Luciano Battaia. Versione del 3 dicembre L.Battaia. Integrali impropri

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Luciano Battaia. Versione del 3 dicembre L.Battaia. Integrali impropri"

Transcript

1 Lucino Btti Versione del 3 dicembre 200 In quest not presento le definizioni e lcune proprietà degli integrli, con prticolre rigurdo l motivo di certe scelte nelle definizioni. Il concetto di integrle o è un generlizzzione non bnle del concetto di integrle di Riemnn, e ritengo che solo un riflessione ccurt sul significto delle definizioni dte poss contribuire d evitre errori nche grossolni. Non sono proposte qui le dimostrzioni dei vri risultti, che si possono trovre su un qulunque mnule di nlisi delle funzioni di un vribile. Pg. di 7

2 Pg. 2 di 7 Definizioni Integrzione su intervlli illimitti Integrle o di funzioni illimitte Perchè queste definizioni? Un proprietà specile Due esempi interessnti Conclusioni Definizioni L integrle di Riemnn risolve il problem dell misur di insiemi pini in un grnde numero di csi, m non è sufficiente per le ppliczioni, nche in csi di frequente interesse. Solo l teori dell integrzione secondo Lebesgue risult essere pienmente soddisfcente, si dl punto di vist prtico che d quello teorico. Tr l ltro con l teori di Lebesgue si risolve nche il problem dell integrzione di funzioni che, per l integrbilità secondo Riemnn, sono troppo discontinue ; l integrle di Lebesgue h nche numerosi ltri vntggi dl punto di vist teorico. Considert comunque l complessità dell teori dell integrle secondo Lebesgue, è possibile introdurre invece un estensione del concetto di integrle di Riemnn, sufficiente trttre lcuni csi più comuni: si trtt del concetto di integrle o, in cui si esminno i csi di funzioni definite su intervlli illimitti, oppure illimitte in prossimità di un numero finito di punti. Considereremo seprtmente i due csi citti.

3 .. Integrzione su intervlli illimitti Nei csi più comuni cpit di considerre qusi esclusivmente funzioni continue su semirette oppure sull inter rett rele. Poichè però non cost nessun ftic in più considerre nche funzioni che sino solo integrbili (e quindi mgri discontinue), trtteremo direttmente questo cso. Definizione (Integrle o su intervlli illimitti) Si f : I = [, + [ R un funzione integrbile secondo Riemnn in ogni intervllo [c, d] contenuto in I. Allor h senso, t I, f(x) dx. Pg. 3 di 7 Se lim f(x) dx = l R, t + l funzione si dice integrbile in senso o, o generlizzto, in I e si pone + f(x) dx = lim t + f(x) dx = l

4 Pg. 4 di 7 Anlog definizione se l funzione gode delle stesse proprietà in I =], ], che port ll considerzione dell integrle f(x) dx = lim f(x) dx, u u nell ipotesi che il limite esist finito. Se poi l funzione gode delle stesse proprietà ddirittur in tutto R, llor si può definire l integrle + f(x) dx come somm degli integrli f(x) dx e + f(x) dx, purchè entrmbi gli integrli esistno, ciscuno per proprio conto, finiti, ovvero purché esistno finiti i due limiti lim f(x) dx e lim f(x) dx. t + u u Osservzione.. Bisogn prestre prticolre ttenzione l ftto che l integrle o + f(x) dx

5 è definito medinte due limiti che vnno clcolti seprtmente e che devono esistere, entrmbi, finiti. A titolo d esempio considerimo l funzione f(x) = x (su tutto R). Per vlutre l integrle o + x dx, dobbimo clcolre, seprtmente, 0 lim x dx e lim x dx. t t + t 0 Il primo limite vle, mentre il secondo vle +, per cui l integrle richiesto non esiste o, come si us dire, diverge. Se vessimo clcolto, invece, lim t + x dx, vremmo ottenuto 0, e questo non srebbe stto il vlore dell integrle proposto, lmeno secondo l definizione che bbimo dto. Vedremo in seguito (prgrfo 2) il perché dell scelt ftt nel definire questo tipo di integrle o. Pg. 5 di 7.2. Integrle o di funzioni illimitte Considereremo inizilmente un funzione illimitt in prossimità di un solo punto, x 0, di un intervllo [, b], e integrbile secondo Riemnn in un qulunque sottointervllo di [, b]\{x 0 }; successivmente estenderemo tle definizione funzioni illimitte

