruura del fludo. Approcc ssoropc Approcc vscoelasc anelasc elasc lnear non lnear Negl approcc ssoropc anelasc (o elasc la empo-dpendenza è dovua solano (o prncpalmene alle varazon sruural prodoe da varazon delle condzon d campo (sforz, graden d velocà alle qual è sooposo l ssema.

9 Approcco fenomenologco al comporameno ssoropco anelasco (Cheng-Evans Il comporameno vscoso shear- e empo-dpendene n condzon d flusso d aglo è descro da : d d f (, g (, equazone d sao equazone cneca Esempo d modello adao a descrvere l comporameno ssoropco d sospenson d caolno e arglla d d k p f (, ( K ( q g (, ( b q p k d ( k n : paramero sruurale arbraro, (,, K K K ( K n condzon sazonare (d equlbro d k d ( d k d eq k b d b eq eq p e r p e r

10 Approcco fenomenologco al comporameno ssoropco anelasco (Cheng-Evans f (, equazone d sao curva d equlbro mappa d curve a cosane (

11 Clay-kaoln suspensons A. Alessandrn, R. Lapasn, F. Surz, Chem. Eng. Commun., 98

12

13 Modell vscoelasc lnear j modello d Maxwell per rapde varazon d / G n condzon sazonare comporameno Newonano a deformazone cosane exp / j j j ' G ( ' j( ' d' exp j( ' d' ' j exp ( ' d' j verson ensoral: n

14 Modell vscoelasc lnear modello d Jeffreys ' ' ( ' ( ' exp d j j j j j j G G / G / ' ' ( ' ( ' exp d j j exp lm ( nx n x n funzone dela d Drac modello d Jeffreys: puno d parenza per lo svluppo d modell vscoelasc non lnear

15 Modell vscoelasc lnear modello d Burgers (modello d Maxwell + modello d Vog-Kelvn rlassameno a deformazone cosane G G creep exp G G G p er recovery ' p er ' ( exp exp G G G exp G G G p er

16 Modell vscoelasc lnear modello d Maxwell generalzzao G ( G exp( G ( G exp( j G k k G ' exp k j G G ( ' d' G G N N spero meccanco G' N G G' ' N G spero de emp d rlassameno G G, : valor da fng, problemache d fng e crer d vncolo (scalng, scalng eorc

17 Modell vscoelasc lnear modello d Maxwell generalzzao meod dfferen d regressone de da spermenal e d regolarzzazone crero emprco d scalng de emp: rduzone del grado d correlazone ra paramer d fng rduzone del numero d paramer aggusabl crer d scalng basa su approcc eorc: eora d Rouse per soluzon polmerche e fus a basso peso molecolare k ( k k k G k k k k

18 Modell vscoelasc lnear modello d Maxwell generalzzao: mplemenazone per esenderne l applcazone a comporamen sold-lke G ( G e G exp( G ( G e p e r j G e G exp G e ' j G ( ' d' G G G N N spero meccanco G' G e N G G' ' N G G ' G e p e r

19 Modell vscoelasc a dervae frazonare Modell vscoelasc basa sull uso d dervae frazonare (operaor maemac negrodfferenzal al poso d funzon e dervae nere d funzon defnzone d dervaa frazonara secondo Remann - Louvlle D corpo elasco d ( G d d f ( d ( d d f ( ( f ( d ( exp( x x dea orgnara d Sco Blar: comporamen vscoelasc compres ra due esrem corpo vscoelasco dx funzone gamma corpo vscoso d ( d funzone d araverso operaore maemaco nermedo ra funzone e dervaa prma

20 Modell vscoelasc a dervae frazonare modfca d modell convenzonal (sosuzone d elemen elasco e vscoso con elemen frazonar d ( d fraconal elemen G sprng dashpo = = FMM (fraconal Maxwell model b b FZM (fraconal Zener model modfca delle equazon cosuve de modell convenzonal (sosuzone con dervae frazonare

21 Modell vscoelasc a dervae frazonare G D G G D FZM ( = b Modello d Fredrch c c c c d d e D [ ] G { D [ ] D [ ]} D G D [ ] (d =, c = - b spero meccanco d ( d c cos( ( cos( d c G' ( = G DG e ( c cos( c ( c d c ( sn( d ( sn( d c G' '( = DG ( c cos( c ( c

22 Modell vscoelasc a dervae frazonare FZM ( = b Modello d Fredrch c c c c d d e D [ ] G { D [ ] D [ ]} D G D [ ] (d =, c = - b Modello d Maxwell (d =, c = (, b, G e G '( = ( DG ( ( G' '( = DG (

23 Modell vscoelasc a dervae frazonare G', G'' [Pa] 5 C 45 C 65 C descrzone della ranszone sol/gel araverso l modello d Fredrch 85 C,,, [rad/s] DG G e X-LBG : d.75 xanhan-locus bean gum (: KCl mm, % 5-85 C G e DG (Pa T ( C c.5.5 (s c, d

24 Modell vscoelasc a dervae frazonare spero meccanco d un polmero assocavo

25 Modell vscoelasc a dervae frazonare spero meccanco d un polmero assocavo

26 G'. G'' Modell vscoelasc a dervae frazonare spero meccanco d un polmero assocavo descrzone con modello FMM G G daa from R.D. Groo, W.G.M. Agerof, Macromolecules, 995, 8,

