1 a. 1 b. Rappresenta i seguenti numeri su una retta orientata, scegliendo autonomamente una opportuna unità di misura. b 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 a. 1 b. Rappresenta i seguenti numeri su una retta orientata, scegliendo autonomamente una opportuna unità di misura. b 1"

Transcript

1 Rpprsnt i sgunti numri su un rtt orintt, sglino utonommnt un opportun unità i misur. 0 0 f g 7 0 h 0 Si noti h il m..m i nomintori è 0, quini un slt opportun è siurmnt qull i utilizzr 0 qurtti om unità i misur. È ttil nh un slt i 0 qurtti (utilizzno nh il mzzo qurtto), volno, s i si orgnizz n lo spzio sul foglio, si può nh usr om unità i misur 0 qurtti. Tutt l ltr slt risultrro impris o imprtiili. Nll figur l'unità i misur è 0 qurtti. Rpprsnt i sgunti numri su un rtt orintt, sglino utonommnt un opportun unità i misur. f g h Si noti h il m..m i nomintori è 8, quini un slt opportun è siurmnt qull i utilizzr 8 qurtti om unità i misur. È ttil nh un slt i 9 qurtti (utilizzno nh il mzzo qurtto), volno, s i si orgnizz n lo spzio sul foglio, si può nh usr om unità i misur 6 qurtti. Tutt l ltr slt risultrro impris o imprtiili. Nll figur l'unità i misur è 8 qurtti.

2 Rpprsnt i sgunti numri su un rtt orintt, sglino utonommnt un opportun unità i misur. f g h Si noti h il m..m i nomintori è 0, quini un slt opportun è siurmnt qull i utilizzr 0 qurtti om unità i misur. È ttil nh un slt i 0 qurtti (utilizzno nh il mzzo qurtto), volno, s i si orgnizz n lo spzio sul foglio, si può nh usr om unità i misur 0 qurtti. Tutt l ltr slt risultrro impris o imprtiili. Nll figur l'unità i misur è 0 qurtti. Rpprsnt i sgunti numri su un rtt orintt, sglino utonommnt un opportun unità i misur. f g h Si noti h il m..m i nomintori è 0, quini un slt opportun è siurmnt qull i utilizzr 0 qurtti om unità i misur. È ttil nh un slt i qurtti (utilizzno nh il mzzo qurtto). Tutt l ltr slt risultrro impris o imprtiili. Nll figur l'unità i misur è 0 qurtti.

3 Rpprsnt i sgunti numri su un rtt orintt, sglino utonommnt un opportun unità i misur. 0 f g h 6 0 Si noti h il m..m i nomintori è 0, quini un slt opportun è siurmnt qull i utilizzr 0 qurtti om unità i misur. È ttil nh un slt i qurtti (utilizzno nh il mzzo qurtto). Tutt l ltr slt risultrro impris o imprtiili. Nll figur l'unità i misur è 0 qurtti. Clolr il vlor ll sgunt sprssion ( 6) :( 9) :( 0 ) [ ( ) 8] (7 ) Prtimo ol r un'ohit i sgni: ( 6) :( 9) :( 0 ) [ ( ) 8] (7 ) =......= (6) :(9) :0 [ 8] (7 ) =... Pr il primo gruppo i moltiplizioni sfruttimo l proprità ll potnz, pr il rsto rispttimo l priorità tr l oprzioni:...=( ) [ 9 8] (7 ) =( 7 7 ) [8 8] () =( ) 0 7=6 7=7

4 Clolr il vlor ll sgunt sprssion ( ): ( 6 6 ) 6 ( 9 )+ Attnzion rispttr l priorità tr l oprzioni, ominimo on moltiplizioni ivisioni, mgri pnsno prim i sgni nh ll possiili fttorizzzioni: ( ): ( 6 6 ) 6 ( 9 )+ =......=( ) 6 9 ( 7 ) ( )+ =......=( 0 ) = = = 7 0 Smplifir l sgunt sprssion [( ) ( ] 8 ) :( ) +( + ) ( 0 ) L proprità ll potnz i possono ssr utili pr non ovr gstir numri troppo grni, inoltr imo nh un prim ohit i sgni: [( ) ( ] 8 ) :( ) +( + ) ( 0 ) =[( ] ) :( ) +( ) =( 6 ) :( ) +( =... )...=( ) +( ) = + = Smplifir l sgunt sprssion [( ) ( ] :( ) +( + ) ( ) 0 ) L proprità ll potnz i possono ssr utili pr non ovr gstir numri troppo grni, inoltr imo nh un prim ohit i sgni: [( ) ( ] :( ) +( + ) ( ) 0 ) =......=[( ] ) :( ) +( ) =( 6 ) :( ) +( ) =( ) +( ) = + =

5 Clolr il vlor ll sgunt sprssion ( ): 98 ( ) 6 ( 9 )+ Attnzion rispttr l priorità tr l oprzioni, ominimo on moltiplizioni ivisioni, mgri pnsno prim i sgni nh ll possiili fttorizzzioni: ( ): 98 ( ) 6 ( 9 )+ =......=( 7 7 ) =......=( 0 ) =( 0 ) =......=( 7 ) = = 7+ = = Il srtoio ll mhin i Sr ontin 70 litri l spi ll risrv si n quno rstno 7 litri i nzin. Sr viggi un vloità pr ui prorr km on un litro i nzin. S il srtoio è pino pr v prorrr 700 km, Sr riusirà rrivr stinzion prim h si n l spi ll risrv? In qusto tipo i prolmi non 'è un prour uni pr rrivr ll rispost, unqu ivntno prtiolrmnt rilvnti pr l vlutzion, l'ffiinz l hirzz spositiv. Prmss: i è stt ftt un omn in lingu itlin noi simo tnuti risponr in lingu itlin, non rto on gli ppunti o i loli isorinti. L nostr mi S r prt on 70=, litri i nzin nl srtoio. L spi ll risrv si nrà quno n vrà onsumti, 7=, ovvro quno vrà prorso,=68, hilomtri. Dto h 68,<700 possimo ffrmr h Sr non riusirà rrivr stinzion prim h si n l spi ll nzin. litri,