6 in prossimità di un numero finito di punti di un intervllo [, b]. Avvertimo che, in molti csi, il punto x 0 coincide con uno dei due estremi dell intervllo di integrzione. Definizione (Integrle o di funzioni illimitte) Si f : I = [, b] \ {x 0 } R un funzione integrbile secondo Riemnn in ogni intervllo [c, d] contenuto in I. L funzione può nche essere illimitt in un intorno di x 0. Se t e u sono punti di I, con t < x 0 e u > x 0, hnno senso, rispettivmente, gli integrli f(x) dx, t < x 0 e Se, ciscuno per proprio conto, esistono finiti i limiti lim t x 0 u f(x) dx, u > x 0. f(x) dx e lim u x + 0 u f(x) dx, llor si pone f(x) dx = lim t x 0 f(x) dx + lim f(x) dx u x + 0 u Pg. 6 di 7 Se x 0 coincide con oppure con b, bst considerre uno solo dei due integrli e limiti precedenti. Se invece di un unico punto x 0, ce ne sono un numero finito con le stesse crtteristiche, bsterà spezzre l integrle in corrispondenz di ciscuno dei punti, esttmente come ftto con x 0.

7 Pg. 7 di 7 Osservzione.2. Bisogn prestre prticolre ttenzione l ftto che l integrle o f(x) dx è definito medinte due limiti che vnno clcolti seprtmente e che devono esistere, entrmbi, finiti. A titolo d esempio considerimo l funzione g(x) = /x, in [, ]. Per clcolre l integrle o dobbimo clcolre, seprtmente, lim t 0 x dx, dx x e lim u 0 + t x dx. Il primo limite vle, mentre il secondo vle +, per cui l integrle richiesto non esiste o, come si us dire, diverge. Se vessimo clcolto, invece, lim t 0 + x dx + x dx, vremmo ottenuto zero, e questo non srebbe stto il vlore dell integrle proposto. Vedremo fr poco (prgrfo 2) il perché dell scelt ftt nel definire questo tipo di integrle o. t

8 Pg. 8 di 7 2. Perchè queste definizioni? È logico e nturle chiedersi perchè le definizioni menzionte nelle osservzioni. e.2 non sino d considerrsi corrette: in fondo se si consider, per esempio, l funzione f(x) = x, e si tiene conto che è simmetric rispetto ll origine, prrebbe logico pensre che il suo integrle d + debb essere nullo, come è nullo l integrle dell stess funzione su qulunque intervllo limitto e simmetrico rispetto ll origine: in fondo le ree delle due regioni (illimitte) sopr e sotto l sse delle scisse sono identiche e quindi è giusto spettrsi che l loro somm si zero. Il ftto è che l definizione di integrle su tutto R medinte il limite seguente lim t + f(x) dx, oppure di integrle di un funzione illimitt in prossimità di un punto x 0 medinte il limite seguente x 0 lim f(x) dx + f(x) dx, t 0 + port contrddizioni insnbili, come mostrno i (volutmente numerosi) esempi che seguono. x 0 +t Esempio 2.. Considert l funzione f(x) = x, ottenimo [ x 2 (x ) dx = 2 x ] t = 2t ;

9 se or clcolimo il limite, per t +, ottenimo, nche se, dl punto di vist geometrico, l situzione delle ree situte sopr e sotto l sse delle x non è ssolutmente cmbit rispetto qunto succedev con l funzione f(x) = x: l funzione f(x) = x è solo spostt verso destr di un unità rispetto ll funzione f(x) = x, m questo non può modificre l situzione geometric complessiv delle ree delle regioni (illimitte) in questione. Esempio 2.2. Considert l funzione f(x) = sgn(x) se x < 0 f(x) = sgn(x) = 0 se x = 0 se x > 0 ottenimo, 0 sgn(x) dx = ( ) dx + dx = [ x] 0 + [x]t 0 = 0, 0 per cui il limite per t + è chirmente 0. Se spostimo l funzione verso destr di (> 0) unità, ottenimo f(x) = sgn(x ). Ripetimo il clcolo dell integrle d t, supponendo t >, cos che non port problemi, visto che dobbimo poi clcolre il limite per t +. Pg. 9 di 7 sgn(x ) dx = ( ) dx+ dx = [ x] +[x]t = ( ) ( ())+t = 2, e, se clcolimo il limite per t + ottenimo 2, ovvero un risultto vribile l vrire di, cos che è difficilmente ccettbile dl punto di vist geometrico, in

