Esercitazione 1a: determinazione fotometrica dell antimonio

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazione 1a: determinazione fotometrica dell antimonio"

Transcript

1 Erctazon 1a: dtrmnazon fotomtrca dll antmono Razon fondamntal: SO OH - SO(OH) () COO - SO CHOH CHOH [SO(C 4 H 4 O 6 )] - COO- Prncpo dl mtodo L antmono (III), prnt com complo antmonl-tartrato [SO (C 4 H 4 O 6 )] -, ragc con lo on I - formando l acdo ttraodo-antmonco: [SO(C 4 H 4 O 6 )] - 4I - 5H HSI 4 C 4 H 6 O 6 H O L HSI 4 prnta una anda d aormnto nlla rgon U-vl ch può r fruttata pr una dtrmnazon quanttatva dll antmono pr va fotomtrca (colormtrca).

2 Fa dll rctazon Dtrmnazon dllo pttro d aormnto dll HSI 4 nlla rgon nm clta dlla lunghzza d onda d lavoro; cotruzon d una rtta d taratura; calcolo dl lmt d rvlalta (LOD) dl mtodo; anal d un campon ncognto con valutazon dlla concntrazon dllo on antmono n o contnuto

3 Rtta d taratura: mtodo d mnm quadrat Nlla maggor part d ca la dpndnza dalla concntrazon d analta dl gnal fornto da un mtodo d anal lnar I dat poono qund r trattat con l mtodo d mnm quadrat lnar: Sgnal anco cotant concntrazon y a x Ottvo dl mtodo: dtrmnar valor d paramtr a pr qual quadrat dgl cart (rdu) fra valor prmntal d y qull calcolat dal modllo ano mnm.

4 Aunzon dl mtodo: puo rtnr ch valor d x (concntrazon) NON ano afftt da un ncrtzza rlvant ch l ncrtzza d valor d y (gnal) non dpnda da x. Equazon: dtt (x,y ), con 1, n, l copp d dat prmntal acqut pr la cotruzon dlla rtta d taratura, paramtr dlla rtta d rgron con mnm quadrat ono: a y - x [(x - x)(y (x - x) - y)] dov: x x n y y n

5 È pol calcolar anch la dvazon tandard u paramtr dlla rgron lnar ( a, ) a partr dalla dvazon tandard u rdu, y/x : y/x (y - ŷ n - ) dov ŷ a x a y/x n (x x - x) (x y/x - x) Il trmn (y - ŷ ) con l mtodo d mnm quadrat. rapprnta la quanttà ch vn mnmzzata Il mtodo tnd qund automatcamnt a mnmzzar anch l ncrtzza u paramtr dlla rtta d rgron.

6 Calcolo dlla concntrazon d un campon ncognto dalla rtta d taratura Dtto y o l valor mdo d gnal ottnut da m mur rplcat u un campon ncognto, la concntrazon x d qut ultmo puo calcolar not paramtr dlla rtta d rgron: x (y a) / l ncrtzza ul valor d x o data dall Equazon: x y/x 1 m 1 n (y - y) (x - x) 1/ L ncrtzza dmnuc, qund: al dmnur dlla dvazon tandard u rdu ( y/x ) all aumntar dlla pndnza dlla rtta (), dl numro d uo punt (n) dl numro dll mur rplcat ul campon ncognto (m)

7 Calcolo dl lmt d rvlaltà (LOD) dalla rtta d taratura Scondo la dfnzon comunmnt accttata l LOD (lmt of dtcton) : l valor d concntrazon al qual corrpond un gnal (y) ch dffrc dal anco pr almno: 3 volt l valor dlla dvazon tandard u rdu, y/x, oppur 3 volt l valor dlla dvazon tandard ull ncrtzza, a y 1 a 3 y/x a (LOD) 1 gnal y a 3 a a (LOD) y LOD 1 3 y/x / 3 y/x 3 a a y a x LOD 3 a / LOD concntrazon

8 Ttolazon pttrofotomtrch Schma gnral dlla ttolazon: S T P S otanza da ttolar (concntrazon ncognta), con aorvta S T ttolant (concntrazon nota), con aorvta T P prodotto dlla ttolazon, con aorvta P Ipot: valda la lgg d Lamrt-Br, qund A c; la razon fra S T compltamnt potata vro P; Smolmo:, c S volum concntrazon dlla oluzon da ttolar;, c T volum aggunto concntrazon dlla oluzon ttolant; f (c T / c S ) frazon ttolata f 1 al punto quvalnt

9 Equazon: In ogn momnto dlla ttolazon l aoranza total data da: A S [S] T [T] P [P] ( S [S] T [T] P [P]) Prma dl punto quvalnt (f < 1) rulta: [ ] ( ) f c c [P] [T] 1- f c c c S S T S T S - ] f f ) [(1 c A P S S pp - L aoranza total dlla oluzon è data qund dall quazon:

10 Dopo l punto quvalnt (f > 1) rulta: [ S ] [T] c T - cs cs ( ) f -1 [P] cs L aoranza total dlla oluzon è data qund dall quazon: A dp cs [(f -1) T P ] In ntram ca occorr prò condrar ch la dluzon progrva dlla oluzon da ttolar porta ad una dmnuzon dll aoranza. S può ntrodurr qund un valor d aoranza corrtto pr la dluzon: A corr A

11 L quazon d A pp A dp poono r rcrtt nll form: corr c A pp S A pp [(1 - f ) S f P] c corr S A dp A [(f -1) T P] dp n dfntva: corr A pp c S S c S ( P S ) f corr A dp c S ( P T ) c S T f Gl andamnt dll aoranz (corrtt pr l fattor d dluzon) prma dopo l punto quvalnt ono lnar rptto alla frazon d analta ttolata (f), oa rptto al volum d ttolant aggunto.