27 Modell vscoelasc coroazonal Modell vscoelasc lnear rformula scambando l ssema fsso d coordnae con un ssema coroazonale ( 3 ( ( rfermeno fsso ( ' ( 3 ' ( ' ( 3 ( rfermeno moble coroazonale ( rfermeno fsso rfermeno moble coroazonale rformulazone del modello d Jeffreys j j j j j j j j modello lneare modello lneare

28 Modell vscoelasc coroazonal rscrura del modello d Jeffreys nel ssema fsso D D j D D j j D D modello coroazonale d Jeffreys j modello non lneare flusso d aglo sazonaro avvameno spegnmeno, / /

29 Modell vscoelasc coroazonal non lnear per agguna d ermn non lnear al modello d Oldroyd (8 cosan 3 3 ( ( ( ( ( ( ( E kι j j j j j dal modello d Jeffreys coroazonale rscrura nel ssema fsso

30 percors d svluppo de modell lnearà ra fludo Newonano e combnazone d due elemen lnear fludo Newonano generalzzao rascurando ermn conenen gl sforz normal equazone CEF sao sazonaro modello d Maxwell combnazone d pù elemen lnear modello vscoelasco lneare generalzzao rformulazone n ssema coroozonale modell coroazonal quas lnear agguna d ermn non lnear modell coroazonal non lnear

31 percors d svluppo de modell fludo Newonano fludo Newonano generalzzao modello d Maxwell modello d Jeffreys equazone CEF modello d Jeffreys coroazonale modell coroazonal d Oldroyd

32 Equazon per la descrzone del comporameno macroscopco: flusso n ub 3 w R Q rz f rz drz ( 3 power law m dv dr n z rz 3n / n Q R v z R Bngham model dv z rz p dr r z r p r R dvz r rp dr Herschel-Bulkley flud rz dv dr z m dv dr r z r n p r z w r p 3 Q R n r w m R / n n 3n R Q 8 ( n/ n 4 p D L D m L w / n w 4 3 3n n D 3 L R n

Modelli reologici. Romano Lapasin. Dipartimento di Ingegneria e Architettura Università di Trieste

Modelli reologici. Romano Lapasin. Dipartimento di Ingegneria e Architettura Università di Trieste Modell reologc Romano Lapasn Dparmeno d Ingegnera e Archeura Approcc fenomenologc e approcc molecolar/mcroreologc Problema cenrale della reologa: defnzone dell equazone cosuva (relazone ra ensore degl

Dettagli

Lezione n. 2 di Controlli Automatici A prof. Aurelio Piazzi Modellistica ed equazioni differenziali lineari

Lezione n. 2 di Controlli Automatici A prof. Aurelio Piazzi Modellistica ed equazioni differenziali lineari Cors d Laurea n Ingegnera Eleronca, Informaca e delle Telecomuncazon Lezone n. 2 d Conroll Auomac A prof. Aurelo Pazz dfferenzal lnear Unversà degl Sud d Parma a.a. 2009-2010 Cenn d modellsca (crcu elerc

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanca 7-8 Puno maerale Corpo d dmenson rascurabl rspeo allo spazo nel quale s muoe e neragsce con alr corp Approssmazone Terra-Sole R d Earh Sun-Earh 6 6.4 m.5 m 4.3 5 E una buona approssmazone? - rba

Dettagli

Condensatore + - Volt

Condensatore + - Volt 1) Defnzone Condensaore Sruura: l condensaore è formao da due o pù superfc condurc, chamae armaure, separae da un maerale solane, chamao delerco. Equazon Caraersche: La ensone ra armaure è dreamene proporzonale

Dettagli

Problema. Integrazione scorte e distribuzione. Modello. Modello

Problema. Integrazione scorte e distribuzione. Modello. Modello Problema Inegrazone score e dsrbuzone Modell a domanda varable ree dsrbuva: uno a mol merc: colleame domanda: varable vncol: numero e capacà vecol cos: fss/varabl, magazzno/rasporo approcco rsoluvo: eursco/esao

Dettagli

Reometria: Prove dinamiche in regime oscillatorio

Reometria: Prove dinamiche in regime oscillatorio Reomeria: Prove dinamice in regime oscillaorio Romano Lapasin Diparimeno di Ingegneria e Arcieura deformazione deformazione sforzo sforzo solido elasico liquido viscoso Hooke equazioni cosiuive Newon d

Dettagli

Lattice Boltzmann: metodi cinetici per la fluidodinamica

Lattice Boltzmann: metodi cinetici per la fluidodinamica UNIVERSITÀ DEGLI STUDI DI CASSINO E DEL LAZIO MERIDIONALE Lace Bolzmann: meod cnec per la ludodnamca 26 gugno 205 XXX CORSO DI DOTTORATO IN INGEGNERIA CIVILE MECCANICA E BIOMECCANICA FLUIDODINAMICA Fludodnamca

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria APPENDICE ATEATICA Elemen d maemaca fnanzara. Il regme dell neresse semplce L neresse è l fruo reso dall nvesmeno del capale. Nel corso dell esposzone s farà rfermeno a due regm o pologe d calcolo dell

Dettagli

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO

PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO PICCOLE OSCILLAZIONI ATTORNO ALLA POSIZIONE DI EQUILIBRIO Stabltà e Teorema d Drclet Defnzone S dce ce la confgurazone C 0 d un sstema è n una poszone d equlbro stable se, portando l sstema n una confgurazone

Dettagli

Analisi delle reti con elementi dinamici

Analisi delle reti con elementi dinamici Prncp d ngegnera elerca ezone a Anals delle re con elemen dnamc Induore Connesson d nduor Induore nduore è un bpolo caraerzzao da una relazone ensonecorrene d po dfferenzale: ( d( d e hanno ers coordna

Dettagli

C = Consideriamo ora un circuito RC aperto, cioè tale in cui non circoli corrente(pertanto la carica presente sulle armature è nulla).