10 Pg. 0 di 7 qunto le ree delle regioni (illimitte) sopr e sotto l sse delle x non vengono modificte d questi spostmenti del grfico. Esempio 2.3. Riprendimo in considerzione l funzione sgn(x) dell esempio precedente e clcolimone l integrle tr e 2t, con t > 0: 2t sgn(x) dx = 0 ( ) dx + 2t 0 dx = [ x] 0 + [x]2t 0 = t, e quest volt il limite per t + vle +, nonostnte il ftto che, geometricmente, si ottengno sempre le stesse ree nel pino crtesino. Esempio 2.4. Considerimo or le funzioni f(x) = 2x e g(x) = 2x + x 2 + x. 4 Ottenimo: 2x + x 2 dx = [ln( + x2 )] t = 0 e 2x + x 4 dx = [rctg(x2 )] t = 0, d cui deducimo che, in entrmbi i csi, il limite per t + vle 0. Se però modifichimo l intervllo di integrzione in [, 2t] ottenimo: 2t 2t 2x + x 2 dx = [ln( + x2 )] 2t = ln( + t2 ) ln( + 4t 2 ) 2x + x 4 dx = [rctg(x2 )] t = rctg(4t 2 ) rctg(t 2 ),

11 Pg. di 7 d cui deducimo che nel primo cso il limite per t + vle, mentre nel secondo continu vlere 0 (come ci prrebbe logico). Il motivo di questo diverso comportmento st nel ftto che, per l prim funzione, l integrle o secondo l definizione corrente diverge, mentre, nel secondo cso, converge. Dunque l definizione corrente di integrle o è dtt trdurre in formule un concetto geometrico che ci pre evidente. L definizione bst invece sul ci pre del tutto indtt. lim t + f(x) dx, Esempi simili possono essere ftti nche per il cso di funzioni illimitte in prossimità di qulche punto. Esempio 2.5. Riprendimo in esme l funzione f(x) = /x e isolimo, quest volt, il punto in cui l funzione tende ll infinito, con un intervllo del tipo [, 2t]: x dx + 2t dx = [ln x ] + [ln x ] 2t = ln 2, x d cui deducimo subito che il limite, per t 0, vle ln 2, ossi un risultto diverso d quello (che vlev 0), ottenuto prim, nonostnte non ci si lcun vrizione nelle regioni di cui clcolre le ree. Anche quest volt il problem è legto l ftto che l funzione /x h un integrle o divergente, secondo l definizione che bbimo dto precedentemente. Se inftti si consider un funzione dispri e con integrle o convergente, il

12 Pg. 2 di 7 modo come si isol il punto di infinito è ininfluente i fini del risultto. Lo si può provre (è un fcile esercizio!) con l funzione se x > 0 f(x) = x se x < 0, x d integrre nell intervllo [-,] e il In reltà il lim t 0 + lim t + c f(x) dx + f(x) dx c+t f(x) dx, hnno interesse, per esempio, nell teori delle distribuzioni e nche in ltri cmpi e si chimno, rispettivmente, Vlore principle di Cuchy di Vlore principle di Cuchy di m si trtt di tutt un ltr cos. + f(x) dx; f(x) dx,

13 Pg. 3 di 7 3. Un proprietà specile Molte delle proprietà dell integrle di Riemnn si estendono gli integrli (nche se con le dovute cutele), m c è un proprietà molto importnte che è completmente divers per gli integrli di Riemnn e per quelli, ed è quell che rigurd i legmi tr un funzione e il vlore ssoluto dell stess. Precismente: Se f(x) è un funzione integrbile secondo Riemnn in un intervllo (chiuso e limitto) [, b], llor nche l funzione f(x) è integrbile secondo Riemnn nello stesso intervllo e si h: f(x) dx f(x) dx. Se il modulo di un funzione f(x) è integrbile in senso o in un intervllo I, llor nche f(x) è integrbile in I e si h f(x) dx f(x) dx. Si noti che le due proprietà sono esttmente un il contrrio dell ltr, nche se l disuguglinz reltiv è l stess. Tutto questo signific che un funzione può essere integrbile in senso o senz che lo si il suo vlore ssoluto. Un esempio importnte (nche se non semplice d discutere se non si conoscono le serie), è quello dell funzione sin x /x: + 0 sin x x dx < + mentre + 0 sin x x dx = +.

14 4. Due esempi interessnti Esminndo le proprietà dell integrle o, in prticolre nel cso di integrli su intervlli illimitti, può venire il sospetto che un funzione (in prticolre se si trtt di un funzione positiv), poss essere integrbile solo se il suo limite ll infinito è zero. I due esempi che seguono provno che ciò non è vero. Esempio 4.. Considerimo l funzione g(x) definit, in [, + [, dlle condizioni che seguono: per ogni intero n si pong g(n) = ; per ogni intero n si considerino i segmenti [n n ], n e [n, n + n ] ; 2 2 si pong ugule 0 l funzione nell estremo sinistro del primo segmento e nell estremo destro del secondo, mentre l si definisc, ll interno dei due segmenti, in modo che bbi come grfico un segmento congiungente (n /n 2, 0) con (n, ) e un ltro segmento congiungente (n, ) con (n + /n 2, 0); si pong g(x) = 0 in tutti i trtti rimnenti. Un prte del grfico è rppresentt nell figur di seguito. Pg. 4 di 7

