Secondo principio della termodinamica. Ciclo di Carnot Enuncia2 della secondo principio Conce4o di Entropia

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Secondo principio della termodinamica. Ciclo di Carnot Enuncia2 della secondo principio Conce4o di Entropia"

Transcript

1 Seono prnpo ell termonm Clo Crnot Enun ell seono prnpo Cone4o Entrop

2 Il perhé el prnpo L essone lore un sstem on molte prtelle (legg gs ele) può etermnre: un umento energ ntern, un umento energ men o entrme le ose. ΔE nt + w ueste ue orme energ sono però onmentlmente verse: L energ ntern è energ sornt (sule) L energ men è un energ ornt Se è vero he l energ ornt s può onvertre n energ sornt, l nverso non è m possle. F uest è l essenz el seono prnpo ell termonm. Δw à Δ (sempre) w Δ à Δw (n prtolr onzon)!! F

3 Clo Crnot () S può mostrre l seono prnpo ell termonm stuno l lo Crnot. Consermo un luo motore onnto n un lnro, huso un pstone e solto termmente ll mente. Supponmo vere un luo termonmo he prt uno stto A, rppresentto nel pno Clpeyron - p, llo stto B. Forneno lore ll tempertur l sstem perorrerà un soterm he lo port nel punto B. In questo proesso sotermo s ornse lore e s ohene lvoro he s mnest on l umento el volume el luo. Un suessv trsormzone K umenterà nor l volume e rurrà nor l pressone ssno l tempertur,, senz smo lore. Punto C. [N. L. S Crnot (84)].

4 Clo Crnot () Dl punto C s perorrerà un seon soterm tempertur he soorrrà lore l luo termonmo rueno ortemente l volume e portno l gs llo stto D. Durnte quest trsormzone s è Oo un lvoro sul sstem e s è sooroo lore ll tempertur <. Dl punto D s rperorrerà un K he rporterà l gs nelle onzon termonmhe nzl (punto A). Durnte l lo s è ornto lore ll tempertur e s è sooroo lore ll tempertur. ResKtueno l luo l su energ ntern nzle qun ΔE0 Δw Δ Il renmento quest mhn è η w/

5 Clo Crnot per un gs pere4o Per un gs peretto l lore ssorto urnte l soterm srà ugule l lvoro R log ( / ) omputo l sstem. ) / log( ) / log( ) / log( ) / log( port he ovvero vremo e teneo onto elle soterme lle the vremo e per lesoterme vle Per lethe vle P P P P P P P P P P P P

6 Conserzone sul lo Crnot Il lo Crnot è un lo ele: onvolge solo ue Kp trsormzon, soterme e Khe e s suppone he sno pereomente reversl. Nell reltà le trsormzon onvolte sono pù ue, mostrno OrK, vork e lmente sono reversl. L ukltà questo moello teoro è però nsukle perhé permeoe trovre l lmte superore el renmento e motor. ( ) Nel grmm s vee he le ue soterme mno solo l entrop el sstem, mentre le ue Khe mno solo l tempertur el sstem. L vrzone entrop urnte un lo Crnot è DS / / 0 ovvero / /. un nor un volt temp. ( K) ( ) Entrop (.u.) / /

7 rzone ell Entrop L vrzone entrop un qulunque trsormzone (nhe rreversle) n un sstem huso, può trovrs lolno l vrzone entrop un trsormzone reversle. E l entrop un trsormzone soterm r gl stt e è t : ΔS S S Per un gs ele n u l trsormzone s n ogn stnte n equlro vremo. E nt w ovvero n v + p Sosttueno p nr/ e veno per ottenmo: n v + nr n v + nr ovvero ΔS nrln + n v ln L vrzone ell entrop non pene ll trsormzone esegut!!