12 corr A pp c S S c S ( P S ) f corr A dp c S ( P T ) c S T f S not ch la pndnza dl tratto fnal non può ma r ngatva. q q q L ntrzon d du tratt lnar fornc l volum al punto quvalnt p. q q q

13 Erctazon 1: ttolazon pttrofotomtrca dl ram (II) E una ttolazon complomtrca dl ram (II), nzalmnt complato con ammonaca, mdant EDTA: Cu 4 NH 3 [Cu(NH 3 ) 4 ] HOOCH C N CH COOH [Cu(NH 3 ) 4 ] EDTA 4- [Cu(EDTA)] - 4 NH 3 HOOCH C CH CH N CH COOH alla lunghzza d onda d lavoro, l 6 nm, rulta: EDTA [Cu(NH 3 ) 4 ] EDTA 4- [Cu(EDTA)] - NH 3 > > noltr: [Cu(NH 3)4] > [Cu(EDTA)] -

14 Fa dll rctazon Dtrmnazon dlla curva d ttolazon, oa dl grafco dll aoranza (corrtta pr l fattor d dluzon) n funzon dl volum d ttolant; ntrpolazon d du tratt dlla curva d ttolazon con l mtodo d mnm quadrat dtrmnazon dl volum quvalnt; calcolo dl volum quvalnt dlla ua ncrtzza: dtt A a A a l quazon d rgron d du tratt rttln dlla curva d ttolazon, la condzon d ntrzon, ch vrfca al punto quvalnt, è a p a p qund: a' -a" p " -'

15 L ncrtzza ( p ) u p ottrrà a partr dall ncrtzz u paramtr (a, a,, ) dll rgron lnar, n a alla lgg ulla propagazon dll rror. S la grandzza y è una funzon d n varal x fra loro ndpndnt, cacuna afftta da un ncrtzza (dvazon tandard) x, l ncrtzza ulla grandzza y è data dall quazon: y x y x Nl cao dl volum al punto quvalnt avrà: p a' p a' ' p ' a'' p a' ' ' ' p ' ' a' 1 ' '-' ' (a'-a'') (''-') a'' - 1 ' '-' ' ' - (a'-a '') (''-')

16 Anal pttrofotomtrca d mcl E pol dtrmnar pr va pttrofotomtrca l concntrazon d pù pc n una mcla, anch loro pttr d aormnto ovrappongono, purché: tutt l pc odcano alla lgg d Lamrt-Br non v ano ntrazon fra d loro Mcla d du componnt (X Y) L aoranz all lunghzz d onda l l ono: XY Y A X [X] Y [Y] A X [X] Y [Y] l l X

17 L aorvtà d X Y all du lunghzz d onda poono r ottnut da prcdnt calrazon con oluzon contnnt una ola dll du pc: A X X [X] nota X A X / [X] nota A X X [X] nota X A X / [X] nota A Y Y [Y] nota Y A Y / [Y] nota A Y Y [Y] nota Y A Y / [Y] nota Not valor d X, X, Y, Y, poono calcolar [X] [Y] nlla mcla a partr da du mur d aoranza (A A ): A' A" [ ] Y [ ] X ' X " X ' Y " ' Y " Y Y ' X " X ' X " X A' A" ' Y " Y

18 Ca pol pr mcl a du componnt: S X Y X Y l dtrmnant dl tma nullo l tma è ndtrmnato d è pol, al mamo, calcolar la omma d [X] [Y], ad mpo da: A X [X] Y [Y] X ([X] [Y]) S X Y o X Y gl pttr d aormnto dll du pc, alla ta concntrazon, ntrcano n un punto dtto punto otco: XY Y X l l

19 Sclta dll lunghzz d onda mglor pr l anal pttrofotomtrca d mcl a du componnt S può dmotrar ch la mama prcon nlla dtrmnazon d [X] [Y] ottn quando l dtrmnant dl tma è mamo, oa: ( X Y - X Y ) >> n partcolar: l valor d [X] è pù prco : Y >> Y l valor d [Y] è pù prco : X >> X XY Y X l l

20 Mcl ad n componnt (n>) In quto cao da n mur d aoranza ad altrttant l potr ralr all concntrazon dgl n componnt: A ( j ) n 1 ( j ) [X ] con j 1,, n l mprcon u valor d [X ] ar pro alta. S prfrc qund ovradtrmnar l tma, oa ffttuar un numro d mur d A upror a qullo dll concntrazon ncognt (j max > n). Qut ultm vngono po ottmzzat (com paramtr) mdant computr con l mtodo d mnm quadrat non lnar, mpotando la condzon ch la ommatora: j max [A pr (j) - A calc (j) ] j1 a mnma

21 Il oftwar d ottmzzazon ha ogno, n nput, d un t d j max valor d pr cacun potnzal componnt dlla mcla d tm nzal dll concntrazon d var componnt. Succvamnt o dtrmna l concntrazon calcolando, pr cacuna dll j max lunghzz d onda, l aoranza torca mnmzzandon lo carto rptto a qulla prmntal. Rultato dlla rcotruzon d uno pttro prmntal, cottuto da 1 mur d aoranza, dalla comnazon dgl pttr d 5 pc.

22 Erctazon : dtrmnazon pttrofotomtrca dlla cotant d docazon acda d un ndcator L rctazon cont nl dtrmnar la K a dll ndcator umllfron (7-dro-cumarna): HO O O murando l concntrazon dll u form ndocata (HUm) docata (Um - ) pr va pttrofotomtrca. Pr l qulro: HUm H Um - - [H ][Um ] [HUm] K oa pk ph a a log - [HUm] [Um ]

23 I valor d [HUm] [Um - ] vngono calcolat da mur dll aoranza dll loro mcl a var ph, uando l lunghzz d onda 35 nm (l max pr HUm) 365 nm (l max pr Um - ) rolvndo l tma: A(35) HUm (35) [HUm] Um- (35) [Um - ] A(365) HUm (365) [HUm] Um- (365) [Um - ] poché la omma dll concntrazon dll du form dll ndcator è nota (ndo fata dall oprator): [HUm] [Um - ] c, può n altrnatva uar l tma: A(365) HUm (365) [HUm] Um- (365) [Um - ] c [HUm] [Um - ]

24 Fa dll rctazon Prparar oluzon d umllfron a dvr valor d ph; murar l aoranz a 35 a 365 nm pr l oluzon a dvro ph, rcavando valor dll pr l du pc Hum Um - dall aoranz dll du oluzon a ph trmo; rolvr pr cacun valor d ph du tm d quazon lnar, rcavando l copp d valor d [HUm] [Um - ] corrpondnt; applcar l mtodo d mnm quadrat all quazon: log ([HUm] / [Um - ]) pka ph uando du t d dat. L ntrctta dlla rtta d rgron fornc l pka dll umllfron.