15 y Pg. 5 di Ebbene quest funzione è continu in [, + [; positiv in [, + [; non h limite (in prticolre non tende zero) per x + ; è integrbile in senso o in [, + [ (nche se per l dimostrzione occorre conoscere l teori delle serie). Esempio 4.2. Si può modificre leggermente l esempio precedente in modo d costruire un funzione integrbile in senso o in [, + [, positiv, e ddirittur illimitt in qulunque intorno di +. Bst riprendere l funzione g dell esempio precedente e considerre le seguenti modifiche: porre g(n) = n, nziché g(n) = ; considerre i segmenti [n n ], n e [n, n + n ] ; 3 3 x

16 l posto dei precedenti. Si ottiene un funzione il cui grfico è ncor ftto d segmenti sull sse x e tringoli sopr l sse x stess, come prim, solo che or i tringoli hnno bse più piccol dei precedenti, m, in compenso, ltezze che tendono ll infinito. 5. Conclusioni Il concetto di integrle o è molto interessnte ed utile nelle ppliczioni. In prticolre è sorprendente il ftto che consent di ttribuire re finit regioni illimitte del pino. Esso v comunque trttto con estrem cutel per non cdere in errore mdornli e difficili d scoprire. È interessnte, questo proposito, segnlre un ftto clmoroso, successo gli esmi di stto di Liceo Scientifico. Nell sessione strordinri degli esmi dell nno scolstico è stto proposto un quesito che richiedev, testulmente, il clcolo dell derivt dell funzione f(x) = 2x x sin t dt. Pg. 6 di 7 Or, come si può provre fcilmente, l integrle (o!) proposto diverge qulunque si il numero rele x, e dunque l funzione non è definit per nessun vlore di x ( meno che gli esperti estensori del quesito non volessero riferirsi l vlore principle di Cuchy dell integrle stesso, cos che mi pre oltremodo improbbile, visto che di un simile rgomento non si f cenno in nessun progrmm di scuol medi superiore e, qunto mi risult, nemmeno nell qusi totlità dei corsi universitri, per lo meno di primo livello).

17 È nche interessnte notre che le uniche soluzioni che sono riuscito trovre in rete ll dt dell stesur di questo fscicoletto riportno soluzioni (ovvimente errte!) in cui non si f menzione dell grve svist presente nel testo. Pg. 7 di 7

Integrali impropri. Luciano Battaia Versione del 3 dicembre 2010

Integrali impropri. Luciano Battaia Versione del 3 dicembre 2010 Integrli impropri Lcino Btti Versione del 3 dicembre 2 Indice In qest not presento le definizioni e lcne proprietà degli integrli impropri, con prticolre rigrdo l motivo di certe scelte nelle definizioni.

Dettagli

Osservazioni varie su primitive e integrali

Osservazioni varie su primitive e integrali vrie Lucino Btti Versione del 5 mrzo 2007 Pg. 1 di 20 In quest not propongo lcune osservzioni reltive lle proprietà delle primitive, degli di Riemnn, degli impropri e delle funzioni, normlmente sprse in

Dettagli

AM210: Esercizi 2. + e x sin x dx 6. x log 3 x 9. dx

AM210: Esercizi 2. + e x sin x dx 6. x log 3 x 9. dx Integrli impropri: esercizi AM: Esercizi Discutere l convergenz dei seguenti integrli ed eventulmente clcolrli. d. ( 3) 3 + + d 3. 3 + d 3. d 5. ( + ) 3 e sin d 6. e sin d 7. e cos d 8. d + log 3 9. d

Dettagli

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri Clcolo integrle Integrli su intervlli illimitti Criteri di convergenz Integrli di funzioni non limitte Criteri di convergenz 2 Altri integrli impropri 2 2006 Politecnico di Torino Definizione Considerimo

Dettagli

ANALISI 1 1 VENTIDUESIMA LEZIONE Integrali impropri

ANALISI 1 1 VENTIDUESIMA LEZIONE Integrali impropri ANALISI 1 1 VENTIDUESIMA LEZIONE Integrli impropri 1 prof. Cludio Sccon, Diprtimento di Mtemtic Applict, Vi F. Buonrroti 1/C emil: sccon@mil.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Integrali impropri di funzioni di una variabile

Integrali impropri di funzioni di una variabile Integrli impropri di funzioni di un vribile. Le funzioni continue Considerimo nel seguito un delle piú importnti ppliczioni del teorem di uniforme continuitá delle funzioni continue su intervlli chiusi

Dettagli

Integrali definiti (nel senso di Riemann)

Integrali definiti (nel senso di Riemann) Integrli definiti (nel senso di Riemnn) Problem: cos è l re di un figur pin? come clcolrl? Grficmente concetto intuitivo ed evidente. Tecnicmente ci sono definizioni e formule d hoc per le figure elementri.