8 rzone ell Entrop Nell espnsone ler, l gs nve spontnemente l seono omprto, m non potrà m rtornre spontnemente nel prmo. p Gl stt nzl e nl el grmm -p vlgono s per proess rreversl he per proess reversl. Il gs potrà rggungere meesm stt nzle e nle trmte un espnsone reversle ome, per esempo vvene, urnte un soterm. Fr le molte vrl stto omo nluere nhe l vrzone entrop: ΔS S S p L entrop pene l lore smto e ll tempertur u vvene lo smo. Esseno l tempertur sempre postv l ΔS h lo stesso segno ell vrzone lore. ΔS s msur n [J/K]

9 Proess rreversl Un espnsone ler è un proesso rreversle ome lo è un uovo rooo he non può rompors. ueste ovvetà ell vt quokn non trovno, però, rsontro nel prnpo onservzone ell energ. un ΔEnt + w, è nsuffiente esrvere omputmente l reltà. S ovrà pertnto efinre un nuovo oneoo he nlu proess rreversl: quest nuov grnezz è l Entrop In un sstem solto l vrzone ell entrop DS è sempre > 0 A fferenz ell energ, he ne sstem solk s onserv sempre, l entrop e sstem solk ument sempre. L vrzone entrop s può esprmere n termn energ term, pers o gugnt, o n termn stksk ome sposzon ssunte lle prkelle nel sstem solto. n

10 Sstem huso vs. Sstem perto Se proeessmo n moo nverso vremmo he l gs ee lore e qun l entrop mnuse. ero solo perhé omettmo onserre l sstem huso. All mnuzone entrop el gs s eve ggungere l umento entrop el rsltore ΔS gs - / ΔS sorg / osì onluere he ne sstem hus se l proesso è reversle l entrop è ostnte mentre se l proesso non è reversle ument. Comunque ne sstem hus L Entrop non mnuse m Pertnto un possle enzone el seono prnpo ell termonm è ΔS > 0

11 Enun el prnpo ell ermonm Postulto Kelvn: E mpossle relzzre un motore l u uno rsultto s l trsormzone lore n lvoro utlzzno un sol sorgente lore tempertur unorme Postulto Clusus: E mpossle relzzre un motore l u uno rsultto s l pssggo lore un sorgente re un sorgente l w

12 Sgnto e ue prnp Il prmo prnpo ell termonm e he l energ, qulunque s l orm n u s mnest, ll ne s onserv. E nt w. In prole povere non esstono proess ttrverso u s poss gugnre energ, nel mglore e s s rese nre n pr. Il seono prnpo omplet l preeente ssunto ggungeno he qulunque proesso lo h sempre renmento nerore. In ltre prole se l prmo prnpo non permette vnere ontro l ntur l seono non permette neppure preggre. Intt l entrop un sstem huso è: ΔS > 0

13 Anor sul lo Crnot Dlle osservzon sul lo Crnot s vee he: sono neessre sempre ue verse sorgent termhe l renmento è ento ome l rpporto r l lvoro tto urnte l lo e l lore ornto ll pù lt tempertur η w/ ( )/ / per l lo Crnot, e solo per questo, possmo srvere η / l renmento srà tnto pù grne qunto pù grne è l erenz temperture elle ue sorgent termhe l renmento è sempre nerore meno non vere un sorgente tempertur nntmente l o un sorgente tempertur prossm 0 K M se s russse vere un sorgente tempertur re he osse ll tempertur ello zero ssoluto llor verree nvlto l enunto el postulto Kelvn.

14 Dmostrzone el postulto Clusus Rusre trserre lore un sorgente re verso un sorgente temperture pù lt senz over ggungere lvoro è mpossle. Con tle proesso potremmo estrrre lore l mre e lmentr un l, m voleremmo l postulto Clusus. Se l sstem è solto l su entrop non può he essere ΔS > 0, m sun sertoo h un entrop / e / pertnto l sstem nel suo nseme è ΔS / - /. Se >, ΔS rsulteree negtv. M sree un hr volzone ell enzone Entrop

15 Mhn rergernte Perorreno un lo Crnot n senso nverso s relzz un motore rergernte, e l lvoro potree trserre lore ll sorgente re ll sorgente l. Il renmento quest mhn è: ε energ_ utle energ _ mmess w E se l lo è l lo Crnot l eenz ε srà: ε /( - ), Per relzzre un mhn rgogen serve ggungere lvoro l luo motore per poter sottrrre lore (e qun ssre l tempertur) el rgorero. Non s può relzzre un rgorero peretto perhé rsult ontrro ll enzone entrop.

16 Renmento elle mhne termhe Dmostrmo he un mhn Crnot è l pù eente: Supponmo ver soperto un motore x l u renmento η x > η C potremo llor oppre l motore nnovtvo on un rgorero Crnot relzzno l spostvo gur. Se η x > η C llor L/ x >L/ e lvor tt un mhn e revut ll ltr portno vere x x x - x p he mostr ome renment possono l pù essere ugul, quno l motore x è lo Crnot un se pure russsmo omporre mhne termhe e mhne rgogenhe non rusremmo vere l rgorero peretto perhé l renmento sree omunque mnore quello Crnot.