C = Consideriamo ora un circuito RC aperto, cioè tale in cui non circoli corrente(pertanto la carica presente sulle armature è nulla). I crcu Defnzone: s defnsce crcuo un crcuo elerco n cu al generaore d fem sono collega una ressenza e un condensaore. V cordamo che per un condensaore è possble defnre la capacà come l rapporo ra la carca

Dettagli

Componenti dotati di memoria (dinamici)

Componenti dotati di memoria (dinamici) omponen doa d memora (dnamc) S raa d componen elerc che esprmono una relazone cosua ra ensone e correne che rchama anche alor d ensone e/o correne rfer ad san d empo preceden. a relazone cosua è n queso

Dettagli

Controllo predittivo (MPC o MBPC)

Controllo predittivo (MPC o MBPC) Conrollo predvo MPC o MBPC Nella sa formlaone pù enerale, l conrollo predvo consa d re dee d base:. L lo d n modello maemaco ao a prevedere le sce del processo nel san d empo fr l orone. Le sce fre, comprese

Dettagli

LEZIONE 11. Argomenti trattati

LEZIONE 11. Argomenti trattati LEZIONE LE ECONOMIE PERTE (2) Il modello IS-LM n regme d camb fss e d camb flessbl rgoment trattat S esamnano gl effett delle poltche macroeconomche n economa aperta consderando tre modell Il modello IS-LM

Dettagli

Cap. 6 Rappresentazione e analisi dei circuiti elettrici in regime transitorio

Cap. 6 Rappresentazione e analisi dei circuiti elettrici in regime transitorio orso d leroecnca NO er. 0000B orso d leroecnca NO Angelo Baggn ap. 6 appresenazone e anals de crcu elerc n regme ransoro Inroduzone rcuo resso () 0 00V 0Ω > 0 rcuo puramene resso () 00V 0A V ondensaor

Dettagli

CONDUTTIMETRIA. La conduttanza è l inverso della resistenza e la resistenza Conduttanza C = R

CONDUTTIMETRIA. La conduttanza è l inverso della resistenza e la resistenza Conduttanza C = R ODUTTIMETIA La condumera è una ecnca basaa sulla conducblà degl on presen n soluzone. I conduor possono essere : I spece generalmene meall e meallod, sono caraerzza dall assenza del rasporo d maera, n

Dettagli

Fasi dello studio dei problemi di geotecnica

Fasi dello studio dei problemi di geotecnica 1 Fas dello studo de problem d geotecnca 1) descrzone dello stato tensonale totale [] che eulbra carch estern con gl strument analtc della Meccanca del contnuo sottosuolo eterogeneo e multfase assmlato

Dettagli

Significato delle EQUAZIONI COSTITUTIVE dei tessuti viventi

Significato delle EQUAZIONI COSTITUTIVE dei tessuti viventi Per flud n movmento occorre consderare l campo delle veloctà. Inun sstema cartesano Oxyz l campo è descrtto dal vettore v(x,y,z) che defnsce le component della veloctà del fludo n ogn punto x,y,z : v (x,y,z)

Dettagli

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1 Lezone 6. Funzone d rafermeno F. Prevd - uomaca - Lez.6 Schema della lezone. Defnzone (operava). Inerpreazone della funzone d rafermeno 3. Funzone d rafermeno: pol e zer 4. Funzone d rafermeno: paramerzzazon.

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

La teoria microeconomica del consumo

La teoria microeconomica del consumo Isttuzon d Economa Matematca La teora mcroeconomca del consumo Il problema del consumatore 2 a parte. Maro Sportell Dpartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I 70125 Bar (Italy)

Dettagli

GENERATORE DI IMPULSO CON AMPLIFICATORE OPERAZIONALE

GENERATORE DI IMPULSO CON AMPLIFICATORE OPERAZIONALE GENEAOE DI IMPULSO CON AMPLIFICAOE OPEAZIONALE Un generaore d mpulso, o mulvbraore monosable, è un crcuo che presena due possbl sa: uno sao sable ed uno sao quas sable Il crcuo s rova, normalmene, nello

Dettagli

Fasi dello studio dei problemi di geotecnica

Fasi dello studio dei problemi di geotecnica Fas dello studo de problem d geotecnca ) descrzone dello stato tensonale totale[σ] che eulbra carch estern con gl strument analtc della Meccanca del contnuo sottosuolo eterogeneo e multfase assmlato a

Dettagli

Campo magnetico stazionario

Campo magnetico stazionario Campo magneco sazonaro www.de.ng.unbo./pers/masr/ddaca.hm (versone del 3--) Equazon fondamenal Equazon per l campo magneco H J B H B n d J n d Equazon d legame maerale ezzo lneare soropo B H H ) ( ezzo

Dettagli

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI SOMMARIO:. Legg fnanzare. - 2. Regme fnanzaro dell neresse semplce e dello scono razonale. - 3. Regme fnanzaro dell neresse e dello scono composo. - 4. Tass equvalen.