Dettagli

(somma inferiore n esima), (somma superiore n esima).

(somma inferiore n esima), (somma superiore n esima). Clcolo integrle Appunti integrtivi lle dispense di Mtemtic ssistit rgomento 9 (Integrli definiti) e rgomento (Integrli impropri) cur di C.Znco (Il contenuto di questi ppunti f prte del progrmm d esme)

Dettagli

Calcolo integrale in due e più variabili

Calcolo integrale in due e più variabili Clcolo integrle in due e più vribili 9 dicembre 2010 1 Definizione di integrle Il primo psso st nell definizione e determinzione dell integrle per funzioni due vribili prticolrmente semplici: le funzioni

Dettagli

13 - Integrali Impropri

13 - Integrali Impropri Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 3 - Integrli Impropri Accdemico 25/26 M. Tumminello, V. Lcgnin,

Dettagli

INTEGRAL IMPROPRI. C.d.L in Fisica Lecce, a.a. 2011/ Le definizioni... pag Criteri di integrabilità... pag Esercizi... pag.

INTEGRAL IMPROPRI. C.d.L in Fisica Lecce, a.a. 2011/ Le definizioni... pag Criteri di integrabilità... pag Esercizi... pag. INTEGRAL IMPROPRI (Cosimo De Mitri). Le definizioni... pg.. Criteri di integrbilità... pg. 6 3. Esercizi... pg. C.d.L in Fisic Lecce,.. / INTEGRALI IMPROPRI (C. De Mitri). Le definizioni I concetti di

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

Integrali impropri in R

Integrali impropri in R Integrli impropri in Flvino Bttelli Diprtimento di Scienze Mtemtiche Università Politecnic delle Mrche Ancon Integrli impropri Indichimo con = {1, 2, 3,...} l insieme dei numeri nturli, con 0 = {0, 1,

Dettagli

Calcolare l area di una regione piana

Calcolare l area di una regione piana Integrli Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione Clcolre l

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Anlisi Mtemtic II - CdL in Ingegneri Informtic ed Elettronic.. 6/7 Integrzione su domini non itti Definizione. Un funzione continu f : [, + [ R si dice integrbile

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Integrzione su domini non itti Definizione.. Un funzione continu f : [, + [ R si dice integrbile in senso generlizzto (brevemente, G-integrbile) se esiste finito

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1 INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 6/7 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo

Dettagli

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Integrali impropri cap10.pdf 1

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Integrali impropri cap10.pdf 1 INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 7/8 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo

Dettagli

Integrale di Riemann

Integrale di Riemann Integrle di Riemnn Hynek Kovrik Università di Bresci Anlisi Mtemtic Hynek Kovrik (Università di Bresci) Integrle di Riemnn Anlisi Mtemtic / 50 Motivzione: clcolo di re Hynek Kovrik (Università di Bresci)

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Alcune note introduttive alle serie di Fourier.

Alcune note introduttive alle serie di Fourier. Alcune note introduttive lle serie di Fourier. Definizione. Si f : IR IR periodic di periodo e integrbile su [, ]. Diremo coefficienti di Fourier di f i numeri reli = f dx, = IN f cos dx, b = IN e serie

Dettagli

Introduzione al calcolo integrale

Introduzione al calcolo integrale Introduzione l clcolo integrle Indice: Integrle di Riemnn. Proprietà delle funzioni integrbili. Continuità dell funzione integrle. Teorem dell Medi. Teorem Fondmentle del Clcolo Integrle. Metodi di integrzione.

Dettagli

Tutorato di analisi 1

Tutorato di analisi 1 Tutorto di nlisi 1 Alen Kushov Collegio Volt 1 / 8 Introduzione Integrzione ll Riemnn Integrle orientto Linerità dell integrle Teorem fondmentle del clcolo Regole di clcolo Integrli impropri 2 / 8 Integrzione

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osservimo nzitutto che l funzione g(x) = (x b)e,-,. è continu e derivbile in R in qunto composizione di funzioni continue e derivbili. Per discutere l presenz di punti di mssimo

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.04) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

5.4 Il teorema fondamentale del calcolo integrale

5.4 Il teorema fondamentale del calcolo integrale Esercizi 5.3. Si f : R R un funzione continu, e supponimo che f bbi sintoti obliqui per ±. Provre che f è uniformemente continu in R.. Esibire un funzione f : R R limitt e di clsse C, m non uniformemente