17 Entrop e sts Le moleole un gs s strusono n mrostt e tutt mrostt hnno un loro moltepltà. le moltepltà s ottene l seguente lgortmo W N! / (n! n!) ove N è l numero totle moleole e n e n sono le moleole present ne ue mrostt. Se ettmo l prnpo he tutt mrostt hnno l stess proltà esstere onlueremo he le ongurzon non sono equprol. L ongurzone pù prole è quell he h un moltepltà mggore. Per numer grn prtelle (Avogro) le ongurzon pù prol sono quelle equ onvsone L relzone r l Entrop un ongurzone e su moltepltà e : S k lnw

Cenni di Dinamica. La dinamica studia le cause del moto:

Cenni di Dinamica. La dinamica studia le cause del moto: enn Dnm nm stu le use el moto: legge Newton o legge nerz: n un sstem nerzle un oro ermne nel suo stto quete o moto unorme. legge Newton: un orz lt un oro mss m orrsone un elerzone t ll relzone: F = m (F

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

Analisi sistematica delle strutture. Rigidezza

Analisi sistematica delle strutture. Rigidezza Anls sstemt elle strutture Rgezz u U x y v Trve nel pno v Vettore forze nol Vettore spostment nol θ u θ u U u V v Tre gr lertà per noo Due no per elemento x U θ u Se gr lertà per elemento V v tre rgezz

Dettagli

Approfondimenti e problemi sull argomento: Trasformazioni Termodinamiche

Approfondimenti e problemi sull argomento: Trasformazioni Termodinamiche pproondment e problem sull rgomento: rsormzon ermodnmhe roblem 1,,,4,: doltà med, utl per l preprzone ll esme roblem 6,7: d pproondmento, olttv roblem 1 Un peso d mss 8.6 Kg, dendo d un ltezz d 4 m grre

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Primo compitino, 18 novembre 2017 Testi 1 Primo ompitino, 8 novemre 07 Testi Prim prte, gruppo. =, = ; r = α = = 0, = 4; r = α = r = 3, α = π/3; = =. Trovre le soluzioni ell isuguglinz tn( tli he 0 π. + log log(log ; lim + os(e ; lim 4. Clolre

Dettagli

Trasformazioni reversibili

Trasformazioni reversibili rsformzioni ersiili Amiente circostnte usilirio del sistem o resto dell Universo h P sistem Ciò che circond loclmente il sistem Sertoio Supponimo si verifichi un trsformzione: ) Il sistem pss d uno stto

Dettagli

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008 Eemp Cnemt Drett/Inver Mmo Cvllr Coro Robot rof. Gueppn Gn 7/8 Cnemt nver oone e Orentmento ell EnEffetor oone e Gunt Obettvo ell nemt nver è l rer elle relon per l lolo elle vrbl gunto, te l poone e l'orentmento

Dettagli

Equazioni di secondo grado Capitolo

Equazioni di secondo grado Capitolo Equzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici. Il Primo Principio dell Termodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff A. hoon esercz Fsc II QUINTA LEZIONE: corrente elettrc, legge ohm, crc e scrc un conenstore, legg Krchoff Eserczo Un conuttore clnrco n rme vente sezone re S mm è percorso un corrente ntenstà 8A. lcolre

Dettagli

Risultati esame scritto Fisica 2-08/03/2013 orali: alle ore presso aula M

Risultati esame scritto Fisica 2-08/03/2013 orali: alle ore presso aula M Rsultt esme scrtto Fsc - 8/3/3 orl: 3-3-3 lle ore 4. presso ul M gl stuent nteresst vsonre lo scrtto sono pregt presentrs l gorno ell'orle; Nuovo ornmento eccho ornmento voto ARER ONE 6 mmesso ASSANO 3

Dettagli

quattro trasformazioni

quattro trasformazioni ilo di rnot e un ilo termio ostituito d quttro trsformzioni p() reversibili di un gs perfetto : un espnsione isoterm d tempertur un espnsione dibti d un ompressione isoterm d tempertur un ompressione dibti

Dettagli

Soluzione a) Detta F la forza impulsiva dovuta al corpo, il momento dell impulso, calcolato rispetto al punto di sospensione, è dato da