25 Um - HUm punto otco

S O L U Z I O N I + 100

S O L U Z I O N I + 100 S O L U Z I O N I Nl 00 un farmaco vnva vnduto a 70 a) Nll pots ch ogn anno l przzo aumnt dl 3% rsptto all anno prcdnt quanto vrrbb a costar lo stsso farmaco nl 0? b) Supponamo ch l przzo dl farmaco nl

Dettagli

LE SOLUZIONI. [Per definizione la concentrazione di una soluzione è il rapporto

LE SOLUZIONI. [Per definizione la concentrazione di una soluzione è il rapporto LE SOLUZIONI. Una soluzon (d un crto soluto n un crto solvnt dl pso d kg è concntrata al 0%. Calcolar la quanttà d solvnt (n kg ch s dv aggungr alla soluzon pr ottnr una nuova soluzon, concntrata al 0%.

Dettagli

Soluzioni. 1. Data la funzione. a) trova il dominio di f

Soluzioni. 1. Data la funzione. a) trova il dominio di f Soluzon Data la funzon a) trova l domno d f f ( ) + b) ndca qual sono gl ntrvall n cu f() rsulta postva qull n cu rsulta ngatva c) dtrmna l vntual ntrszon con gl ass d) studa l comportamnto dlla funzon

Dettagli

L soluzon Data la funzon ln( ) f ( ) 3 a trova l domno d f b scrv, splctamnt pr stso, qual sono gl ntrvall n cu f() rsulta postva qull n cu rsulta ngatva c dtrmna l vntual ntrszon con gl ass d studa l

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale LTTOTCNCA nggnra ndutral MTOD D ANALS TASFOMATO DAL MUTU NDUTTANZ Stfano Pator Dpartmnto d nggnra Archtttura Coro d lttrotcnca (04N) a.a. 0-4 Torma d Thnn Condramo un bpolo L collgato al rto dl crcuto

Dettagli

Esame di Matematica e Abilità Informatiche - Settembre Le soluzioni

Esame di Matematica e Abilità Informatiche - Settembre Le soluzioni Esam d Matmatca Abltà Informatch - Sttmbr 03 L soluzon. Data la funzon f( ) a. trova l domno d f b. scrv, splctamnt pr stso, qual sono gl ntrvall n cu f() rsulta postva qull n cu rsulta ngatva c. dtrmna

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime stazionario

Esercitazioni di Elettrotecnica: circuiti in regime stazionario Maffucc: rcut n rgm stazonaro r- Unrstà dgl Stud d assno srctazon d lttrotcnca: crcut n rgm stazonaro ntono Maffucc r sttmbr Maffucc: rcut n rgm stazonaro r- Sr paralllo parttor S alcolar la rsstnza qualnt

Dettagli

SOLUZIONI. risparmio totale = D altra parte la traccia di dice anche che: e 64 L = produzione. Pertanto si ha: Quindi si ha un risparmio del 9,902%.

SOLUZIONI. risparmio totale = D altra parte la traccia di dice anche che: e 64 L = produzione. Pertanto si ha: Quindi si ha un risparmio del 9,902%. SOLUZIONI. Il costo d un farmaco da banco pr un dtrmnato prncpo attvo è così suddvso: l 7,% pr la confzon, l 7,% pr la produzon d l rstant % pr l IVA. Dlla quota rlatva alla produzon, l 3% è dovuto all

Dettagli

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti Prncp d applcazon dl mtodo dgl lmnt fnt Formulazon bas con approcco agl spostamnt PRINCIPIO DEI LAVORI VIRTALI Data una crta statca: sforz σ j, forz d volum F forz d suprfc f j ; s dmostra ch mporr la

Dettagli

Interferenza e diffrazione con gli esponenziali complessi. Nota

Interferenza e diffrazione con gli esponenziali complessi. Nota Intrfrnza dffrazon con gl sponnzal complss ota on s fanno commnt sul sgnfcato d rsultat ottnut, n su qullo dll pots d volta n volta assunt: lo scopo solo qullo d mostrar com funzon n pratca l formalsmo

Dettagli

Si possono distuguere due casi: a) molecole distinguibili: il numero di modi è dato da

Si possono distuguere due casi: a) molecole distinguibili: il numero di modi è dato da ESISTE UA OTEOLE DIFFEEA TA LE SOLUIOI DEI POLIEI E QUELLE DELLE OLECOLE PICCOLE DOUTA ALLA DIFFEEA DI DIESIOI TA LE OLECOLE POLIEICHE E QUELLE DEL SOLETE. Pr qusto motvo trattrmo l soluzon polmrch attravrso

Dettagli

LE MACCHINE SINCRONE

LE MACCHINE SINCRONE Applcazon ndutral Elttrch L Macchn Sncron LE MACCHNE SNCRONE ntroduzon L macchn ncron trovano la maggor part dll applcazon nl funzonamnto da gnrator, anch con l voluzon dlla tcnologa d convrttor tatc d

Dettagli

MATEMATICA CORSO A I COMPITINO (Tema 1) 18 Gennaio 2010

MATEMATICA CORSO A I COMPITINO (Tema 1) 18 Gennaio 2010 MATEMATICA CORSO A I COMPITINO (Tma 1) 18 Gnnaio 010 TESTO E SOLUZIONI 1. Una oluzion è un itma omogno prodotto dallo cioglimnto di una otanza olida, liquida o gaoa (oluto) in un opportuno liquido (olvnt).

Dettagli

MATEMATICA CORSO A I COMPITINO (Tema 2) 18 Gennaio 2010

MATEMATICA CORSO A I COMPITINO (Tema 2) 18 Gennaio 2010 MATEMATICA CORSO A I COMPITINO (Tma ) 18 Gnnaio 010 TESTO E SOLUZIONI 1. Una oluzion è un itma omogno prodotto dallo cioglimnto di una otanza olida, liquida o gaoa (oluto) in un opportuno liquido (olvnt).