6 Du gruppi i svtori svno un gllri, isun gruppo omini un ll u prti oppost; s fino oggi hnno svto rispttivmnt 9 ll intr gllri rstno nor svr m, 7 qunto è lung l intr gllri? In qusto tipo i prolmi non 'è un prour uni pr rrivr ll rispost, unqu ivntno prtiolrmnt rilvnti pr l vlutzion, l'ffiinz l hirzz spositiv. Prmss: i è stt ftt un omn in lingu itlin noi simo tnuti risponr in lingu itlin, non rto on gli ppunti o i loli isorinti. Pr potr mglio onfrontr tr loro l frzioni, risrivimol on un nomintor omun. Dto h 7 9=6 i srà util tnr prsnt h 9 = 6 h 7 = 7 6. Fino oggi i u gruppi hnno svto omplssivmnt +7 = ll lunghzz finl. Rimn svr unqu soltnto 6 6 = 6 ll lunghzz finl, h orrispon m. Dunqu l lunghzz ll'intr gllri è 6=6 m. Esguir l sgunti oprzioni tr monomi, srivno il risultto om monomio in form norml. + ; ( ) (+ ) ( )( + )+( ) Doimo smplimnt pplir qunto già visto sui loli oi monomi, in prtiolr l'pplizion ll proprità istriutiv: s vo izionr i monomi simili, sguo il lolo sull prt not lsio inttt l prt inognit (h poi è il fttor omun h vin rolto). + =( +) = ( ) (+ ) ( )( + )+( ) =......=( ) () ( )( )+9 = =8

7 Esguir l sgunti oprzioni tr monomi, srivno il risultto om monomio in form norml. + ; ; ( 7 6 )( 8 ) ; ( 9 0 ):( ) + =( +) = =( ) = 6 ( 7 6 )( 8 )=+( )+ + + = ( 9 0 ):( )=+( 9 0 ) = Esguir l sgunti oprzioni tr monomi, srivno il risultto om monomio in form norml. + ; ( x y) (x y ):( x y ) [( x y)( x y) ( x y )] Doimo smplimnt pplir qunto già visto sui loli oi monomi, in prtiolr l'pplizion ll proprità istriutiv: s vo izionr i monomi simili, sguo il lolo sull prt not lsio inttt l prt inognit (h poi è il fttor omun h vin rolto). + =( +) = 9 0 ( x y) (x y ):( x y ) [( x y)( x y) ( x y )]=......= x y x y :( x y ) [ x y x y ]= x y :( x y ) [ 7 x y ]=......= (:) x y +7 x y = x y +7 x y = x y

8 Esguir l sgunti potnz i monomi, srivno il risultto om monomio in form norml. [( ) ] ( x ) [( x y ) ] ( n m ) Riorimoi h quno imo h fr on potnz i orin pri, il risultto è smpr positivo. [( ) ] = =6 ( x ) = 6 x 8 [( x y ) ] = 6 x y 8 ( n m ) = n 0 m Esguir l sgunti moltiplizioni tr monomi, srivno il prootto om monomio in form norml. ( 0 ) ( )( 8 9 ) ( x y z )(x y )( x z ) ( 0 )= ( 0)+ = 8 ( )( 8 9 )=+( 8 9 ) + + = ( x y z )(x y )( x z )=+ x ++ y + z + = x 6 y z 7

9 Consirimo l funzion f ( )= +( ). Dtrminr i sgunti vlori: f () ; f ( ) ; f ( 8 ) ; f (0) Consirno l'insim i numri rzionli si om ominio h om oominio, possimo ir h l funzion è inittiv? L priszion i intnr om ominio oominio l'insim i numri rzionli srv smplifiri l vit, non omplirl: possimo sglir qulunqu vlor sostituir ll vriil. f ()=()+( ) =9+ =9+=0 f ( )=( )+( ) = 6+ = 6+6=0 f ( 8 )=( 8 )+( 8 ) =8+( ) =8+ 9 =76 9 f (0)=(0)+(0 ) =0+= Un funzion si i inittiv s go i qust proprità x= y f (x)= f ( y), in prti s non sistono vlori ivrsi l ominio h hnno immgini uguli nl oominio. Già tr l prim quttro immgini h imo lolto possimo ossrvr h quini l funzion non può ssr inittiv. f ()= f ( ) Consirimo l funzion f (x)=x x+. Dtrminr i sgunti vlori: f () ; f ( ) ; f ( ) ; f (0) Consirno l'insim i numri rzionli si om ominio h om oominio, possimo ir h l funzion è inittiv? L priszion i intnr om ominio oominio l'insim i numri rzionli srv smplifiri l vit, non omplirl: possimo sglir qulunqu vlor sostituir ll vriil. f ()=() ()+=9 6+= f ( )=( ) ( )+=++= f ( )=( ) ( )+= += f (0)=(0) (0)+= Un funzion si i inittiv s go i qust proprità x= y f (x)= f ( y), in prti s non sistono vlori ivrsi l ominio h hnno immgini uguli nl oominio. Già tr l prim quttro immgini h imo lolto possimo ossrvr h quini l funzion non può ssr inittiv. f ()= f ( )