Dettagli

Regimi periodici non sinusoidali

Regimi periodici non sinusoidali Regm perodc non snusodal www.de.ng.unbo./pers/masr/ddaca.hm versone del -- Funzon perodche S dce che una funzone y è perodca se esse un > ale che per ogn e per ogn nero y y l pù pccolo valore d per cu

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Noa ecnca La formula per la ulzzazone degl Indcaor conenua nell allegao al D.M. n. 506/2007, è defna araverso seguen passagg logco-algebrc, n relazone a quano prevso dal D.M. 3 luglo 2007, n. 362 (lnee

Dettagli

PROPRIETA DI TRASPORTO METODI DI CALCOLO TEORICO E CORRELAZIONI. proprietà di trasporto: valori numerici

PROPRIETA DI TRASPORTO METODI DI CALCOLO TEORICO E CORRELAZIONI. proprietà di trasporto: valori numerici MEODI DI CALCOLO EORICO E CORRELAZIONI propretà trasporto: valor numerc at spermental approcc teorc meto prettv equazon correlazone possbltà prevsone teorca legate alla congrutà el moello fsco gas lut

Dettagli

Circuiti del secondo ordine

Circuiti del secondo ordine Crcu el secono orne Un crcuo el secono orne è caraerzzao a un equazone fferenzale el secono orne I crcu el secono orne conengono una o pù ressenze e ue elemen namc L e/o C Teora e Crcu Prof. Luca Perregrn

Dettagli

ESPONENTI DI LIAPUNOV

ESPONENTI DI LIAPUNOV ESPONENTI DI IAPUNOV Ssem a empo dscreo, mono- e mul-dmensonal Problemache d calcolo Ssem a empo connuo C. Pccard e F. Dercole Polecnco d Mlano - 9/0/200 /8 MAPPE MONO-DIMENSIONAI Consderamo l ssema a

Dettagli

L INTERDIPENDENZA MONETARIA: IL MODELLO MUNDELL-FLEMING

L INTERDIPENDENZA MONETARIA: IL MODELLO MUNDELL-FLEMING CORSO DI POLITICA CONOMICA INTRNAZIONAL AA 2018-2019 L INTRDIPNDNZA MONTARIA: IL MODLLO MUNDLL-FLMING DOCNT PIRLUIGI MONTALBANO perlug.monalbano@unroma1. ARBITRAGGIO SCOPRTO SUI TASSI DI INTRSS O CONDIZION

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Domanda ZZ. Domanda, Z; Produzione, Y. 45 Y Produzione, Y

Domanda ZZ. Domanda, Z; Produzione, Y. 45 Y Produzione, Y CPITOLO 5 - I mercat de ben e delle attvtà fnanzare: l modello IS-LM fg. 5.1. Equlbro sul mercato de ben. La domanda d ben è una funzone crescente della produzone. L equlbro rchede che la domanda sa uguale

Dettagli

Definizione della tariffa per l accertamento di conformità degli strumenti di misura

Definizione della tariffa per l accertamento di conformità degli strumenti di misura alla delberazone d Guna n. 2 del 20.0.2009 Defnzone della arffa per l accerameno d conformà degl srumen d msura. Per l accerameno d conformà degl srumen d msura sono defne le seguen 8 class arffare: denfcavo

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod Rpoa Impulva Calcolo dell uca noo l ngreo (ved Marro par.. a.3,.5, C., C.3) (ved Vell-Peernella par. II. a II.4, III. a III.3) Auomaca

Dettagli

CINQUE CONCETTI CHIAVE

CINQUE CONCETTI CHIAVE CINQUE CONCETTI CHIAVE - Tasso d dsoccupazone : p. 2 - Tasso d nflazone : p. 3 - Tasso d cresca del l : p. 4 - Tasso d neresse : pp. 5-7 - Tasso d cambo : pp. 8-3 G.Garofalo Tasso d dsoccupazone op.ava

Dettagli

Circuiti magnetici. (versione del ) Campo magnetico stazionario o quasi stazionario

Circuiti magnetici.  (versione del ) Campo magnetico stazionario o quasi stazionario Crcu magnec www.de.ng.unbo./pers/masr/ddaca.hm (versone del 3--) Campo magneco sazonaro o quas sazonaro Condzon sazonare: grandezze eleromagneche cosan nel empo Condzon quas sazonare: varazon nel empo

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

Manutenibilità e Disponibilità

Manutenibilità e Disponibilità produzone servaa ffdablà, Manuenblà e Dsponblà Sefano Ierace Obev Ulzzo dell anals d affdablà come srumeno predvo d comporameno d un ssema Valuazone requs d funzonameno d un componene Confrono d alernave

Dettagli

Metodi quantitativi per la stima del rischio di mercato. Aldo Nassigh. 16 Ottobre 2007

Metodi quantitativi per la stima del rischio di mercato. Aldo Nassigh. 16 Ottobre 2007 Meod quanav per la sma del rscho d mercao Aldo Nassgh 16 Oobre 007 METODI NUMERICI Boosrap della curva de ass Prncpal Componen Analyss Rsk Mercs Meod d smulazone per l calcolo del VaR basa su Full versus

Dettagli

Fisica Generale B. Correnti elettriche stazionarie. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini

Fisica Generale B. Correnti elettriche stazionarie. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini Fsca Generale Corren elerche sazonare Scuola d Ingegnera e rcheura UNIO Cesena nno ccademco 14 15 Inensà d correne Fenomen sazonar: le carche sono n movmeno con caraersche nvaran nel empo n cascun puno.