Dettagli

Le soluzioni della prova scritta di Matematica del 24 Aprile 2014

Le soluzioni della prova scritta di Matematica del 24 Aprile 2014 L soluzon dlla prova scrtta d Matmatca dl Aprl. Sa data la unzon 3 a. Trova l domno d b. Scrv, splctamnt pr stso non sono sucnt dsgnn, qual sono gl ntrvall n cu è postva qull n cu è ngatva c. Dtrmna l

Dettagli

Materiali ed Approcci Innovativi per il Progetto in Zona Sismica e la Mitigazione della Vulnerabilità delle Strutture

Materiali ed Approcci Innovativi per il Progetto in Zona Sismica e la Mitigazione della Vulnerabilità delle Strutture Matral d Approcc Innovatv pr l Progtto n Zona Ssmca la Mtgazon dlla Vulnrabltà dll Struttur Salrno, 12 13 fbbrao 2006 Una pù smplc procdura pr la valutazon dlla rsposta ssmca dll struttur attravrso anals

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Chimica e Tecnologie Farmaceutiche (raggruppamento A-L)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Chimica e Tecnologie Farmaceutiche (raggruppamento A-L) L soluzon dlla prova scrtta d Matmatca pr l corso d laura n Chmca Tcnolo Farmacutch raruppamnto A-L. Data la unzon a. trova l domno d b. scrv, splctamnt pr stso, qual sono l ntrvall n cu rsulta postva

Dettagli

Fononi e vibrazioni reticolari i fononi fonone di modo comune.

Fononi e vibrazioni reticolari i fononi fonone di modo comune. Fonon brazon rtcolar L brazon dl rtcolo poono tudar, pnando al dualmo onda corpucolo, com partcll la cu nrga è quantzzata: fonon. S tratta d ocllazon latch dl rtcolo, drmo ch poono r cctat trmcamnt o dalla

Dettagli

A.A Elettronica - Soluzioni della prova scritta del 01/07/03

A.A Elettronica - Soluzioni della prova scritta del 01/07/03 A.A. -3 lttronca - Soluzon dlla prova scrtta dl /7/3 ) Assumamo nzalmnt ch l gnrator rogh una corrnt nulla applchamo l torma d Thvnn a mont dl dodo allora sosttundo l gnrator d corrnt con un crcuto aprto

Dettagli

Q & Tracce svolte di esercizi sulla Trasmissione del Calore Prof. Mistretta a.a. 2009/2010

Q & Tracce svolte di esercizi sulla Trasmissione del Calore Prof. Mistretta a.a. 2009/2010 racc olt d rcz ulla raon dl alor Prof. trtta a.a. 009/00 Erczo n. S condr una part d atton alta 4 larga 6 pa 0 la cu ucbltà trca è λ λ 0 8 [/( )]. In un crto gorno alor urat dll tpratur dlla uprfc ntrna

Dettagli

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl )

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl ) Spttro roto-vibrazional di HCl (H 5 Cl, H 7 Cl ) SCOPO: Misurar l nrgi dll transizioni vibro-rotazionali dll acido cloridrico gassoso utilizzar qust nrgi pr calcolar alcuni paramtri molcolari spttroscopici.

Dettagli

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste Infinitsimi dtto infinitsimo una qualsiasi quantita tndnt a zro quando una opportuna variabil tnd ad assumr un dtrminato valor dati du infinitsimi α β α β non sono paragonabili tra loro s il lim β α non

Dettagli

Le soluzioni della prova scritta di Matematica del 7 Febbraio 2014

Le soluzioni della prova scritta di Matematica del 7 Febbraio 2014 L soluzon dlla prova scrtta d Matmatca dl 7 Fbbrao. Sa data la unzon ln ln a. Trova l domno d. b. Scrv, splctamnt pr stso, qual sono gl ntrvall n cu è postva qull n cu è ngatva c. Dtrmna l vntual ntrszon

Dettagli

IDROLISI [CH COOH][OH 3 [CH COO ][H O] ] K eq [H 2 O] [CH COO ] K i. K [CH 3COOH] K w K w. [CH 3COO ] [H ] K a K K w

IDROLISI [CH COOH][OH 3 [CH COO ][H O] ] K eq [H 2 O] [CH COO ] K i. K [CH 3COOH] K w K w. [CH 3COO ] [H ] K a K K w IDROLISI La reazone con l acqua dell acdo conugato d una bae debole, o quella della bae conugata d un acdo debole, chama reazone d drol. L drol è una reazone acdo-bae che può avvenre quando un ale è olublzzato

Dettagli

Norma UNI EN ISO 13788

Norma UNI EN ISO 13788 UNI EN ISO 13788 (2003: PRESTAZIONE IGROTERMICA DEI COMPONENTI E DEGLI ELEMENTI PER EDILIZIA TEMPERATURA SUPERFICIALE INTERNA PER EVITARE L'UMIDITA' SUPERFICIALE CRITICA E CONDENSAZIONE INTERSTIZIALE METODO

Dettagli

Esame di Elettronica Corso di Laurea in Ingegneria delle Telecomunicazioni 13 febbraio 2008 Parte A

Esame di Elettronica Corso di Laurea in Ingegneria delle Telecomunicazioni 13 febbraio 2008 Parte A Esam d Elttronca Corso d Laura n Inggnra dll Tlcomuncazon 13 bbrao 2008 Part A 1. S consdr un amplcator d tnson con A v0 =1000, R n = 2 MΩ, R out = 100 Ω. S razon l amplcator n modo da ottnr una rsstnza

Dettagli

CEMENTO ARMATO PRECOMPRESSO Lezione 4

CEMENTO ARMATO PRECOMPRESSO Lezione 4 CEMENTO ARMATO PRECOMPRESSO Lzon 4 Il PROGETTO DI TRAVI IN C.A.P. Il prdmnonamnto dlla zon Il prdmnonamnto dllo forzo d prcompron Prcompron total Il cao dlla zon a doppo T Il cao dlla zon a T Prcompron

Dettagli

interazione forte il π ha una massa inferione al π violazione del numero lepto nico interazione debole conservazione dell'energia SI NO :

interazione forte il π ha una massa inferione al π violazione del numero lepto nico interazione debole conservazione dell'energia SI NO : Dir quali razioni sono possibili quali no. Nl caso siano possibili indicar l intrazion rsponsabil nl caso non lo siano, spigar prché. a) π π ν il π ha una massa infrion al π b) Λ p π ν violazion dl numro