10 Consirimo l funzion f (x)=x x+. Dtrminr i sgunti vlori: f () ; f ( ) ; f ( ) ; f (0) Consirno l'insim i numri rzionli si om ominio h om oominio, possimo ir h l funzion è inittiv? L priszion i intnr om ominio oominio l'insim i numri rzionli srv smplifiri l vit, non omplirl: possimo sglir qulunqu vlor sostituir ll vriil. f ()=() ()+=6 6+= f ( )=( ) ( )+=+8+= f ( )=( ) ( )+= 9 6+= f (0)=(0) (0)+= Un funzion si i inittiv s go i qust proprità x= y f (x)= f ( y), in prti s non sistono vlori ivrsi l ominio h hnno immgini uguli nl oominio. Già tr l prim quttro immgini h imo lolto possimo ossrvr h quini l funzion non può ssr inittiv. f ()= f (0) Consirimo l funzion f ()=+( ). Dtrminr i sgunti vlori: f () ; f ( ) ; f ( ) ; f (0) Consirno l'insim i numri rzionli si om ominio h om oominio, possimo ir h l funzion è inittiv? L priszion i intnr om ominio oominio l'insim i numri rzionli srv smplifiri l vit, non omplirl: possimo sglir qulunqu vlor sostituir ll vriil. f ()=()+( ) =+9= f ( )=( )+( ) = +6= f ( )=( )+( ) = + 9 = f (0)=(0)+(0 ) =0+= Un funzion si i inittiv s go i qust proprità x= y f (x)= f ( y), in prti s non sistono vlori ivrsi l ominio h hnno immgini uguli nl oominio. Già tr l prim quttro immgini h imo lolto possimo ossrvr h quini l funzion non può ssr inittiv. f ()= f ( )

11 Consirimo l funzion f ()=8 +( ). Dtrminr i sgunti vlori: f ( ) ; f ( ) ; f ( 8 ) ; f (0) Consirno l'insim i numri rzionli si om ominio h om oominio, possimo ir h l funzion è inittiv? L priszion i intnr om ominio oominio l'insim i numri rzionli srv smplifiri l vit, non omplirl: possimo sglir qulunqu vlor sostituir ll vriil. f ( )=8( )+( ) = +6= f ( )=8( )+( ) = 6+6=0 f ( 8 )=8( 8 )+( 8 ) =+( 8 ) = = 6 6 f (0)=8(0)+(0 ) =0+= Un funzion si i inittiv s go i qust proprità x= y f (x)= f ( y), in prti s non sistono vlori ivrsi l ominio h hnno immgini uguli nl oominio. Già tr l prim quttro immgini h imo lolto possimo ossrvr h f ( )= f (0) quini l funzion non può ssr inittiv.

j Verso la scuola superiore Gli insiemi N, Z, Q, R

j Verso la scuola superiore Gli insiemi N, Z, Q, R j Vrso l suol suprior Gli insimi N, Z, Q, R Individu l rispost orrtt Un numro è divisor sondo di un numro s L oprzion è impossiil possiil in Z possiil in R Trdundo il tsto nll simologi mtmti si h ; pplindo

Dettagli

Circuiti Nel progettare un circuito destinato a svolgere una certa funzione normalmente si hanno a disposizione i seguenti elementi:

Circuiti Nel progettare un circuito destinato a svolgere una certa funzione normalmente si hanno a disposizione i seguenti elementi: Ciruiti Nl progttr un iruito stinto svolgr un rt funzion normlmnt si hnno isposizion i sgunti lmnti: NODO )Uno o più sorgnti i f..m. not (ttri, gnrtor i tnsion) )Filo mtllio (onuttor) ) intrruttori )sistnz

Dettagli

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

a b }. L insieme Q è pertanto l insieme delle frazioni.

a b }. L insieme Q è pertanto l insieme delle frazioni. I1. Insimisti I1.1 Insimi Il ontto i insim è un ontto primitivo, prtnto non n vin t un finizion rigoros. Si può ir, intuitivmnt, h un insim è un ollzion i oggtti pr ui vlgono lun proprità: Un lmnto i un

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

Algebra + numeri relativi +l calcolo letterale Equazioni, disequazioni, problemi

Algebra + numeri relativi +l calcolo letterale Equazioni, disequazioni, problemi Algr + numri rltivi +l lolo lttrl Equzioni, isquzioni, prolmi + numri rltivi Rpprsnt on un numro rltivo l sgunti grnzz. SEZ. O g Altituin i 00 m sul livllo l mr. Trzo pino i un prhggio sottrrno. Prit i

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ LE FRAZIONI Tst Tst i utolutzion 0 0 0 0 0 0 0 0 0 0 00 n Il mio puntggio, in ntsimi, è n Risponi ogni qusito sgnno un sol ll ltrnti. n Conront l tu rispost on l soluzioni. n Color, prtno sinistr,

Dettagli

Esercizi di matematica

Esercizi di matematica Esrizi i mtmti Gli srizi h trovi in qust pgin ti srvirnno pr vrifir h punto è l TUA prprzion in qust mtri: risponi solo ll omn S non risi risolvr qulh qusito, onsult i tuoi libri i tsto i tuoi qurni ll

Dettagli

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri + poligoni + poligoni l quivlnz i figur pin + tringoli + quriltri + poligoni l quivlnz i figur pin 1 Stilisi s l sgunti ffrmzioni sono vr o fls. SEZ. E In un poligono i lti sono onsutivi u u. L somm gli

Dettagli

Sistemi lineari COGNOME... NOME... Classe... Data...

Sistemi lineari COGNOME... NOME... Classe... Data... Cpitolo Sistmi linri Risoluzion grfi lgri rifi pr l lss prim COGNOME............................... NOME............................. Clss.................................... Dt...............................

Dettagli

Laboratorio di Algoritmi e Strutture Dati Ingegneria e Scienze Informatiche - Cesena A.A

Laboratorio di Algoritmi e Strutture Dati Ingegneria e Scienze Informatiche - Cesena A.A Inggnri Sinz Informtih - Csn A.A. 3- iln@s.unio.it, pitro.iln@unio.it : psuooi Clol il osto l mmino minimo un vrti sorgnt s tutti i rstnti vrtii nl grfo. Clol un lro i oprtur i mmini minimi (shortst pth

Dettagli

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data...