Dettagli

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali Chmca Fsca - Chmca e Tecnologa Farmaceutche Lezone n. 10 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Convenzon per le soluzon real Relazon tra coeffcent d attvtà 02/03/2008 Antonno

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Appunti del Corso di. Costruzioni In Zona Sismica. Prof. Ing. Camillo Nuti. Università Degli Studi Roma Tre

Appunti del Corso di. Costruzioni In Zona Sismica. Prof. Ing. Camillo Nuti. Università Degli Studi Roma Tre Prof. Camllo Nu Dspense d Cosruzon n Zona Ssmca 7 Appun del Corso d Cosruzon In Zona Ssmca Prof. Ing. Camllo Nu Unversà Degl Sud Roma Tre Prof. Camllo Nu Dspense d Cosruzon n Zona Ssmca 7 RISPOSTA DINAMICA

Dettagli

Equazioni dei componenti

Equazioni dei componenti Equazon de componen Eserczo Nella fgura è rappresenao un quadrupolo la cu sruura nerna alla superfce lme conene ressor R e R. Deermnare le equazon del componene ulzzando come arabl descre quelle corrsponden

Dettagli

materiale didattico I incontro

materiale didattico I incontro Pano Nazonale Lauree Scentfche (PLS 2016-2017) Statstca Laboratoro d Statstca Le relazon tra varabl prof.ssa Angela Mara D'Uggento angelamara.duggento@unba.t materale ddattco I ncontro Dall anals statstca

Dettagli

La teoria del consumo

La teoria del consumo La teora del consumo L equazone d Slutsky. Problema dell ntegrabltà. Maro Sortell Dartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I-70125 Bar (Italy) (Tel.: +39 (0)99 7720 626; fax: +39

Dettagli

CARATTERISTICHE DELLE POMPE

CARATTERISTICHE DELLE POMPE CARATTERISTICHE DELLE OME La pompa rappresena l elemeno pù complesso e pù mporane d un crcuo draulco perché ha l compo d rasferre l fludo draulco e realzzare l flusso d poraa che permee la conversone dell

Dettagli

( ) d R L. = ρ. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che

( ) d R L. = ρ. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che Fsca Tecnca G. Grazzn Facoltà d Ingegnera In generale possamo dre che R L f ( µ,,, D Dal punto d vsta matematco possamo approssmare la funzone con una sere d potenze e qund: R L ( a b c d µ B D ma per

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

Commessa N. Foglio 1 di 6 Rev B. Titolo commessa. Redatto da AO Data Giugno Verificato da AT Data Ottobre 2002

Commessa N. Foglio 1 di 6 Rev B. Titolo commessa. Redatto da AO Data Giugno Verificato da AT Data Ottobre 2002 Commessa N. Foglo d 6 Rev B Deparmen o Cvl and Mnng Engneerng Dvson o Seel Srucures, Unversy campus, SE-97 87 Luleå, Seden Tel: +46 90 9 000 Fax: +46 90 9 9 Redao da AO Daa Gugno 00 Vercao da AT Daa Oore

Dettagli

Adrien-Marie Legendre (Parigi, 18 settembre 1752 Parigi, 10 gennaio 1833) è stato un matematico francese.

Adrien-Marie Legendre (Parigi, 18 settembre 1752 Parigi, 10 gennaio 1833) è stato un matematico francese. Adren-Mare Legendre (Parg, 18 seembre 175 Parg, 10 gennao 1833) è sao un maemaco francese. 1 Trasformazon d Legendre per cambare varable ndpendene Supponamoche samo neressa a conoscere una grandezza f

Dettagli

G. SUPERTI FURGA MODELLISTICA DEI SISTEMI ELETTROMECCANICI Marzo 2005 SISTEMI DI INDUTTORI pag. 1 di 12

G. SUPERTI FURGA MODELLISTICA DEI SISTEMI ELETTROMECCANICI Marzo 2005 SISTEMI DI INDUTTORI pag. 1 di 12 G. SUPERTI FURGA MODELLISTICA DEI SISTEMI ELETTROMECCANICI Marzo 5 SISTEMI DI INDUTTORI pag. d SISTEMI DI INDUTTORI. INDUTTORI Gl nsem d nduor sono un argomeno parcolarmene mporane, cò ne gusfca una raazone

Dettagli

Sensori meccanici. Caratterizzazione dei sensori meccanici: principio di funzionamento e grandezza misurata

Sensori meccanici. Caratterizzazione dei sensori meccanici: principio di funzionamento e grandezza misurata Sensor meccanc Caratterzzazone de sensor meccanc: prncpo d fnzonamento e grandezza msrata. I segnal meccanc d maggor nteresse. Pressone ed accelerazone (le ntà d msra del S.I.). Defnzone del tensore degl

Dettagli

VGR2016 Valutazione e Gestione del Rischio negli Insediamenti Civili ed Industriali VIII Edizione 2016

VGR2016 Valutazione e Gestione del Rischio negli Insediamenti Civili ed Industriali VIII Edizione 2016 VGR06 Valazone e Gesone el Rsco negl Inseamen Cvl e Insral VIII Ezone 06 Sessone Screzza n ambo Elzo Procera Semplcaa per la Deermnazone el Campo ermco all nerno e Maeral ermcamene non Sol ID Aore Anono

Dettagli

Costruzioni In Zona Sismica. Prof. Ing. Camillo Nuti. Università Degli studi Roma Tre

Costruzioni In Zona Sismica. Prof. Ing. Camillo Nuti. Università Degli studi Roma Tre Prof. Camllo Nu Dspense d Cosruzon n Zona Ssmca 5 6 Cosruzon In Zona Ssmca Prof. Ing. Camllo Nu Unversà Degl sud Roma Tre Prof. Camllo Nu Dspense d Cosruzon n Zona Ssmca 5 6 RISPOSTA DINAMICA DELLE STRUTTURE.