Dettagli

Appendice 1. Approfondimento dei metodi statistici

Appendice 1. Approfondimento dei metodi statistici Appndc 1 Approfondmnto d mtod statstc APPROFONDIMENTO DEI METODI STATISTICI TASSO STANDARDIZZATO PER ETÀ DI MORTALITÀ (TSDM) E DI OSPEDALIZZAZIONE (TSDH). Il Tasso Standardzzato (TSD) è calcolato com

Dettagli

L ANALISI GERARCHICA E LE COMPONENTI DELLA VARIANZA

L ANALISI GERARCHICA E LE COMPONENTI DELLA VARIANZA CAPITOLO IV L ANALISI GERARCHICA E LE COMPONENTI DELLA VARIANZA 14.1. Anal grarchca o ntd n ANOVA I, II III 1 14.. Ntd ANOVA I o a fftt f 4 14.3. Intrazon: l'anal grarchca n prmnt fattoral 15 14.4. Dgn

Dettagli

Statistica multivariata Donata Rodi 04/11/2016

Statistica multivariata Donata Rodi 04/11/2016 Statistica multivariata Donata Rodi 4//6 La rgrssion logistica Costruzion di un modllo ch intrprti la dipndnza di una variabil catgorial dicotomica da un insim di variabili splicativ Trasformazioni da

Dettagli

Adattamento di una funzione ad un insieme di misure Metodo dei minimi quadrati

Adattamento di una funzione ad un insieme di misure Metodo dei minimi quadrati dattamento d una funzone ad un neme d mure Metodo de mnm quadrat Eempo: voglono tudare le propretà elatche d una molla. S fa la molla ad un etremo, applca una forza all altro etremo e murano gl allungament

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Univrità di apoli arthnop Facoltà di Inggnria Coro di Tramiioni umrich docnt: rof. Vito acazio 6 a Lzion: // Sommario Calcolo dlla proailità di rror nlla tramiion numrica in prnza di AWG AM inario M inario

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa (3)

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa (3) Corso d Mtod Matmatc pr l Inggnra A.A. 206/207 Esrc svolt sull funon d varabl complssa 3 Marco Bramant Poltcnco d Mlano Novmbr 8, 206 Classfcaon dll sngolartà d una funon, calcolo d svlupp d Laurnt, calcolo

Dettagli

teoria dell Orbitale Molecolare - Molecular Orbital (MO)

teoria dell Orbitale Molecolare - Molecular Orbital (MO) toa dll Obtal olcola - olcula Obtal (O) L ng l funzon d onda dgl stat stazona d un sstma quantstco sono dat dall soluzon dlla quazon d Schodng: P un sstma molcola, composto da nucl d ltton la Ψ è funzon

Dettagli

Apprendimento per Perceptron: esempio. Apprendimento di Reti di Perceptron. Discesa di Gradiente. gradiente

Apprendimento per Perceptron: esempio. Apprendimento di Reti di Perceptron. Discesa di Gradiente. gradiente / 3 ; J DA E F DA DA I DA $ N 45 2 dov "#$ &'#$, 9? K 9 O L M M K 9L 7 9 AC AC Sstm d Elaborazon dll Informazon 9 Sstm d Elaborazon dll Informazon Apprndmnto pr Prcptron smpo Apprndmnto d Rt d Prcptron

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Introduon al METODO DEGLI ELEMENTI FINITI Ossrvaon su mtod varaonal approssmat classc L unon approssmant dvono: Soddsar rqust d contnutà Essr lnarmnt ndpndnt complt Soddsar l condon al contorno ssnal Dcoltà:

Dettagli

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti.

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti. srcz d conomtra: sr srczo Costrur un smpo d varabl casual d tal ch Cov(,), ma d sano dpndnt. Soluzon Dobbamo vrcar l sgunt condzon: σ [ ] [ ] [ ] covaranza nulla ) ( ) ( ) dpndnza non lnar Prma cosa da

Dettagli

11. CRITERI DI RESISTENZA

11. CRITERI DI RESISTENZA . CRITERI DI RESISTENZA La vrfca d rtnza ha o copo d tabr o tato tnona d'mnto truttura anazzato è ta da provocarn cdmnto nto com rottura o nrvamnto. I probma fondamnta è quo mttr n razon paramtr crtc d

Dettagli

Ricorsione e gettoni di due colori Seconda Parte

Ricorsione e gettoni di due colori Seconda Parte Ricorion gttoni di du colori Sconda Part Gia vito nlla prima part Nlla prima part i vito com ricavar l funzioni gnratrici di probabilita aociat al proco dl lancio riptuto di un gtton bicolor {RN} ino al

Dettagli

17. Le soluzioni dell equazione di Schrödinger approfondimento

17. Le soluzioni dell equazione di Schrödinger approfondimento 7. soluzon dll quazon d Scrödngr approfondmno Gl sa ms Il gao d Scrödngr è l pù famoso sao mso dlla MQ. E una parclla un po spcal, prcé è un oggo macroscopco d cu s dscu l comporamno quansco. E anc una

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

MATRICE DI TRASFERIMENTO

MATRICE DI TRASFERIMENTO MATRICE DI TRASFERIMETO In qusto captolo vn prsntato l mtodo d calcolo dtto mtodo dlla matrc d trasfrmnto. Esso rsulta molto utl pr dtrmnar n modo satto l comportamnto crtco d sstm ch possono ssr dscrtt

Dettagli

UNITA' 5 SOMMARIO ATTENZIONE

UNITA' 5 SOMMARIO ATTENZIONE rmodnamca tramon dl calor U.5/0 UNIA' 5 SOMMARIO 5. SECONDO PRINCIPIO DEA ERMODINAMICA 5.1. Motor trmc 5.2. Scondo prncpo dlla trmodnamca condo Klvn-Planck 5.3. Macchn frgorfr 5.4. Pomp d calor 5.5. Scondo

Dettagli

VALUTAZIONI DI ERRORE

VALUTAZIONI DI ERRORE CORSO DI PROGETTAZIONE ASSISTITA DELLE STRUTTURE MECCANICHE PARTE IIIA VALUTAZIONI DI ERRORE VALUTAZIONE DELL ERRORE Il mtodo EF fornsc soluzon approssmat. S l f.n d forma rspttano dtrmnat condzon, l mtodo