Soluzione a) Detta F la forza impulsiva dovuta al corpo, il momento dell impulso, calcolato rispetto al punto di sospensione, è dato da A) meccnc Un srr omogene d lunghezz l, lrghezz trscurle e mss M è ppes vertclmente d un estremtà mednte un perno ttorno cu puo` ruotre. Contro l estremt` ler dell srr vene scglto un corpo che nell urto

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

Il lavoro è quindi una grandezza scalare le cui unita di misura sono: = Joule = J

Il lavoro è quindi una grandezza scalare le cui unita di misura sono: = Joule = J Ve. el 9/0/09 Lvoo e Eneg Denzone lvoo pe un oz cotnte Se un oz cotnte gce u un copo che eettu uno potmento ce che l oz compe un lvoo ento come: co ( co ) ove è l componente ell oz pllel llo potmento.

Dettagli

Lez.9 Teoremi sulle reti 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 9 Pagina 1

Lez.9 Teoremi sulle reti 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 9 Pagina 1 Lez.9 Teorem sulle ret 2 Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A. 207-208, Elettrotecnc. Lezone 9 Pgn Teorem d non mplfczone In un rete costtut d sol pol, n cu è presente un unco polo che erog

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA

VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA VERSO L ESAME DI STATO SCUOLA SECONDARIA DI PRIMO GRADO PROVA DI MATEMATICA trtto Mtemti in zione, A. Arpinti, M. Musini Mettimoi ll prov! Suol..........................................................................................................................................

Dettagli

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione Integrle Dento. Il prolem del clcolo delle ree Suddvsone dell ntervllo [,] n sottontervll che ne costtuscono un prtzone De. Prtzone S chm prtzone P dell ntervllo [,] un nseme d n+ punt <

Dettagli

Algebra Relazionale. Operazioni nel Modello Relazionale

Algebra Relazionale. Operazioni nel Modello Relazionale lger Relzionle lger Relzionle Operzioni nel Moello Relzionle Le operzioni sulle relzioni possono essere espresse in ue ormlismi i se: lger relzionle: le interrogzioni (query) sono espresse pplino opertori

Dettagli

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO Eseritzioni svolte 2010 Suol Duemil 1 Eseritzione n. 2 Aspetti eonomii e lusole el ontrtto i omprvenit Risultti ttesi Spere: gli spetti tenii, giuriii e eonomii el ontrtto i omprvenit. Sper fre: eterminre

Dettagli

I vettori. Grandezze scalari: Grandezze ve9oriali

I vettori. Grandezze scalari: Grandezze ve9oriali I ettor Grndee sclr: engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee e9orl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore Vettor. Un vettore è ndvduto nello spo o nel pno ssegnndo tre grndee: Lunghe o Modulo o Intenstà: defnt d un numero rele non negtvo Dreone nlnone d un rett rspetto gl ss rtesn Verso Può rppresentto d segment

Dettagli

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data...

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data... Cpitolo Monomi e polinomi Monomi Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

SOLUZIONI. p T. p T. nella quale la temperatura va espressa in Kelvin e non in gradi Celsius, per cui occorre convertire:

SOLUZIONI. p T. p T. nella quale la temperatura va espressa in Kelvin e non in gradi Celsius, per cui occorre convertire: SOLUZIONI POBLEA N. I at el problema sono seguent: 0 C (temperatura nzale ell ara) 50 C (temperatura nale ell ara) p. bar p.? Il processo è approssmable con una trasormazone a volume costante, e l ara

Dettagli

L insieme Q+ Le frazioni Operazioni con le frazioni Problemi con le frazioni

L insieme Q+ Le frazioni Operazioni con le frazioni Problemi con le frazioni L insieme Q+ Le frzioni Operzioni on le frzioni Prolemi on le frzioni Le frzioni Ini l rispost estt. In un frzione il numertore ini SEZ. C in qunte prti si ivie l unità. qunti interi si onsierno. qunte

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Prim Suol..........................................................................................................................................

Dettagli

Sondaggio piace l eolico?