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Reometria: Prove dinamiche in regime oscillatorio. Romano Lapasin

Reometria: Prove dinamiche in regime oscillatorio. Romano Lapasin Reometria: Prove dinamiche in regime oscillatorio Romano Lapasin DICAMP - Università di Trieste Contenuti il solido elastico e il liquido viscoso (richiami) il corpo viscoelastico (richiami) il modello

Dettagli

Sviluppo in serie di Fourier. Introduzione e richiami sulle basi di spazi vettoriali. Serie di Fourier di segnali a supporto illimitato

Sviluppo in serie di Fourier. Introduzione e richiami sulle basi di spazi vettoriali. Serie di Fourier di segnali a supporto illimitato eora de segnal Introduzone a segnal determnat tolo untà Introduzone e rcham sulle bas d spaz vettoral Sere d Fourer d segnal a supporto lmtato Spettro d un segnale Sere d Fourer d segnal a supporto llmtato

Dettagli

MATEMATICA FINANZIARIA 2 PROVA SCRITTA DEL 11 SETTEMBRE 2007 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 2 PROVA SCRITTA DEL 11 SETTEMBRE 2007 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL SETTEMBRE 007 ECONOMIA AZIENDALE ESERCIZIO a Su un mercao deale vene smaa, rame prezz d TCN unar, la seguene sruura per scadenza de ass a pron (0,4,% ; (0,4,8%

Dettagli

INCERTEZZA DELLA DOMANDA NELLE CATENE DI SUPPORTO: TECNICHE DI RIDUZIONE DINAMICA DELLO SPAZIO DI RICERCA PER UN MODELLO CP

INCERTEZZA DELLA DOMANDA NELLE CATENE DI SUPPORTO: TECNICHE DI RIDUZIONE DINAMICA DELLO SPAZIO DI RICERCA PER UN MODELLO CP FACOLTA D GEGERA Corso d Laurea Specalsca n ngegnera nformaca Applcazon d nellgenza Arfcale L-S CERTEZZA DELLA DOMADA ELLE CATEE D SUPPORTO: TECCHE D RDUZOE DAMCA DELLO SPAZO D RCERCA PER U MODELLO CP

Dettagli

Soluzione di sistemi di equazioni differenziali

Soluzione di sistemi di equazioni differenziali Soluzone d ssem d equazon dfferenzal Porese aere l mpressone d non sapere nulla sulle equazon dfferenzal e d non aerne ma nconraa una. In realà quesa mpressone è sbaglaa perché la legge d Neon F ma s può

Dettagli

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie)

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie) Ing. Eleronca - II a Esperenza del aboraoro d Fsca Generale II Oscllazon lbere e rsonanza d un crcuo -sere (Traazone analca del crcuo -sere on quesa breve noa s vuole fornre la raazone eorca del crcuo

Dettagli

MATLAB-SIMULINK. Risoluzione di equazioni differenziali alle derivate parziali in ambiente Matlab-Simulink. Ing. Alessandro Pisano

MATLAB-SIMULINK. Risoluzione di equazioni differenziali alle derivate parziali in ambiente Matlab-Simulink. Ing. Alessandro Pisano MALAB-SIMULINK Rsoluzone d equazon dfferenzal alle dervae parzal n ambene Malab-Smulnk Ing. Alessandro Psano psano@dee.unca. Ssem ermc spazalmene dsrbu Barra meallca flforme d lungezza L = 5 cm L Varable

Dettagli

( ) d R L. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che

( ) d R L. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che In generale possamo dre che R L f ( µ,,, D Dal punto d vsta matematco possamo approssmare la funzone con una sere d potenze e qund: R L ( a b c d µ B D ma per l'omogenetà delle relazon avremo [ ] ([ ]

Dettagli

NOTA METODOLOGICA INDICI SINTETICI PER CONFRONTI TEMPORALI: UN INDICE STATICO E UNO DINAMICO

NOTA METODOLOGICA INDICI SINTETICI PER CONFRONTI TEMPORALI: UN INDICE STATICO E UNO DINAMICO Noa meodologca - Indc snec per confron emporal 53 INDICI SINTETICI PER CONFRONTI TEMPORALI: UN INDICE STATICO E UNO DINAMICO Uno de prncpal problem nella cosruzone d ndc snec rguarda la scela d meod che

Dettagli

PRINCIPI DI SISTEMI ELETTRICI SEDE DI MILANO

PRINCIPI DI SISTEMI ELETTRICI SEDE DI MILANO same d PINCIPI DI SISTMI TTICI SD DI MINO I Compno del 0 05 07 ) Il crcuo d Fg., n regme sazonaro, è così assegnao: () 0 V 0 V 5 V 8 0 5 5 0 00 mh nerruore S è apero da un empo nfno e s chude all sane

Dettagli

Algoritmi di Ordinamento. Fondamenti di Informatica Prof. Ing. Salvatore Cavalieri

Algoritmi di Ordinamento. Fondamenti di Informatica Prof. Ing. Salvatore Cavalieri Algortm d Ordnamento Fondament d Informatca Prof. Ing. Salvatore Cavaler 1 Introduzone Ordnare una sequenza d nformazon sgnfca effettuare una permutazone n modo da rspettare una relazone d ordne tra gl

Dettagli

Appunti del Corso di. Costruzioni In Zona Sismica. Prof. Ing. Camillo Nuti. Università Degli Studi Roma Tre

Appunti del Corso di. Costruzioni In Zona Sismica. Prof. Ing. Camillo Nuti. Università Degli Studi Roma Tre Prof. Camllo Nu Dspense d Cosruzon n Zona Ssmca 7 Appun del Corso d Cosruzon In Zona Ssmca Prof. Ing. Camllo Nu Unversà Degl Sud Roma Tre Prof. Camllo Nu Dspense d Cosruzon n Zona Ssmca 7 APPUNTI DEL CORSO

Dettagli

Abusi di Mercato. S.A.I.Vi.M.: la procedura probabilistica per l individuazione di Abusi di Mercato. Market Abuse Detection. c.d.