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data... Cpitolo Monomi e polinomi Monomi Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

Corso di Automi e Linguaggi Formali Parte 3

Corso di Automi e Linguaggi Formali Parte 3 Esmpio Sdo il pumping lmm sist tl ch ogni prol di tin un sottostring non vuot ch puo ssr pompt o tglit rpprsntrl com Invc non in dv ssr in posso Corso di Automi Linguggi Formli Gnnio-Mrzo 2002 p.3/22 Corso

Dettagli

Informatica 3. Informatica 3. LEZIONE 25: Algoritmi sui grafi. Lezione 25 - Modulo 1. Problema. Notazioni per il percorso più breve

Informatica 3. Informatica 3. LEZIONE 25: Algoritmi sui grafi. Lezione 25 - Modulo 1. Problema. Notazioni per il percorso più breve Informti Informti LZION : lgoritmi sui grfi Lzion - Moulo Moulo : Prolm l prorso più rv Moulo : Spnning tr osto minimo Prolm l prorso più rv Politnio i Milno - Prof. Sr omi Politnio i Milno - Prof. Sr

Dettagli

tx P ty P 1 + t(z P 1)

tx P ty P 1 + t(z P 1) Esrcizi dll dcim sttimn - Soluzioni Indichimo con S R 3 l sfr unitri nll mtric Euclid di R 3, oro S {x, y, z R 3 x + y + z 1}. Indichimo con N S il polo nord il polo sud di S, rispttimnt, oro N,, 1 S,,

Dettagli

Minimizzazione degli Stati in una Rete Sequenziale Sincrona

Minimizzazione degli Stati in una Rete Sequenziale Sincrona Minimizzzion gli Stti in un Rt Squnzil Sinron Murizio Plsi Murizio Plsi 1 Sintsi i Rti Squnzili Sinron Il proimnto gnrl i sintsi si svolg ni sgunti pssi: 1. Rlizzzion l igrmm gli stti prtir ll spifih l

Dettagli

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni j Verso l suol superiore +l lolo letterle Monomi Polinomi e prodotti notevoli Equzioni Monomi Il monomio x 4 y è simile : x 4 y 5 +x 4 y x y Due monomi sono simili se hnno l prte letterle ugule e, siome

Dettagli

Esercizi Circuiti Resistivi

Esercizi Circuiti Resistivi srcizi Circuiti sistivi srcizio n isolvr il circuito in figur: v v v v 4 4 5 4 0 0Ω 5Ω 5Ω 4 5Ω Ω 5 v 5 5 4 () isolvr un circuito signific in gnrl dtrminr tnsioni corrnti in tutti i lti dl circuito. Trsformimo

Dettagli

S kx. e che è dispari in quanto

S kx. e che è dispari in quanto imulzion MIUR Esm di tto 09 - mtmtic Prolm f x 0, 0 i h immditmnt: 0 x 0 x f ' x 0 x lim f lim 0 lim f lim x x x x f 0 Il grfico riport l ndmnto; pplicndo ll curv l trslzion di vttor 0;, ovvro: x' x y

Dettagli

j Verso la scuola superiore Geometria euclidea e analitica

j Verso la scuola superiore Geometria euclidea e analitica j rso l suol suprior Gomtri uli nliti Ossrv l spzzt stilisi quli ll sgunti rmzioni sono vr quli ls. B D G E B è onsutivo B. DE è onsutivo G. B è onsutivo D. B è int D. B è onsutivo D. E è onsutivo G. Il

Dettagli

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale Mtmtic (Esrcitzioni) Equzioni Disquzioni sponnzili - ritmich dott. Frncsco Ginnino dott. Vlri Montti Indic lzion Funzion sponnzil Equzioni disquzioni sponnzili Funzion ritmo Equzioni disquzioni ritmich

Dettagli

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale Elliss dfinizion L lliss è il luogo gomtrio di punti dl pino tli h l somm dll distnz d du punti fissi F1 F2 dtti fuohi è ostnt, ioè: smiss mggior smiss minor P smidistnz fol F 2 smidistnz fol F 1 F 2 smiss

Dettagli

Lezione 2: tanti tipi di problemi, anche insolubili

Lezione 2: tanti tipi di problemi, anche insolubili Lzion : tnti tipi i prolmi, nh insoluili Mirim Di Inni 5 nnio 011 1 Tnti tipi i prolmi Aimo inizito l sors lzion inno, più o mno ormlmnt, qullo h trizionlmnt vin onsirto un prolm: un insim i ti prtir i

Dettagli

Minimizzazione degli Stati in una macchina a stati finiti

Minimizzazione degli Stati in una macchina a stati finiti Rti Loih Sintsi i rti squnzili sinron Minimizzzion li Stti in un mhin stti initi Proimnto: Spiih Dirmm li stti Tll li stti Minimizzzion li stti Coii li stti Tll ll trnsizioni Slt lmnti i mmori Tll ll itzioni

Dettagli

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS Elttroni di Sistmi Digitli Sintsi di port logih omintori full CMOS Vlntino Lirli Diprtimnto di Tnologi dll Informzion Univrsità di Milno, 26013 Crm -mil: lirli@dti.unimi.it http://www.dti.unimi.it/ lirli

Dettagli

$marina/did/mdis03/ $marina/did/md $marina/did/mdis03/

$marina/did/mdis03/   $marina/did/md   $marina/did/mdis03/ Avvrtnz Mtmti Disrt (lmnti) E-O CL Informti 0 imr 00 Qust fotoopi sono istriuit solo om inizion gli rgomnti svolti lzion NON sostituisono in lun moo il liro i tsto: A. Fhini, Algr mtmti isrt, Dil Znihlli

Dettagli

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per C.13 ntgrl di Rimnn Prmttimo il sgunt risultto. Lmm C.13.1 Si f un funzion limitt su = [, b]. Allor f è intgrbil s solo s pr ogni ε > 0 sistono un funzion h ε S + f un funzion g ε S f tli h h ε g ε < ε.