Dettagli

Parte II TRASMISSIONE DEL CALORE

Parte II TRASMISSIONE DEL CALORE Part II SMISSIONE DE COE CONDUZIONE EMIC a conduzon è l mccanmo d cambo trmco ch ha luogo tra corp a contatto o tra du rgon dllo to mzzo oldo o fludo a dvra tmpratura. Il mccanmo d trafrmnto dl calor avvn

Dettagli

8. Circuiti non lineari

8. Circuiti non lineari 8. Crc non lnar odo dal. odo ral. nal d crc con dod mdan l modllo dal. Modllo dl dodo con cada d non. Modo rafco. nal d n crco lmaor d non mdan modo rafco. odo dodo dal = = < Cararca rafca Un dodo dal

Dettagli

G. Parmeggiani, 11/1/2019 Algebra Lineare, a.a. 2018/2019, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 11 (prima parte) = ( x) 2i x

G. Parmeggiani, 11/1/2019 Algebra Lineare, a.a. 2018/2019, numero di MATRICOLA PARI. Svolgimento degli Esercizi per casa 11 (prima parte) = ( x) 2i x G. Parmggan, //29 Algbra Lnar, a.a. 28/29, Scuola d Scnz - Cors d laura: Studnt: Statstca pr l conoma l mprsa Statstca pr l tcnolog l scnz numro d MATRICOLA PARI Svolgmnto dgl Esrcz pr casa (prma part)

Dettagli

IL PROGETTO DI TRAVI IN C.A.P. ISOSTATICHE

IL PROGETTO DI TRAVI IN C.A.P. ISOSTATICHE 6 IL PROGETTO DI TRAVI I C.A.P. ISOSTATICHE Il rogtto d una zon n c.a.. è, rtto all orazon d vrfca, un orazon bn ù comla, n quanto convolg un quanttà condrvol d aramtr ncognt a front d du ol quazon: l

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Trza part Com visto nll parti prcdnti pr potr dscrivr una curva data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: ) Dtrminar l insim di sistnza

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale EETTROTENA nggnra ndural TRANSTOR Sfano Paor Darmno d nggnra Archura oro d Elrocnca 43N a.a. 3-4 nroduzon Sudrmo l ranoro nl domno dl mo d crcu D dl ordn con orgn coan orgn nuodal om ranoro nndamo l oluzon

Dettagli

ELEMENTI DI ELETTRONICA APPLICATA E DI CONTROLLI AUTOMATICI Ing. Meccanica Consorzio Nettuno Torino Compito del

ELEMENTI DI ELETTRONICA APPLICATA E DI CONTROLLI AUTOMATICI Ing. Meccanica Consorzio Nettuno Torino Compito del Soluzion rcizio L quazioni dinamich dl itma ono: art lttrica: di v Ri + L + ω dt dov ω è la forza controlttromotric. art mccanica: dω J ϑ βω + i dt dϑ ω dt dov Jl M è il momnto d inrzia dl itma a du ma.

Dettagli

Biennio CLEM - Prof. B. Quintieri. Anno Accademico 2012-2013, I Semestre. (Tratto da: Feenstra-Taylor: International Economics)

Biennio CLEM - Prof. B. Quintieri. Anno Accademico 2012-2013, I Semestre. (Tratto da: Feenstra-Taylor: International Economics) CONOMIA INTRNAZIONAL Bnno CLM - Prof. B. Quntr IL TASSO DI CAMBIO Anno Accadmco 2012-2013, I Smstr (Tratto da: Fnstra-Taylor: Intrnatonal conomcs) S propon, d sguto, una brv rassgna d prncp fondamntal

Dettagli

Lezione 10. Prestazioni statiche dei sistemi di controllo

Lezione 10. Prestazioni statiche dei sistemi di controllo zion Prtazioni tatich di itmi di controllo Error a tranitorio aurito prtazioni tatich di un itma di controllo fanno rifrimnto al uo comportamnto a tranitorio aurito oia alla ituazion in cui il itma dopo

Dettagli

Il problema della Trave Inflessa

Il problema della Trave Inflessa Il problma dlla Tra Inflssa q F EI m Problma dlla tra EI q L F m ϕ - c ϕ spostamnto trasrsal rotaon curatura flssonal y M EI c momnto flttnt T d q T M q -T taglo carco trasrsal M M T TdT MdM quaon d campo

Dettagli

Nel primo caso: 0, 025m 2,5cm F2 2. Da cui x x1 x2 0, 025 0, 0125m 0, 0375m 2,5 1. 0,0125m 1, 25cm

Nel primo caso: 0, 025m 2,5cm F2 2. Da cui x x1 x2 0, 025 0, 0125m 0, 0375m 2,5 1. 0,0125m 1, 25cm Nl primo cao: k x 1 1 1,5 k 20 1 x1 0, 075m 7,5cm kx 2 2 0,5 k 20 2 x2 0, 025m 2,5cm Da cui x x1 x2 0, 075 0, 025m 0,10m 10cm k x 1 2 2 x 0,10m 10cm k k 20 1 2,5 k1 x1 x1 0, 025m 2,5cm k 100 1 2,5 k2 x2

Dettagli

Seminario: Dinamica quantistica inerziale di una particella in una dimensione

Seminario: Dinamica quantistica inerziale di una particella in una dimensione Snaro: Dnaa quansa nrzal d una parlla n una dnson Foralso quanso Funzon d onda: pr d ' ' dnsà d probablà sulla oordnaa al po  Valor d asa al po dll opraor : d A d A A ˆ ˆ * Saro quadrao do dlla proprà:

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale EETTROTENA nggnra ndural TRANSTOR Sfano Paor Darmno d nggnra Archura oro d Elrocnca 43N a.a. 3-4 nroduzon Sudrmo l ranoro nl domno dl mo d crcu D dl ordn con orgn coan orgn nuodal om ranoro nndamo l oluzon

Dettagli

Introduzione ai segnali (causali, regolari, di ordine esponenziale)... 2 Il segnale di Heavyside... 3 Definizione di trasformata di Laplace...