Abusi di Mercato. S.A.I.Vi.M.: la procedura probabilistica per l individuazione di Abusi di Mercato. Market Abuse Detection. c.d. 90 60 30 gen 998 4 feb 998 8 mar 998 000000 0-000000 -4000000-6000000 -8000000-0000000 -000000-4000000 44 43 4 4 40 39 38 37 36 9-5-99 4-5-99 7-5-99-6-99 4-6-99 Mare Abuse Penomenon: defnzone Abus d Mercao

Dettagli

Introduzione ai Modelli di Durata: Alcuni Modelli Parametrici

Introduzione ai Modelli di Durata: Alcuni Modelli Parametrici Inroduzone a Modell d Duraa: Alun Modell Paramer a.a. 2009/2010 - Quaro Perodo Prof. Flppo DOMMA Corso d Laurea Spealsa/Magsrale n Eonoma Applaa Faolà d Eonoma UnCal 1. Esponenzale Modell Paramer Le funzon

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Trasformae e ssem lnear Trasformaa d Laplace Funzone d Trasfermeno Mod Rsposa Impulsva Calcolo dell usca noo l ngresso (ved Marro par. 2. a 2.3,2.5, C 2.2, C 2.3) (ved Vell-Peernella par. II. a II.4, III.

Dettagli

CORSO DI POLITICA ECONOMICA AA GLI APPROCCI ALLA DETERMINAZIONE DEL TASSO DI CAMBIO

CORSO DI POLITICA ECONOMICA AA GLI APPROCCI ALLA DETERMINAZIONE DEL TASSO DI CAMBIO CORSO DI POLITICA CONOMICA AA 2016-2017 GLI APPROCCI ALLA DTRMINAZION DL TASSO DI CAMBIO DOCNT PIRLUIGI MONTALBANO perlug.monalbano@unroma1. Deermnazone TC: Approcco d porafoglo Assunzon d Breve perodo

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod poa Impulva Calcolo dell uca noo l ngreo (ved Marro par.. a.3,.5, C., C.3) (ved Vell-Peernella par. II. a II.4, III. a III.3) Auomaca OMA

Dettagli

Regressione e correlazione

Regressione e correlazione Regressone e correlazone Corso d statstca socale prof. Natale Carra - Unverstà degl Stud d Bergamo a.a. 005-06 Regressone Questo modello d anals bvarata esamna le relazon fra coppe d varabl contnue. Un

Dettagli

Capitolo III: I Regolatori

Capitolo III: I Regolatori SCC Cap. III: Regolaor Capolo III: I Regolaor III-1: Inrouzone Il regolaore ha l ompo sablre l azone orreva a apporare n ngresso al proesso, per mezzo ell auaore; l segnale n usa al regolaore (s) è funzone

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Rotazione rispetto ad asse fisso Asse z : asse di rotazione

Rotazione rispetto ad asse fisso Asse z : asse di rotazione Rotaone rspetto ad asse fsso Asse : asse d rotaone 1 1 1 Ek= ω = ω= ω om. d nera: propreta d ogn corpo rgdo Dpende da: massa, forma e dmenson del corpo asse rspetto al quale lo s consdera Asta omogenea:

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologe nforatche per la chca Dr. Sergo Brutt Anals de dat 6 Y Rcaptolo generale Dato un nsee d sure sperental d una varable dpendente al varare d una varable ndpendente è possble edante l crtero de

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann

1 Le equazioni per le variabili macroscopiche: i momenti dell equazione di Boltzmann FISICA DEI FLUIDI Lezone 5-5 Maggo 202 Le equazon per le varabl macroscopche: moment dell equazone d Boltzmann Teorema H a parte, non è facle estrarre altre consderazon general sulla funzone denstà d probabltà

Dettagli

Note: 11 esercitazioni relative ai modelli presentati a lezione. Esercitatori: Ing. Piegari, Ing. Merlo

Note: 11 esercitazioni relative ai modelli presentati a lezione. Esercitatori: Ing. Piegari, Ing. Merlo Noe: esercazon relae a moell presena a lezone Esercaor: Ing. Pegar, Ing. erlo cemeno: ogn mercole opo le esercazon ermen: el. 376-45 E-mal: marco.merlo@polm., lug.pegar@polm. So: hp://www.eec.polm. DINAICA

Dettagli

Criteri metodologici per la valutazione dei titoli obbligazionari standard e dei contratti derivati non quotati

Criteri metodologici per la valutazione dei titoli obbligazionari standard e dei contratti derivati non quotati Crer meodologc per la valuazone de ol obblgazonar sandard e de conra derva non quoa Adoao con delbera del Consglo d ammnsrazone del /0/20 Modfcao con delbera del Consglo d Ammnsrazone del 28//20 Aggornao