Dettagli

Matematica 15 settembre 2009

Matematica 15 settembre 2009 Nom: Mtriol: Mtmti 5 sttmbr 2009 Non sono mmss loltrii. Pr l domnd rispost multipl, rispondr brrndo o rhindo hirmnt un un sol lttr. Pr l ltr domnd srivr l soluzion on svolgimnto ngli spzi prdisposti..

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

Algebra astratta +nsiemi Relazioni e funzioni Operazioni binarie e strutture algebriche Logica

Algebra astratta +nsiemi Relazioni e funzioni Operazioni binarie e strutture algebriche Logica lr strtt +nsimi Rlzioni unzioni Oprzioni inri struttur lrih Loi +nsimi Quli ll sunti sprssioni iniviuno un insim? SEZ. S h i l Gli otti sul mio tvolo. Tr iori proumti. L onn h vivono s tu. Cinqu rzz ll.

Dettagli

Esempio 1 Consideriamo un grafo G con insieme di nodi. mentre l insieme di archi é il seguente sottinsieme di coppie di nodi in V

Esempio 1 Consideriamo un grafo G con insieme di nodi. mentre l insieme di archi é il seguente sottinsieme di coppie di nodi in V 1 Tori i grfi Pr prim os imo l finizion i grfo. Dfinizion 1 Un grfo G é ostituito un oppi i insimi (V, A) ov V é tto insim i noi A é tto insim i rhi é un sottinsim i tutt l possiili oppi i noi in V. S

Dettagli

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite 66 Unità idtti N 08 I sistemi di primo grdo due inognite U.. N 08 I sistemi di primo grdo due inognite 01) Coordinte rtesine 0) I sistemi di primo grdo due inognite 0) Metodo di sostituzione 04) Metodo

Dettagli

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h?

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h? 1) L unità l SI pr l tmprtur l mss sono, rispttivmnt gri grmmi klvin kilogrmmi Clsius milligrmmi Clsius kilogrmmi klvin grmmi 2) Qul mtril ffon nll olio ( = 0,94 g/m 3 )? ghiio ( = 0,92 g/m 3 ) sughro

Dettagli

Anno 2. Potenze di un radicale e razionalizzazione

Anno 2. Potenze di un radicale e razionalizzazione Anno Potenze di un rdicle e rzionlizzzione Introduzione In quest lezione impreri utilizzre le ultime due tipologie di operzioni sui rdicli, cioè l potenz di un rdicle e l rdice di un rdicle. Successivmente

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di seondo

Dettagli

RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI

RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI 2 L soluzion dimnsionl ottiml pr signz prtiolri Rordi on snz ihir Innsti on snz ihir Clssi sondo nssità Dimtro di usit vriil Collgmnto l fondo

Dettagli

L insieme Q+ Le frazioni Operazioni con le frazioni Problemi con le frazioni

L insieme Q+ Le frazioni Operazioni con le frazioni Problemi con le frazioni L insieme Q+ Le frzioni Operzioni on le frzioni Prolemi on le frzioni Le frzioni Ini l rispost estt. In un frzione il numertore ini SEZ. C in qunte prti si ivie l unità. qunti interi si onsierno. qunte

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA Nom Cognom cls D 6 Dicmr 8 VERIFICA di MATEMATICA PROBLEMA Considr l unzion, studin l ndmnto trccin il grico proil punti: Di l dinizion di unzion inittiv Sull dl grico proil ch hi trccito, l unzion è inittiv?

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false.

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false. Grnzz unzioni Grnzz, unzioni mpirih mtmtih Grnzz irttmnt invrsmnt proporzionli Applizioni ll proporzionlità Grnzz, unzioni mpirih mtmtih Stilisi s l sunti rmzioni so vr o ls. SZ. I Un rnzz è vriil s ssum

Dettagli

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza Alri Informtic II Cpitolo 5 Alri E' un gnrlizzzion dll struttur squnz Si rilss il rquisito di linrità: ogni lmnto (nodo) h un solo prdcssor m può vr più succssori. Il numro di succssori (figli) può ssr

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spiit Comptiilità Vrsion l 13/01/05 (Frrni( Antol) Mhin non ompltmnt spiit Sono mhin in ui

Dettagli

Una relazione R in un insieme A si dice relazione d'ordine (o ordinamento) se e solo se è riflessiva, antisimmetrica e transitiva.

Una relazione R in un insieme A si dice relazione d'ordine (o ordinamento) se e solo se è riflessiva, antisimmetrica e transitiva. F0 RELZIONI D'ORDINE. Rlzioni 'orin Un rlzion R in un insim si i rlzion 'orin (o orinmnto) s solo s è rilssiv, ntisimmtri trnsitiv. Prsi u lmnti x, y, s R è un orinmnto in, si i h «x pr y» si sriv x y,

Dettagli

IL MOTO NELLA ZONA INSATURA

IL MOTO NELLA ZONA INSATURA L ritnzion dll umidità L suprfii d 1 4 rpprsntno l sussiv fsi di drnggio gio dll qu d un mzzo poroso. Al rsr dl drnggio l qu l si ritir ngli spzi intrstizili on suprfii urvtur ur rsnt d umntndo il rio

Dettagli

LICEO SCIENTIFICO SESSIONE STRAORDINARIA PROBLEMA 2

LICEO SCIENTIFICO SESSIONE STRAORDINARIA PROBLEMA 2 www.mtfili.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 27 - PROBLEMA 2 L funzioni g, g 2, g, g 4 sono dfinit nl modo sgunt: g (x) = 2 x2 2 g 2 (x) = x g (x) = 2 π cos (π 2 x) ) g 4 (x) = ln( x ) Vrific

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO ZENALE e BUTIINONE KIT ESTIVO MATEMATICA A.S. 0/ CLASSI SECONDE IeFP OPERATORE GRAFICO Al fine di tenere in llenmento le ilità mtemtihe propedeutihe ll lsse terz, onsiglimo lo svolgimento piere di eserizi

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 15/01/05 Sono mhin in ui pr lun onfigurzioni

Dettagli

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi.