Sondaggio piace l eolico? Songgio pie l eolio? Durnte l inugurzione i Stell sono stti istriuiti ei questionri per vlutre l inie i grimento ell eolio prte ell popolzione Sono stti ompilti e quini nlizzti 50 questionri Quest presentzione

Dettagli

I segmenti orientati

I segmenti orientati I vettor Untà Pgn 1 d 5 I egment orentt Dll geometr euclde ppmo che l egmento è l prte fnt d rett delmtt d due punt dett etrem del egmento. Defnmo egmento orentto un qul egmento ul qule è tto fto un vero

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorem Fondmentle dell'artmetc Defnzone 7 Un nmero ntero p dverso d 0 e s dce prmo se per ogn b Z Altrment p s dce composto p b p oppre p b Defnzone

Dettagli

Analisi Matematica Lezione 26, 25 novembre 2014 Integrale di Riemann

Analisi Matematica Lezione 26, 25 novembre 2014 Integrale di Riemann Dprtmento d Scenze Sttstche Anls Mtemtc Lezone 26, 25 novembre 2014 Integrle d Remnn prof. Dnele Rtell dnele.rtell@unbo.t 1/28? Teorem du Bos-Reymond e Drboux Condzone necessr e suffcente ffnché f R ([,

Dettagli

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo:

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo: FUNZIONI MATEMATICHE Le relzioni mtemtihe utilizzte per desrivere fenomeni nturli, in iologi ome in ltre sienze, possono ovvimente essere le più svrite. Per lo più si trtt di equzioni lineri, qudrtihe,

Dettagli

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore Vettor. Un vettore è ndvduto nello spo o nel pno ssegnndo tre grndee: Lunghe o Modulo o Intenstà: defnt d un numero rele non negtvo Dreone nlnone d un rett rspetto gl ss rtesn Verso Può rppresentto d segment

Dettagli

Cammini minimi in un grafo orientato pesato. Un problema di percorso. Problemi di ottimizzazione

Cammini minimi in un grafo orientato pesato. Un problema di percorso. Problemi di ottimizzazione Cmmn mnm n un gro orntto sto Algortm Dkstr Bllmn-For r l rolm l mmno mnmo sorgnt sngol Un rolm rorso Dt un m strl on stnz s. n lomtr un unto rtnz s tror rors ù r s sun ll ltr loltà Prolm ottmzzzon Prolm:

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Test diagnostici. Un po di definizioni: test: (a+c)) / n. a+c. Malattia NO. a+b TEST. c+d. n= a+b+c+d. b+d POS NEG TOT TOT

Test diagnostici. Un po di definizioni: test: (a+c)) / n. a+c. Malattia NO. a+b TEST. c+d. n= a+b+c+d. b+d POS NEG TOT TOT Test ignostii Un po i efinizioni: proilità pre-test test: (+)) / n POS SI Mltti NO + TEST NEG + + + n= +++ 1 sensiilità el test: / (+( +) proilità he, t l mltti M, il test T si positivo SI Mltti NO POS

Dettagli

ROTAZIONI ( E TEOREMA DI PITAGORA

ROTAZIONI ( E TEOREMA DI PITAGORA ROTAZIONI ( E TEOREMA DI PITAGORA ) Defnzone Defnmo rotzone nel pno R un funzone (,) --> f(,) = (',') R, tle che : ) f(,) = f(,) + ort(f(,), per ogn (,) R dove : ort(,b) := (-b,) "ortogonle (ntorro)" d

Dettagli

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici. Il Primo Principio dell ermodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld

Dettagli

1) Un filo rettilineo infinito percorso da corrente i genera un campo magnetico con le seguenti proprietà:

1) Un filo rettilineo infinito percorso da corrente i genera un campo magnetico con le seguenti proprietà: Ogne el Cmpo Mgneto Rpotmo ue ftt spementl. 1) Un flo ettlneo nfnto peoso oente gene un mpo mgneto on le seguent popetà: l ntenstà ument lnemente on m eese lnemente on ovveo B, qun le lnee mpo sono onfeenze

Dettagli

sistema/ ambiente / universo Si distingue tra il sistema (termodinamico) e l ambiente che lo circonda

sistema/ ambiente / universo Si distingue tra il sistema (termodinamico) e l ambiente che lo circonda ermonmc e teor cnetc e gs L nseme relzon tr le propret mcroscopche che servono speccre lo stto nterno un sstem quno ntervene l clore. propret mcroscopche: quelle rettmente percepl nostr sens ( contrsto

Dettagli

La statistica nei test Invalsi

La statistica nei test Invalsi L sttisti nei test Invlsi 1) Osserv il grfio seguente he rppresent l distriuzione perentule di fmiglie per numero di omponenti, in se l ensimento 2001.. Qul è l perentule di fmiglie on 2 omponenti? Rispost:..%.