Introduzione ai segnali (causali, regolari, di ordine esponenziale)... 2 Il segnale di Heavyside... 3 Definizione di trasformata di Laplace... Appunti di Controlli Automatici Capitolo - part I Traformata di aplac Introduzion ai gnali (cauali, rgolari, di ordin ponnzial)... Il gnal di Havyid... 3 Dfinizion di traformata di aplac... 3 PROPRIETÀ

Dettagli

T 2. Figura 1: Conduzione monodimensionale in una lastra piana

T 2. Figura 1: Conduzione monodimensionale in una lastra piana CONDUZIONE ERMIC a conduzon è l mccanmo d cambo trmco ch ha luogo tra corp a contatto o tra du rgon dllo to mzzo oldo o fludo a dvra tmpratura. Il mccanmo d trafrmnto dl calor avvn con modaltà dvr a conda

Dettagli

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento Il campion I mtodi di campionamnto d accnno all dimnsioni di uno studio Raramnt in uno studio pidmiologico è possibil saminar ogni singolo soggtto di una popolazion sia pr difficoltà oggttiv di indagin

Dettagli

SEGNALI E SISTEMI PASSA-BANDA

SEGNALI E SISTEMI PASSA-BANDA SEGNALI E SISTEMI PASSA-ANDA Componnti a runz poitiv ngativ. Si conidri un gnal ) t ral la cui traormata di Fourir è rapprnta in Fig.. S ) S ) S ) Nll analii di gnali è talvolta util introdurr l grandzz

Dettagli

Il paradigma della programmazione dinamica

Il paradigma della programmazione dinamica Il paradgma della programmazone dnamca Paolo Camurat Dp. Automatca e Informatca Poltecnco d Torno Tpologe d problem Problem d rcerca: ete una oluzone valda? cclo Hamltonano: dato un grafo non orentato,

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

DISTRIBUZIONE DI GAUSS ( o normale [ 26 ] )

DISTRIBUZIONE DI GAUSS ( o normale [ 26 ] ) LABORATORIO DI FISICA IGEGERIA "La Sapnza" gnnao 003 DISTRIBUZIOE DI GAUSS ( o normal [ 6 ] ) La dnstà d probabltà d Gauss è: f ( x) π ( xm) Valor mdo: E() m Varanza: () La dstrbuzon gaussana è carattrzzata

Dettagli

LEZIONE N 10 IL CEMENTO ARMATO

LEZIONE N 10 IL CEMENTO ARMATO Coro d Tcnca dll Cotruzon I odulo / 27-88 EZIOE 1 I CEETO RTO PRECOPRESSO DISPOSIZIOE DEI CVI nraltà I conctt d momnto utl momnto utl aggunto Il fuo dl cavo rultant Dfnzon d unt lmt nfror uror Il fuo d

Dettagli

MATEMATICA GENERALE (A-K) -Base 13/2/2004

MATEMATICA GENERALE (A-K) -Base 13/2/2004 MATEMATICA GENERALE (A-K) -Bas //004 PRIMA PARTE ) Individuar la rimitiva dlla funzion f(x) = x log x assant r il unto (4,) ) Calcolar, usando la d nizion, la drivata dlla funzion f(x) = x + nl unto x

Dettagli

LA DISTRIBUZIONE NORMALE

LA DISTRIBUZIONE NORMALE LA DISTRIBUZIOE ORMALE Prma Principali carattritich dlla curva normal La curva normal tandardizzata Prma Un tipo molto important di ditribuzion di frqunza è qulla normal. Quta ditribuzion è particolarmnt

Dettagli

Modelli equivalenti del BJT

Modelli equivalenti del BJT Modll ulnt dl JT Pr lo studo dll pplczon crcutl dl JT, s è rso opportuno formulr d modll ulnt dl dsposto ch srssro rpprsntr n modo connnt l suo comportmnto ll ntrno d crcut. A scond dl tpo d pplczon (mplfczon

Dettagli

------------------------------------------------------------------------------------------------

------------------------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------ CAPITOLO ELEMENTI DI TERMOFLUIDODINAMICA ------------------------------------------------------------------------------------------------

Dettagli

INDICI DI VARIABILITÀ. Proprietà essenziali

INDICI DI VARIABILITÀ. Proprietà essenziali INDICI DI VARIABILITÀ Valor che ono calcolat per eprmere ntetcamente la varabltà d un fenomeno, o meglo la ua atttudne ad aumere valor dfferent tra loro Propretà eenzal. NON NEGATIVITÀ Una quala mura d

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

Esercitazione n 4. Meccanismi combinati Resistenze termiche e Trasmittanze termiche

Esercitazione n 4. Meccanismi combinati Resistenze termiche e Trasmittanze termiche Ercazon n 4 Mccanm combna nz rmch Tramanz rmch ) Valuar l ramanz rmch dll gun polog d fnr: a) fnra a vro ngolo ( por vro L [mm]; [W/(m)]); b) fnra con dopp vr ( por vro L [mm], ε ε 0.9, nrcapdn ara L n

Dettagli

CAMPO LONTANO GENERATO DA UNA APERTURA

CAMPO LONTANO GENERATO DA UNA APERTURA Potnzal Vtto Magntco P l campo d sognt magntch (aptu) occo utlzza l dual dl potnzal vtto A (utlzzato p l cont lttch) ch vn ndcato con vn dtto potnzal vtto magntco o d tzgald. all quazon d Maxwll s ha,

Dettagli

ESPERIMENTO DELLA LENTE E DELLA CANDELA

ESPERIMENTO DELLA LENTE E DELLA CANDELA S.S.I.S. a.a. 003-004 RELAZIONE di Laboratorio di Didattica dlla Fisica (Esprimnto dlla lnt dlla candla) di MARIA LEPORE SARA MARSANO I anno, Classi 47-48-59 Pro.ssa Tuccio SSIS a.a. 003-004 Laboratorio

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

V E > 0, V C < 0 W B >> L B J C J E. Catodo 1 - n Anodo - p Catodo 2 - n. n p (x) p n20. p n1 (x) p n10. n p0. p n2 (x) x W B.