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi. I PRODOTTI NOTEVOLI Nel lolo letterle pit spesso di inontrre moltiplizioni tr prtiolri polinomi. I reltivi sviluppi si ottengono pplindo le regole fin qui viste, m i risultti, opportunmente semplifiti,

Dettagli

La pendenza m può essere ricavata derivando l equazione della semiellisse situata nel semipiano y 0 : a a

La pendenza m può essere ricavata derivando l equazione della semiellisse situata nel semipiano y 0 : a a Esm di Stto 7 sssion strordinri Prolm Utilizzndo l formul di sdoppimnto, l tngnt ll lliss nl punto ; x y x x y y x y Imponndo il pssggio pr (; ) si ottin: x ch, sostituito nll quzion dll lliss, prmtt di

Dettagli

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR Tizin Rprlli 5/5/8 RICHIAMI DI TEORIA Proposizion.. Si f C ([, b]) g C ([, b]), llor f(x)g(x)dx = [F (x)g(x)] b F (x)g (x)dx. dov F (x) è un

Dettagli

Aquadue Duplo Pag. 1

Aquadue Duplo Pag. 1 Collgr il progrmmtor l ruintto. Pg. 1 4 5 6 TIME DY 4 5 6 STRT STOP CNCEL TIME DY lik! 4 5 6 STRT STOP CNCEL TIME DY Pr (o.): 8410 prir il moulo i progrmmzion prmno sui u pulsnti ltrli insrir un ttri llin

Dettagli

Che cosa c è nella lezione. Questa lezione si occupa di tecniche avanzate di risoluzione dei problemi: il backtracking. il paradigma greedy.

Che cosa c è nella lezione. Questa lezione si occupa di tecniche avanzate di risoluzione dei problemi: il backtracking. il paradigma greedy. Algoritmi Progrmmzion Avnzt - tori /9 Ch cos c è nll lzion Qust lzion si occup i tcnich vnzt i risoluzion i problmi: il bcktrcking il prigm gry. 2/9 Algoritmi Progrmmzion Avnzt - tori 3/9 Tipologi i problmi

Dettagli

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE PROPRIETA GEOMETRICHE DELL ELLISSOIDE Al fin di stbilir un gomtri sull llissoid di rotzion è ncssrio non solo dfinir l quzioni dll curv idon d individur

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

n volte m volte n+m volte n volte n volte n volte } = a n + n + n = a n m

n volte m volte n+m volte n volte n volte n volte } = a n + n + n = a n m Corso di Potenzimento.. 009/010 1 Potenze e Rdicli Dto un numero positivo, negtivo o nullo e un numero intero positivo n, si definisce potenz di se ed esponente n il prodotto di n fttori tutti uguli d

Dettagli

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota:

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota: Rpporto Incrmntl α Δ Δy y m tnα y. Il rpporto incrmntl dll unzion nl punto rltivo d un incrmnto è il coicint nolr dll scnt l rico dll unzion ni punti di sciss d Not: Nll smpio rico è riportto > m, in nrl,

Dettagli

Le equazioni di secondo grado

Le equazioni di secondo grado Le equzioni di seondo grdo Un equzione è di seondo grdo se, dopo ver pplito i prinipi di equivlenz, si può srivere nell form on 0,, R Not: è nhe detto termine noto. Esempio Sviluppimo l seguente equzione:

Dettagli

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi.

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi. Corso di Anlisi: Algbr di Bs ^ Lzion Logritmi. Proprità di ritmi Equzioni ritmih. Disquzioni ritmih. Allgto Esrizi. LOGARITMI : Pr ritmo intndimo un sprssion lttrl indint un vlor numrio. Dfinizion : Si

Dettagli

Progetto di cinghie trapezoidali

Progetto di cinghie trapezoidali Progtto i cinghi trpzoili L cinghi trpzoili sono utilizzt frquntmnt pr l trsmission i potnz ntggi Bsso costo Smplicità i instllzion Cpcità i ssorbir vibrzioni torsionli picchi i coppi Svntggi Mncnz i sincronismo

Dettagli

Aquadue Duplo. Guida all utilizzo. click! NEW! ON! c. Collegare il programmatore al rubinetto.

Aquadue Duplo. Guida all utilizzo. click! NEW! ON! c. Collegare il programmatore al rubinetto. Collgr il progrmmtor l ruintto. quu Duplo Pg. Gui ll utilizzo DY DY DY lik! DY Pr quu Duplo volution (o.): 80 prir il moulo i progrmmzion prmno sui u pulsnti ltrli insrir un ttri llin. ppn ollgt l ttri,

Dettagli

Scomposizione di polinomi 1

Scomposizione di polinomi 1 Somposizione i un polinomio Cpitolo Somposizione i polinomi 1 erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione Cognom Nom: Numro i Matriola: Spazio risrvato alla orrzion 1 2 3 6 Total /25 /27 /28 /20 /100 1. a) Si finisa formalmnt il ontto i orin topologio i un grafo irzionato alilio. In assnza i qusta finizion

Dettagli

( x) x x. Integrali (di Paolo Urbani febbraio 2011) Indice in ultima pagina Integrale indefinito. Area=