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Prim Suol..........................................................................................................................................

Dettagli

Esercizi per il corso di Calcolatori Elettronici. svolti da Mauro IACOVIELLO & Fabio LAUDANI

Esercizi per il corso di Calcolatori Elettronici. svolti da Mauro IACOVIELLO & Fabio LAUDANI Eserizi per il orso i loltori Elettronii svolti Muro OVELLO & Fio LUDN Prte seon : Mhine stti finiti ESERZO : Mhin i Mely Si t l seguente mhin i Mely, sintetizzre un iruito he l implementi, utilizzno un

Dettagli

d coulomb d volt b trasformatore d alternatore b amperometro d reostato

d coulomb d volt b trasformatore d alternatore b amperometro d reostato ppunti 7 TEST DI VERIFICA 1 Unità i misur ell ri elettri: henry weer volt oulom 2 Unità i misur ell pità elettri: oulom henry fr volt 3 Gener orrente lternt: umultore resistenz 4 Misur l tensione: resistometro

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1 nlisi Mtemti I per Ingegneri Gestionle,.. 6-7 Sritto el quinto ppello, 3 luglio 7 Testi Prim prte, gruppo.. Dire per quli R l funzione f() := sin( 3 ) + 3 è resente su tutto R.. Disporre le seguenti funzioni

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI MATEMATICA FINANZIARIA Pro. Andre Berrd 999 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 PROGETTO ECONOMICO-FINANZIARIO Un progetto economco-nnzro è un

Dettagli

II Principio Termodinamica

II Principio Termodinamica II Prnpo ermodnama I Prnpo: legge d onservazone energa [NON ho lmt sulle trasormazon possbl] II Prnpo: spega perhé ert tp d trasormazon avvengono n una sola drezone uovo ade n un portauovo e s rompe: non

Dettagli

ESERCIZI SVOLTI DEL CORSO DI TRASMISSIONE NUMERICA

ESERCIZI SVOLTI DEL CORSO DI TRASMISSIONE NUMERICA Università egli Stui i rento Corso i Lure in Ingegneri elle eleomunizioni ESERCIZI SVOLI DEL CORSO DI RASMISSIONE NUMERICA Prof Lorenzo Bruzzone ESERCIZIO Costruire un oie vente n=3, k=2 on rità isri,

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2014 / 2015

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2014 / 2015 Leo Sentfo Sttle A. Volt, Torno Anno solsto 0 / 0 Cognome e Nome: LOGARITMI ED ESPONENZIALI Complet on l equone d sun funone: A) B) C) D) 0) Qule funone pss per l punto ( ; ) ed è sempre postv? 0) L funone

Dettagli

Qual è la legge che regola la propagazione delle O.E.M.? a b c. c = λ : F c = λ x F c = F : λ. F= Frequenza λ=lunghezza d'onda

Qual è la legge che regola la propagazione delle O.E.M.? a b c. c = λ : F c = λ x F c = F : λ. F= Frequenza λ=lunghezza d'onda Qul è l legge he regol l propgzione elle O.E.M.? = λ : F = λ x F = F : λ F= Frequenz λ=lunghezz 'on A qule veloità si propgno le O.E.M. nel vuoto? All veloità ell lue A un veloità molto minore ell veloità

Dettagli

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE ANALII DELLA REGREIONE L Al dell Regreoe rgurd lo tudo delle relzo etet r o pù rtter qutttv o vrl. L rer de legm etet r pù vrl poe ome rer delle relzo uzol he pogoo Y ome grdezz dpedete d u ere d vrl dpedet

Dettagli

Esercizi per il corso di Calcolatori Elettronici

Esercizi per il corso di Calcolatori Elettronici Eserizi per il orso i loltori Elettronii svolti Muro IOVIELLO & io LUDNI Prte prim : mppe i Krnugh, metoo QM ESERIZIO : Mppe i Krnugh Minimizzre l rete rppresentt ll funzione: = {,,, 3, 4, 5,, } D = Ø

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner

Dettagli

a a = 1, a a = 0; a a = 1, a a = 0; e quindi, = (a a ) (a a ) = (a a) a = 0 a = a

a a = 1, a a = 0; a a = 1, a a = 0; e quindi, = (a a ) (a a ) = (a a) a = 0 a = a Definizione 1. Si R un insieme otto i ue leggi i composizione interne e. Si ice che l struttur lgebric (R,, ) è un reticolo (lgebrico) se e verificno le proprietà: (1) x, y, z R, (x y) z = x (y z); (x

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Noi investiamo in qualità della vita e Tu?