Dettagli

INTEGRALI INDEFINITI

INTEGRALI INDEFINITI INTEGRALI INDEFINITI Se F(x) è un primitiv di f(x), llor le funzioni F(x) + c, con c numero rele qulsisi, sono tutte e sole le primitive di f(x). Precismente:! se F(x) è un primitiv di f (x), llor nche

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.4) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

IL CONTRIBUTO DEI GRECI. A = b. h. Parallelogramma h. h b

IL CONTRIBUTO DEI GRECI. A = b. h. Parallelogramma h. h b Mtemtic per Scienze Nturli, Aree ed integrli 1 IL CONTRIBUTO DEI GRECI h Rettngolo: A =. h h Prllelogrmm A =. h h Tringolo A =!h 2 Poligono come somm di tringoli Cerchio O r A = ". r 2 Mtemtic per Scienze

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Calcolo integrale. Capitolo Primitive ed integrale inde nito

Calcolo integrale. Capitolo Primitive ed integrale inde nito Cpitolo 9 Clcolo integrle 9.1 Primitive ed integrle inde nito De nizione 9.1 Assegnt un funzione f : A! R, si de nisce primitiv di f un qulunque funzione F : A! R derivbile, tle che F 0 (x) = f(x), per

Dettagli

1 Integrali generalizzati su intervalli illimitati

1 Integrali generalizzati su intervalli illimitati Lezioni per il corso di Anlisi 2, AA 07-08. Dott.ss Sndr Lucente Argomento: Integrli generlizzti 1 1 Integrli generlizzti su intervlli ilitti Definizione 1.1. Si f : [,[ R un funzione continu. Se esiste

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

Integrali impropri. Riccarda Rossi. Analisi I. Università di Brescia. Riccarda Rossi (Università di Brescia) Integrali impropri Analisi I 1 / 48

Integrali impropri. Riccarda Rossi. Analisi I. Università di Brescia. Riccarda Rossi (Università di Brescia) Integrali impropri Analisi I 1 / 48 Integrli impropri Riccrd Rossi Università di Bresci Anlisi I Riccrd Rossi (Università di Bresci) Integrli impropri Anlisi I 1 / 48 (2) α > 0 f (x) = 1 (0, + ). Inftti, x α NON È integrbile in senso improprio

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI Considerimo un funzione f : I R, dove I è un intervllo di R. Si c un punto interno I in cui f è discontinu. Diremo che c è un punto di discontinuità di prim

Dettagli

Analisi Matematica per Bio-Informatici Esercitazione 13 a.a

Analisi Matematica per Bio-Informatici Esercitazione 13 a.a Anlisi Mtemtic per Bio-Informtici Esercitzione 3.. 27-28 Dott. Simone Zuccher 28 Febbrio 28 Not. Queste pgine potrebbero contenere degli errori: chi li trov è pregto di segnlrli ll utore (zuccher@sci.univr.it).

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Integrale: Somma totale di parti infinitesimali

Integrale: Somma totale di parti infinitesimali I problemi del Clcolo Ininitesimle (Newton, Method o Fluxions, 67) o Problem. (Derivt) Dt l lunghezz dello spzio percorso in ogni istnte di tempo, determinre l velocità in ogni istnte. 2 o Problem. (Integrle)

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

INTEGRALI INDEFINITI

INTEGRALI INDEFINITI INTEGRALI INDEFINITI Se F() è un primitiv di f(), llor le funzioni F() + c, con c numero rele qulsisi, sono tutte e sole le primitive di f(). Precismente:! se F() è un primitiv di f (), llor nche F() +

Dettagli

CORSO DI CALCOLO E BIOSTATISTICA. A.A APPUNTI SUGLI INTEGRALI

CORSO DI CALCOLO E BIOSTATISTICA. A.A APPUNTI SUGLI INTEGRALI CORSO DI CALCOLO E BIOSTATISTICA. A.A. 212-213. APPUNTI SUGLI INTEGRALI Il testo che segue contiene brevi ppunti reltivi lle lezioni svolte sull teori elementre dell integrzione di funzioni reli di un

Dettagli

INTEGRALI IMPROPRI. C.d.L in Fisica Lecce, a.a. 2014/ Le definizioni... pag Criteri di integrabilità... pag Esercizi... pag.