( x) x x. Integrali (di Paolo Urbani febbraio 2011) Indice in ultima pagina Integrale indefinito. Area= ( ) Cso : r fr du fuzioi oiu sgo divrso. Il prodio o i. Espio: Clolr l r oprs fr l fuzioi y r ( ) y ll irvllo [ ;]. r ( ) ( ) 9 0 6 Idi Igrl idfiio... Clolo dll igrl.... Prodoo fr os fuzio.... So/Diffrz

Dettagli

Utilizzo della funzione Adesivo stampabile. Utilizzo della schermata di modifica. Computer. Tablet. ScanNCutCanvas

Utilizzo della funzione Adesivo stampabile. Utilizzo della schermata di modifica. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Utilizzo ll unzion Asivo stmpil È possiil rr in moo molto smpli sivi unii utilizzno un stmpnt gtto inhiostro l unzion Tglio irtto ll mhin SnNCut. Pr inormzioni sull oprzioni i s i SnNCutCnvs,

Dettagli

Aquauno Video 2 Plus

Aquauno Video 2 Plus Collgr il progrmmtor l ruintto. Aquuno Vio 2 Plus Pg. 1 Gui ll utilizzo 3 START STOP RESET CANCEL 3 4 5 6 3 4 5 6 3 4 5 6 lik! Pr Aquuno Vio 2 (o.): 8454-8428 Pr Aquuno Vio 2 Plus (o.): 8412 Aprir il moulo

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

Caratterizzazione meccanica dei materiali

Caratterizzazione meccanica dei materiali Crttrizzzion mni di mtrili Esist notvol numro di prov mnih tt ll rttrizzzion dl omportmnto strutturl di mtrili /trzion, omprssion, fti, frttur, Lo sopo di isun è dfinir, in isun mito, i limiti di utilizzilità

Dettagli

Sintesi: Assegnamento degli stati. Sintesi Sequenziale Sincrona Sintesi Comportamentale di reti Sequenziali Sincrone. Sintesi: Scelta del codice

Sintesi: Assegnamento degli stati. Sintesi Sequenziale Sincrona Sintesi Comportamentale di reti Sequenziali Sincrone. Sintesi: Scelta del codice Sintsi: Assgnmnto gli stti Sintsi Squnzil Sinron Sintsi Comportmntl i rti Squnzili Sinron L riuzion l numro gli stti minimizz il numro i lmnti i mmori quini i vriili i stto h srivono l mhin sinttizzr A

Dettagli

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO)

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO) Le equzioni di seondo grdo Appunti delle lezioni di Armndo Pisni A.S. 3- Lieo Clssio Dnte Alighieri (GO) Not Questi ppunti sono d intendere ome guid llo studio e ome rissunto di qunto illustrto durnte

Dettagli

Esercizi di Algebra Lineare - Fogli 1-2 Corso di Laurea in Matematica 2 ottobre 2016

Esercizi di Algebra Lineare - Fogli 1-2 Corso di Laurea in Matematica 2 ottobre 2016 Esrizi i Algr Linr - Fogli 1-2 Corso i Lur in Mtmti 2 ottor 2016 1. Logi tori lmntr gli insimi Esrizio 1.1 Ngr un ssrzion. Espliitr l ngzion ll sgunti ssrzioni: (P ) ogni stunt i qust ul minornn, oppur

Dettagli

The cost of the material maintenance is averaged over the last 3 years.

The cost of the material maintenance is averaged over the last 3 years. Anlisi i osti i un Diprtimnto 11 TABLE 4 Dprition n mintnn osts (unit: ITL) Ctgory Y Prio Inrs vlu Annul vlu 1 Furnitur 5 1.1.90{31.12.95 219 311 127 43 862 225 2 Lirry 5 1.1.90{31.12.95 542 832 793 108

Dettagli

Fig. 1. 1) La resistenza totale della bobina vale: (*) 2) Il modulo B del campo di induzione magnetica B r nel punto medio M della spira vale: L (*)

Fig. 1. 1) La resistenza totale della bobina vale: (*) 2) Il modulo B del campo di induzione magnetica B r nel punto medio M della spira vale: L (*) Fcoltà di nggnri Prov Scritt di Fisic uglio 4 - Compito usito n. n un filo rttilino lungo fluisc un corrnt. Ad un distnz dl filo è post un oin, il cui punto mdio è ll stss quot dl punto mdio O dl filo.

Dettagli

L insieme N e l insieme Z Le cifre e i numeri Le quattro operazioni e le potenze in N Le espressioni La misura e i problemi

L insieme N e l insieme Z Le cifre e i numeri Le quattro operazioni e le potenze in N Le espressioni La misura e i problemi L nsm N l nsm Z L r numr L quttro oprzon l potnz n N L sprsson L msur prolm L r numr 1 Stls s l sunt rmzon sono vr o ls. SEZ. A l m n o p q 39 è un numro spr. 112 è un numro pr. In 79, 9 è un r. 10 è un

Dettagli

EQUAZIONI DI SECONDO GRADO

EQUAZIONI DI SECONDO GRADO Autore: Enrio Mnfui - 30/04/0 EQUAZIONI DI SECONDO GRADO Le equzioni di seondo grdo in un inognit sono uguglinze di due polinomi di ui lmeno uno è di seondo grdo e l ltro è di grdo minore o ugule due.

Dettagli

Trasformazioni geometriche +sometrie Omotetia e similitudine Teoremi di Euclide e teorema di Talete

Trasformazioni geometriche +sometrie Omotetia e similitudine Teoremi di Euclide e teorema di Talete Trsormzioni gomtrih +somtri Omotti similituin Tormi i Euli torm i Tlt +somtri Stilisi s l sgunti rmzioni sono vr o ls. SEZ. N g h i l pplino un isomtri un igur, ss si orm. L simmtri ntrl è un prtiolr rotzion.