V E > 0, V C < 0 W B >> L B J C J E. Catodo 1 - n Anodo - p Catodo 2 - n. n p (x) p n20. p n1 (x) p n10. n p0. p n2 (x) x W B. O AO POA A GUZO (J) onsdramo qu d sguto l caso d un transstor d to nn nl qual l concntrazon d drogant nll tr rgon soddsfno l sgunt dsuguaglanz (la gustfcazon vrrà data ù avant): >> >>. Assumamo com vrs

Dettagli

Problema 1D della barra inclinata

Problema 1D della barra inclinata roblma D dlla barra nclnata snθ cosθ cosθ - snθ f EA cosθ θ snθ θ - snθ θ cosθ EA f quaon d campo y y EA L condon al contorno EM: Asta nclnata Spostamnt nl rfrmnto local laon rfrmnto local-global snθ cosθ

Dettagli

ELEMENTI DI ELABORAZIONE DEI SEGNALI PER TELELOCALIZZAZIONE

ELEMENTI DI ELABORAZIONE DEI SEGNALI PER TELELOCALIZZAZIONE ELEMENTI DI ELABOAZIONE DEI SEGNALI PE TELELOCALIZZAZIONE nota pr l corso d Elaborazon d Sgnal pr Tlcomuncazon a cura d F. Bndtto G. Gunta. Introduzon al problma dlla dcson I componnt d bas d un problma

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Esercitazione di Controlli Automatici 1 n 3

Esercitazione di Controlli Automatici 1 n 3 0 aprle 007 a.a. 006/07 Rferendo al tema d controllo della temperatura n un locale d pccole dmenon dcuo nella eerctazone precedente, e d eguto rportato:. S analzzno le carattertche modal del loop nterno

Dettagli

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1. Studiamo la funzion q ( = at, ssndo a b costanti rali con a >. Il dominio dlla funzion è tutto R la funzion è ovunqu continua. Il grafico dlla funzion non

Dettagli

Appunti di Statistica

Appunti di Statistica Appunti di Statistica Appunti dall lzioni Nicola Vanllo 27 dicmbr 2018 2 Capitolo 1 Variabili Alatori Discrt 1.1 Variabil alatoria di Brnoulli Una variabil alatoria di Brnoulli, può assumr du valori, dnominati

Dettagli

Numeri complessi - svolgimento degli esercizi

Numeri complessi - svolgimento degli esercizi Numri complssi - svolgimnto dgli srcizi ) Qusto srcizio richid di calcolar la potnza n-sima (n 45) di un numro complsso. Scriviamo z nlla forma sponnzial z ρ iθ dov ) ( ) ρ ( + θ π 6 dato ch sin θ cos

Dettagli

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015 L soluzioni dlla prova scritta di Matmatica dl Fbbraio 5. Sia data la funzion a. Trova il dominio di f f b. Scrivi, splicitamnt pr stso non sono sufficinti disgnini, quali sono gli intrvalli in cui f è

Dettagli

Circuiti del primo ordine. Contengono un solo elemento dinamico Il loro comportamento è rappresentato da un equazione differenziale del I ordine.

Circuiti del primo ordine. Contengono un solo elemento dinamico Il loro comportamento è rappresentato da un equazione differenziale del I ordine. rcu dl prmo ordn onngono un olo lmno dnamco Il loro comporamno è rapprnao da un quazon dffrnzal dl I ordn. rcu n oluzon lbra gg d Krchhoff lazon cou - c d d coan d mpo c d d d d coan d mpo dx d x Forma

Dettagli

N = C. Lezione 1. Elettrostatica: forze elettriche e campo elettrico. Campo Elettrico. Azione del campo elettrico: Forze su cariche elettriche

N = C. Lezione 1. Elettrostatica: forze elettriche e campo elettrico. Campo Elettrico. Azione del campo elettrico: Forze su cariche elettriche lttostatca: foz lttch campo lttco Campo lttco è un campo d foz vttoal nllo spazo, coè una gandzza fsca con modulo dzon, funzon dlla poszon nllo spazo x, y, z to d Faaday-Maxwll zon dl campo lttco: Foz

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 5 Luglio 2010

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 5 Luglio 2010 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Aello d FISICA, 5 Luglo 00 Un coro d aa =00 g ene eo n oto u un ano orzzontale con eloctà =5. Il ano è cabro nel tratto AB (lungo d = 50 c con coecente d attrto dnaco

Dettagli

11 MOTORE AD INDUZIONE

11 MOTORE AD INDUZIONE Moto Ancon 194 11 MOTORE AD INDUZIONE Il moto ad nduzon è tato molto uato, pché è nato p almntato dttamnt dalla tnon d almntazon tfa, qund p la total mancanza d contollo, n applcazon a bao lvllo. Il moto

Dettagli

I VALORI MEDI MEDIE COME CENTRI

I VALORI MEDI MEDIE COME CENTRI I VALORI MEDI Valor che vengono calcolat per eprmere ntetcamente l ntentà d un fenomeno e per conentre la comparazone del fenomeno con fenomen analogh MEDIE COME CETRI I numer x R (=,,) poono eere rappreentat

Dettagli

Errori a regime per controlli in retroazione unitaria

Errori a regime per controlli in retroazione unitaria Appunt d ontoll Autoatc Eo a g n sst n toazon Eo a g p contoll n toazon untaa... Eo a g nlla sposta al gadno (o d poszon)... Eo a g nlla sposta alla apa (o d vloctà)...3 Eo a g nlla sposta alla paabola

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

RETROAZIONE A V. = segnale d ingresso del blocco dell amplificatore retroazionato. = segnale d uscita A = amplificatore β = rete di retroazione

RETROAZIONE A V. = segnale d ingresso del blocco dell amplificatore retroazionato. = segnale d uscita A = amplificatore β = rete di retroazione ETOZOE Un amplcat è sggtt a azn quand una pat dl sgnal d uscta vn ptat n ngss smmat algbcamnt al sgnal d ngss. n un amplcat taznat è psnt una t β (bta) d tazn ch pta n ngss una pat dl sgnal d uscta. l

Dettagli

Applicazioni dell integrazione matematica

Applicazioni dell integrazione matematica Applicazioni dll intgrazion matmatica calcolo dlla biodisponibilità di un farmaco Prof. Carlo Albrini Indic Indic 1 Elnco dll figur 1 1 Prliminari 1 Intrprtazion matmatica dl problma 3 Elnco dll figur

Dettagli