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

Amplificatori operazionali

Amplificatori operazionali Amplfcator operazonal Parte 3 www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-5-) Confgurazone nvertente generalzzata Se nella confgurazone nvertente s sosttuscono le resstenze R e R con due mpedenze

Dettagli

PONTE DELLA MUSICA - ROMA Analisi modale operazionale

PONTE DELLA MUSICA - ROMA Analisi modale operazionale g 0.01 g 0.04 g 5.00e-3 g 0.08 g 8.00e-3 g -9.00e-3 20:VACALE:14:+Y 0.00 s 2200.00-0.08 21:VACALE:14:+Z 0.00 s 2200.00-7.00e-3 22:VACALE:12:+Y 0.00 s 2200.00-0.05 23:VACALE:12:+Z 0.00 s 2200.00-0.01 24:VACALE:13:+X

Dettagli

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica Unersà degl Sud d assno sercazon d leroecnca: crcu n eoluzone dnamca nono Maffucc maffucc@uncas er oobre 7 rcu dnamc del prmo ordne S Nel seguene crcuo è assegnaa la correne nell nduore all sane caare

Dettagli

EVOLUZIONE DI UN SISTEMA ROBOTICO COMANDATO IN TELEMANIPOLAZIONE E RETROAZIONATO IN POSIZIONE E FORZA

EVOLUZIONE DI UN SISTEMA ROBOTICO COMANDATO IN TELEMANIPOLAZIONE E RETROAZIONATO IN POSIZIONE E FORZA EVOLUZIONE DI UN SISTEMA ROBOTICO COMANDATO IN TELEMANIPOLAZIONE E RETROAZIONATO IN POSIZIONE E FORZA Tuor: Prof. Robero Caraccolo 1 INDICE 1. Inroduzone 1.1 Aspe general d elemanpolazone va Inerne 1.2

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

LA CALIBRAZIONE NELL ANALISI STRUMENTALE

LA CALIBRAZIONE NELL ANALISI STRUMENTALE LA CALIBRAZIONE NELL ANALISI STRUMENTALE La maggor parte delle anals chmche sono ogg condotte medante metod strumental (spettrometra d assorbmento ed emssone a dverse λ, metod elettrochmc, spettrometra

Dettagli

Laboratorio di Didattica della Fisica I

Laboratorio di Didattica della Fisica I Laboraoro d Ddaca della Fsca I Daa Oraro Aula Tpo 08-mar 5-7:5 A Lezone 3-mar 5-7:5 A Lezone 5-mar 5-7:5 Lab. MM e Dd. Laboraoro 0-mar 5-7:5 A Lezone -mar 5-7:5 Lab. MM e Dd. Laboraoro 7-mar 5-7:5 A Lezone

Dettagli

26/08/2010. segnali deterministici. segnali casuali o random. stazionario. periodico. Non stazionario. transitorio

26/08/2010. segnali deterministici. segnali casuali o random. stazionario. periodico. Non stazionario. transitorio Cap 5: ANALISI DEI SEGNALI E ARAURA DINAMICA Un segnale è defnto come una qualsas varable fsca che camba nel tempo, nello spazo, o rspetto a altre varabl e che trasporta nformazon segnal determnstc segnal

Dettagli

Ripartizione stati tensionali tra le fasi di un terreno

Ripartizione stati tensionali tra le fasi di un terreno 1 Rpartzone stat tensonal tra le fas d un terreno I carch estern e le forze d massa agent sul mezzo soldo contnuo deale sono eulbrat dalle tenson defnte con t δ F = lm δ A 0 δ A δf Nel terreno (mezzo granulare

Dettagli

IMPIANTI E PROCESSI CHIMICI. Tema A 13 Giugno 2011 Colonna binaria

IMPIANTI E PROCESSI CHIMICI. Tema A 13 Giugno 2011 Colonna binaria IMPINTI E PROCESSI CHIMICI Tema 3 Gugno 0 Colonna bnara Soluzone Inzalmente s svolge un calcolo d lash al fne d caratterzzare lo stato della corrente almentata. V z ( K ) defnto e s ottene f ( ) + ( K

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione Sto Personale d Ettore Lmol Lezon d Matematca Prof. Ettore Lmol Sommaro Calcol d regressone... 1 Retta d regressone con Ecel... Uso della funzone d calcolo della tendenza... 4 Uso della funzone d regressone

Dettagli

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m

Funzione di matrice. c i λ i. i=0. i=0. m 1. γ i A i. i=0. Moltiplicando entrambi i membri di questa equazione per A si ottiene. α i 1 A i α m 1 A m Captolo INTRODUZIONE Funzone d matrce Sa f(λ) una generca funzone del parametro λ svluppable n sere d potenze f(λ) Sa A una matrce quadrata d ordne n La funzone d matrce f(a) èdefnta nel modo seguente

Dettagli

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014 Dpartmento d Economa Azendale e Stud Gusprvatstc Unverstà degl Stud d Bar Aldo Moro Corso d Macroeconoma 2014 1.Consderate l seguente grafco: LM Partà de tass d nteresse LM B A IS IS Y E E E Immagnate

Dettagli

17. Le soluzioni dell equazione di Schrödinger approfondimento

17. Le soluzioni dell equazione di Schrödinger approfondimento 7. soluzon dll quazon d Scrödngr approfondmno Gl sa ms Il gao d Scrödngr è l pù famoso sao mso dlla MQ. E una parclla un po spcal, prcé è un oggo macroscopco d cu s dscu l comporamno quansco. E anc una

Dettagli