Noi investiamo in qualità della vita e Tu? No nvestmo n qultà dell vt e Tu? sosttuzone de serrment SI NO - RISPARMIO IN BOLLETTA - COMFORT - QUALITÀ DELLA VITA + - lvor d rqulfczone lvor d rqulfczone + eff cen 10 nn relzzzone del cppotto z e nerg

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Equazioni di primo grado

Equazioni di primo grado Cpitolo Equzioni i primo gro Equzioni i primo gro erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Esercizi. Prima parte Soluzioni e risoluzioni

Esercizi. Prima parte Soluzioni e risoluzioni Eserizi. Prim rte Soluzioni e risoluzioni Soluzioni. ) ;. ) ; 3. 4) ; 4. ) ;. ) ; 6. ) ; 7. 3) ; 8. 4) Risoluzioni. Avete visto uli sono le risoste estte. Vi onviene, rim i veere ome si rriv ll soluzione,

Dettagli

Problemi Svolti di Fisica dello Stato Solido

Problemi Svolti di Fisica dello Stato Solido Problemi Svolti i Fisi ello Stto Solio Mostrre he il volume elle elle primitive ei retioli b e f i ostnte retiolre sono pri rispettivmente / e /4 Soluione: il volume ell ell è to : ( ) V Per il retiolo

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

Sistemi Informativi Territoriali. La geometria imperfetta. Paolo Mogorovich Incoerenza monolayer Ricerca di una soluzione

Sistemi Informativi Territoriali. La geometria imperfetta. Paolo Mogorovich   Incoerenza monolayer Ricerca di una soluzione Inoerenz monolyer Rier i un soluzione Sistemi Informtivi Territorili Polo Mogorovih www.i.unipi.it/~mogorov L geometri imperfett Inoerenz monolyer Rier i un soluzione Vertii importnti e vertii meno importnti

Dettagli

Interpolazione dei dati

Interpolazione dei dati Unverstà degl Stud d Br Dprtmento d Chmc 9 gugno 0 F.Mvell Lortoro d Chmc Fsc I.. 0-0 Interpolzone Curve Interpolzone de dt Qundo s conosce l legge fsc che mette n relzone tr loro due vrl e, mednte prmetr,,

Dettagli

6. Il telerilevamento passivo.

6. Il telerilevamento passivo. 6. Il telerlevmento pssvo. Il telerlevmento h lo scopo rlevre stnz le crtterstche fsco/chmche un oggetto trmte un sensore che s n gro msurre l energ elettromgnetc che l superfce ell oggetto rr nello spzo

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

prese e spine industriali CEE

prese e spine industriali CEE prese e spne nustrl CEE I proott quest gl rppresentno un propost nnovtv e grne prego grze lle loro oltepl peulrtà: l ozone tre sste revettt onsente nzzre tep lggo, glornone l e: on s propone un nuov v

Dettagli

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i

Dettagli

Anteprima Esempio di Test di Ingresso

Anteprima Esempio di Test di Ingresso Anteprim Esempio i Test i Ingresso Question 1 Il prinipio i lssifizione e il to sttistio Ogni linguggio, nhe il linguggio orinrio, h fonmento lssifitorio. Nel nome omune si onret il prinipio i ientità

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 m 3 ) l rnnovo d r è n 5 (1/h). Nell potes d un tempertur estern t e - 5 C qunto vle l flusso termco per ventlzone v. ssumere:

Dettagli

Architettura del calcolatore Esempi dettagliati di funzionamento interno di memoria e processore

Architettura del calcolatore Esempi dettagliati di funzionamento interno di memoria e processore Corso i Cloltori Elettronii I Arhitettur el loltore Esempi ettgliti i funzionmento interno i memori e proessore ing. Alessnro Cilro Corso i Lure in Ingegneri Biomei Sommrio In quest presentzione verrnno

Dettagli

Verifica per la classe seconda COGNOME... NOME... Classe... Data...