Dettagli

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2 Appunti dll lzion dl Prof Stfno D Mrchi dl //6 cur dl Prof Frnndo D Anglo Soluzion di un srcizio ssgnto nll scors lzion (srcizio h) (8) L soluzion gnrl dll quzion ssocit è dt d: (8) ( ) o Ossrvto ch il

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

I LIMITI DI FUNZIONI - CALCOLO

I LIMITI DI FUNZIONI - CALCOLO Autor: Erico Mfucci - // I LIMITI DI FUNZIONI - CALCOLO Dopo vr studito l tori di iti, dobbimo dsso vdr com si clcolo. Storicmt il clcolo di iti vi smplificto d u procsso ch prd il om di ritmtizzzio dll

Dettagli

ISTITUTO TECNICO INDUSTRIALE "E. Fermi" LUCCA Anno Scolastico 2017/2018 Programma di MATEMATICA classe prima Sez. G Insegnante: MUSUMECI LUCIANA

ISTITUTO TECNICO INDUSTRIALE E. Fermi LUCCA Anno Scolastico 2017/2018 Programma di MATEMATICA classe prima Sez. G Insegnante: MUSUMECI LUCIANA ISTITUTO TENIO INDUSTILE "E. Fermi" LU nno Solstio / Progrmm di MTEMTI lsse prim Sez. G Insegnnte MUSUMEI LUIN Gli insiemi ppresentzione di un insieme. I sottoinsiemi. Le operzioni on gli insiemi unione

Dettagli

KIT ESTIVO MATEMATICA A.S. 2018/19

KIT ESTIVO MATEMATICA A.S. 2018/19 ZENALE e BUTIINONE KIT ESTIVO MATEMATICA A.S. 8/ CLASSI PRIME IeFP OPERATORE GRAFICO Al fine di tenere in llenmento le ilità mtemtihe propedeutihe ll lsse seond, onsiglimo lo svolgimento piere di eserizi

Dettagli

Il processo inverso della derivazione si chiama integrazione.

Il processo inverso della derivazione si chiama integrazione. Ingrl Indinio l Anidriv Il prosso invrso dll drivzion si him ingrzion. No l vrizion isnn di un grndzz p.s. l vloià è nssrio spr om si ompor l grndzz isn pr isn p.s. l posizion. No llor un unzion il problm

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1 Primo ompitino, 8 novemre 07 Testi Prim prte, gruppo. =, = ; r = α = = 0, = 4; r = α = r = 3, α = π/3; = =. Trovre le soluzioni ell isuguglinz tn( tli he 0 π. + log log(log ; lim + os(e ; lim 4. Clolre

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

Esercizi sulla Geometria Analitica

Esercizi sulla Geometria Analitica Esrcizi sulla Gomtria Analitica Esrcizio Siano dat l rtt di quazion x + y + 4 0 x + y 0 Dir s ciascuna dll sgunti affrmazioni è vra o falsa: a) l rtt sono paralll b) l du rtt si intrscano nl punto (, 5

Dettagli

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone. Macchine non completamente specificate

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone. Macchine non completamente specificate Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 9/12/03 Mhin non ompltmnt spifit Sono mhin in ui pr lun onfigurzioni

Dettagli

FUNZIONE LEGGE CHE LEGA DUE VARIABILI X E Y

FUNZIONE LEGGE CHE LEGA DUE VARIABILI X E Y FUNZIONE LEGGE CHE LEGA DUE VARIABILI E IN MODO CHE PER OGNI VALORE DI CORRISPONDA UNO ED UN SOLO VALORE DI y=f(x) x f y Prof. Breris Pol - 0 y=f(x) INIETTIVA, SURIETTIVA, BIETTIVA f : x! y 4 x=vriile

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 INTEGRALI GENERALIZZATI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 INTEGRALI GENERALIZZATI Univrsità Carlo Cattano Inggnria gstional Analisi matmatia a.a. 7/8 INTEGRALI GENERALIZZATI ESERCIZI CON SOLUZIONE ) Disutr la onvrgnza o mno di sgunti intgrali gnralizzati: a) d ; b) ln d ; ) d ; d) )

Dettagli

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico I S I E. Fermi - Lu Istituto Tenio settore Tenologio nno solstio / Progrmm di MTEMTI lsse I Insegnnte Podestà Tizin Gli insiemi numerii I numeri nturli, i numeri interi, i numeri rzionli. ddizione, sottrzione,

Dettagli

Il calcolo letterale

Il calcolo letterale Il clcolo letterle Finor imo studito gli insiemi numerici espressioni numeriche. Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere e sviluppre le regole di quello

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

APPUNTI DI GEOMETRIA ANALITICA

APPUNTI DI GEOMETRIA ANALITICA Prof. Luigi Ci 1 nno solstio 13-14 PPUNTI DI GEOMETRI NLITIC Rett orientt Un rett r si die orientt qundo: 1. È fissto un punto di riferimento, detto origine;. Dei due possiili versi in ui un punto si può

Dettagli

VERIFICA DI MATEMATICA 1^F Liceo Sportivo 15 marzo 2018 Rispondere su un foglio protocollo e riconsegnare entro il 22 marzo 2018 NOME E COGNOME

VERIFICA DI MATEMATICA 1^F Liceo Sportivo 15 marzo 2018 Rispondere su un foglio protocollo e riconsegnare entro il 22 marzo 2018 NOME E COGNOME VERIFICA DI MATEMATICA 1^F Liceo Sportivo 15 mrzo 2018 Risponere su un foglio protocollo e riconsegnre entro il 22 mrzo 2018 NOME E COGNOME 1 Eseguire le seguenti moltipliczioni tr monomi, scriveno il

Dettagli