INTEGRALI IMPROPRI. C.d.L in Fisica Lecce, a.a. 2014/ Le definizioni... pag Criteri di integrabilità... pag Esercizi... pag. INTEGRALI IMPROPRI (Cosimo De Mitri). Le definizioni... pg.. Criteri di integrbilità... pg. 6. Esercizi... pg. C.d.L in Fisic Lecce,.. 4/5 INTEGRALI IMPROPRI (C. De Mitri). Le definizioni I concetti di

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrale secondo Riemann

ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrale secondo Riemann ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrle secondo Riemnn 1 prof. Cludio Sccon, Diprtimento di Mtemtic Applict, Vi F. Buonrroti 1/C emil: sccon@mil.dm.unipi.it web: http://www2.ing.unipi.it/

Dettagli

Matematica A, Area dell Informazione. Complementi al testo

Matematica A, Area dell Informazione. Complementi al testo 1 Preinri Mtemtic A, Are dell Informzione.. 2001-2002, corso prof. Brdi Complementi l testo Proposizione 1 (Proprietà crtteristiche di sup e inf) Si A R un insieme non vuoto e si x R. Allor x = sup A se

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

f(x) f(x 0 ) lim (x) := f(x) f(x 0)

f(x) f(x 0 ) lim (x) := f(x) f(x 0) Cpitolo 3 Derivte 31 Definizione **Definizione 31 (Punto di derivilità) Si f :[, ]! R un funzione e si 2 [, ] Allor f si dice derivile in se esiste finito il In questo cso si dice punto di derivilità per

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

1 Il problema del calcolo dell area di una regione piana limitata

1 Il problema del calcolo dell area di una regione piana limitata Anlisi Mtemtic 2 1 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 1 INTEGRALI DI FUNZIONI DI UNA VARIABILE REALE 1 Il problem del clcolo dell re di un regione pin limitt Se si consider un

Dettagli

ORDINAMENTO 2002 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2002 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.mtefili.it ORDINAMENTO 2002 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si D il dominio di un funzione rele di vribile rele f (x) e si x 0 un elemento di D: definire l continuità e l discontinuità di

Dettagli

Integrali impropri. Vogliamo definire e calcolare f (x)dx quando. I y. f (x)

Integrali impropri. Vogliamo definire e calcolare f (x)dx quando. I y. f (x) Integrli impropri Voglimo definire e clcolre f (x)dx qundo I I è illimitto, I è limitto, m f non è limitt su I. y y f (x) f (x) x x c Pol Gervsio - Anlisi Mtemtic - A.A. /2 Integrli impropri cp0.pdf Integrle

Dettagli

PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2 Si calcoli il limite della funzione y = log(x+3) log (2x+1)

PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2 Si calcoli il limite della funzione y = log(x+3) log (2x+1) www.mtefili.it PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO Si clcoli il limite dell funzione y log(x+) log (2x+), qundo x tende 2. x 2 +x 6 Il limite si present nell form indetermint 0/0. log(x +

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

Capitolo 2. Il problema del calcolo delle aree

Capitolo 2. Il problema del calcolo delle aree Cpitolo 2 Il prolem del clcolo delle ree Introduzione Il prolem del clcolo delle ree nsce più di 2000 nni f qundo i greci tentrono di clcolre le ree con un metodo detto di esustione. Tle metodo può essere

Dettagli

II-8 Integrale di Riemann

II-8 Integrale di Riemann II-8 INTEGRALE DI RIEMANN DEFINIZIONE DI INTEGRALE DI RIEMANN II-8 Integrle di Riemnn Indice Definizione di integrle di Riemnn Condizioni di esistenz dell integrle di Riemnn 3 3 Proprietà dell integrle

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Capitolo IV Cenni di calcolo integrale

Capitolo IV Cenni di calcolo integrale Liceo Lugno, - 4B (Luc Rovelli) Cpitolo IV Cenni di clcolo integrle. Introduzione: ree e funzioni primitive Il clcolo integrle si occup principlmente di questioni, pprentemente senz relzione tr loro: dti,

Dettagli

Corso di Analisi Matematica. Calcolo integrale

Corso di Analisi Matematica. Calcolo integrale .. 2011/12 Lure triennle in Informtic Corso di Anlisi Mtemtic Clcolo integrle Avvertenz Questi sono ppunti informli delle lezioni, che vengono resi disponibili per comodità degli studenti. Prte del mterile

Dettagli

Integrazione per parti. II

Integrazione per parti. II Integrzione per prti. II L regol di integrzione per prti f xgx dx [ f xgx] b f xg x dx f, g funzioni derivbili con funzione derivt continu su [, b], pplict ripetutmente, permette in prticolre di integrre

Dettagli

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1]

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1] Veric di Mtemtic su Integrle Denito, Integrzione Numeric e clcolo di ree []. Si consideri il seguente integrle denito: Determinre il vlore estto di I; I = 2 ( e x )dx. il vlore estto dell're A T del trpezoide

Dettagli

L integrale di Mengoli Cauchy e il teorema fondamentale del calcolo integrale

L integrale di Mengoli Cauchy e il teorema fondamentale del calcolo integrale SCIENTIA http://www.scientijournl.org/ Interntionl Review of Scientific Synthesis ISSN 2282-2119 Quderni di Mtemtic 215 Mtemtic Open Source http://www.etrbyte.info L integrle di Mengoli Cuchy e il teorem

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Il lavoro di una forza

Il lavoro di una forza Il lvoro di un forz Definizione Nello svolgimento che segue, ci limiteremo lvorre in due dimensioni, su un pino. L grn prte dei risultti che troveremo potrà essere estes immeditmente e senz difficoltà

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

1 Definizione di integrale di Riemann 1. 2 Condizioni di esistenza dell integrale di Riemann 3. 3 Proprietà dell integrale di Riemann 4

1 Definizione di integrale di Riemann 1. 2 Condizioni di esistenza dell integrale di Riemann 3. 3 Proprietà dell integrale di Riemann 4 DEFINIZIONE DI INTEGRALE DI RIEMANN Integrle di Riemnn Indice Definizione di integrle di Riemnn Condizioni di esistenz dell integrle di Riemnn 3 3 Proprietà dell integrle di Riemnn 4 4 Clcolo dell integrle

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

3) Sia (X, d) uno spazio metrico. Dimostrare che è una distanza su X la funzione

3) Sia (X, d) uno spazio metrico. Dimostrare che è una distanza su X la funzione Anlisi Rele Esercizi 3 ottobre 2008 ) Tutte le distnze introdotte lezione sono invrinti per trslzioni; ovvero d(x y) = d(x + z y + z) per ogni x y e z. Definire su X = R un metric non invrinte per trslzioni.

Dettagli

COMPLEMENTI SUGLI INTEGRALI DEFINITI. A. Figà Talamanca

COMPLEMENTI SUGLI INTEGRALI DEFINITI. A. Figà Talamanca COMPLEMENTI SUGLI INTEGRALI DEFINITI A. Figà Tlmnc 27 ottobre 2010 2 0.1 Introduzione C è un modo pprentemente semplice ed intuitivo per introdurre l integrle (definito) di un funzione f definit su un

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Integrale e Primitiva

Integrale e Primitiva Alm Mter Studiorum Università di Bologn FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Lure in Mtemtic Integrle e Primitiv Tesi di Lure in Anlisi Mtemtic Reltore: Chir.mo Prof. Ermnno Lnconelli

Dettagli

Appunti ad uso degli studenti del Corso di Matematica per CTF

Appunti ad uso degli studenti del Corso di Matematica per CTF Appunti d uso degli studenti del Corso di Mtemtic per CTF Prof. Sergio Steffè, AA2016/17 Sommrio Questi ppunti sono scritti su misur per gli studenti del corso di Mtemtic per CTF dell Anno Accdemico 2016/17,

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

14 - Integrazione numerica

14 - Integrazione numerica Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 4 - Integrzione numeric Anno Accdemico 205/206 M. Tumminello, V.

Dettagli

Dimostrazione del teorema di Gauss Green nel piano

Dimostrazione del teorema di Gauss Green nel piano imostrzione del teorem di Guss Green nel pino Gli eventuli lettori sono pregti di segnlrmi gli eventuli errori di stmp. Grzie! L.V. Ricordimo che: dominio è l chiusur di un perto; dominio normle regolre

Dettagli

1 Lavoro sperimentale (di Claudia Sortino)

1 Lavoro sperimentale (di Claudia Sortino) 1 Lvoro sperimentle (di Cludi Sortino) Prtendo d un nlisi epistemologic del prolem, ho preprto un test che ho successivmente proposto due quinte clssi di un istituto industrile. QUESTIONARIO SULL INTEGRAZIONE

Dettagli

L integrale di Riemann

L integrale di Riemann L integrle di Riemnn Riccrd Rossi Università di Bresci Anlisi B Riccrd Rossi (Università di Bresci) L integrle di Riemnn Anlisi B 1 / 64 Motivzioni: clcolo di un re Si f : [, b] R continu e positiv. Problem

Dettagli

CALCOLO NUMERICO. Francesca Mazzia. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari

CALCOLO NUMERICO. Francesca Mazzia. Integrazione. Dipartimento Interuniversitario di Matematica. Università di Bari CALCOLO NUMERICO Frncesc Mzzi Diprtimento Interuniversitrio di Mtemtic Università di Bri Integrzione 1 Integrzione Problem: pprossimre integrli definiti del tipo: f(x)dx, Sceglimo n + 1 punti nell intervllo

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 11 - Integrli Anno Accdemico 2015/2016 M. Tumminello, V. Lcgnin,

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Clcolo Numerico con elementi di progrmmzione (A.A. 2014-2015) Appunti delle lezioni sull qudrtur numeric Integrzione numeric Problem: pprossimre numericmente integrli definiti I(f) = f(x) dx L intervllo

Dettagli