Verifica per la classe seconda COGNOME... NOME... Classe... Data... L rett Cpitolo Rett erifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt............................... Rett Rette

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

Lezione 7 Macroeconomia

Lezione 7 Macroeconomia Lezone 7 aroeonoma CLE, Govann er Lezone 7 Govann er, aro Shema ella Lezone Un seono esempo polthe eonomhe (La Unazone Teesa) nals ella Dnama ell aggustamento nals ella trattazone analta un moello IS-L

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere Doente: rof Dino Zri serittore: in lessio Bertò OLUZION PROBLMI Insenento i Fisi ell tosfer eon rov in itinere /3 Vlori elle ostnti Rio terrestre eio: 637 Rio solre eio: 7 5 Distnz ei terr-sole : 9 6 Vlore

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Unità Didattica N 32. Le trasformazioni geometriche

Unità Didattica N 32. Le trasformazioni geometriche 1 Untà Ddttc N Le trsformzon geometrche 1) Le trsformzon del pno n sé ) L smmetr centrle ) L smmetr ssle 4) L trslzone 5) L trslzone degl ss crtesn 6) L ' ffntà 7) L smltudne 8) L omotet 09) Le sometre

Dettagli

DAI POLIGONI ALLE SUPERFICI TOPOLOGICHE

DAI POLIGONI ALLE SUPERFICI TOPOLOGICHE DAI POLIGONI ALLE SUPERFICI TOPOLOGICHE E1 Avete visto ome prteno un rettngolo si possno ostruire un ilinro, un nstro i Moeius e un toro, inollno i lti seono le inizioni ei olori. Or provte utilizzre l

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

SCIENZE DELLA FORMAZIONE,

SCIENZE DELLA FORMAZIONE, UNIVERSITÀ MGLi STUDI DI BARI ALDO MORO DIPARTIMENTO DI SCIENZE DELLA FORMAZIONE, PSICOLOGL\ COMUNICAZIONE VERBALE N 19 el 23/settemre/2015 seut el giorno 23/settemre/2015 COMMISSIONE NOMINATA CON D.D.

Dettagli

Amplificatori operazionali

Amplificatori operazionali mplfcator operazonal Parte www.e.ng.unbo.t/pers/mastr/attca.htm (ersone el 9-5-0) mplfcatore operazonale L amplfcatore operazonale è un sposto, normalmente realzzato come crcuto ntegrato, otato tre termnal

Dettagli

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE

ANALISI DELLA REGRESSIONE ANALISI BIVARIATA DELLA REGRESSIONE ANALII DELLA REGREIONE L Al dell Regreoe rgurd lo tudo delle relzo etet r o pù crtter qutttv o vrl. L rcerc de legm etet r pù vrl poe come rcerc delle relzo uzol che pogoo come grdezz dpedete d u ere d

Dettagli

3.1 Ridisegnando il circuito senza incroci e applicando la trasformazione triangolo-stella si ottengono gli schemi seguenti.

3.1 Ridisegnando il circuito senza incroci e applicando la trasformazione triangolo-stella si ottengono gli schemi seguenti. . dsegnndo l crcuto senz ncroc e pplcndo l trsformzone trngolostell s ottengono gl schem seguent. Ω Ω eq Ω Ω Ω Ω Ω Ω eq Ω Ω Ω Ω eq Ω eq // Ω. S trsform l stell edenzt n rosso n un trngolo (le resstenze

Dettagli

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione Integrle Dento. ( Il prolem del clcolo delle ree Suddvsone dell ntervllo [,] n sottontervll che ne costtuscono un prtzone De. Prtzone S chm prtzone P dell ntervllo [,] un nseme d (n+ punt <

Dettagli

f(x) f(x 0 ) lim (x) := f(x) f(x 0)

f(x) f(x 0 ) lim (x) := f(x) f(x 0) Cpitolo 3 Derivte 31 Definizione **Definizione 31 (Punto di derivilità) Si f :[, ]! R un funzione e si 2 [, ] Allor f si dice derivile in se esiste finito il In questo cso si dice punto di derivilità per

Dettagli

N 10 I NUMERI COMPLESSI

N 10 I NUMERI COMPLESSI Untà Ddttc N 0 I NUMERI COMPLESSI 0) Introduzone dell untà mmgnr 0) Introduzone elementre de numer compless 0) Alcune operzon su numer compless 0) Rppresentzone geometrc de numer compless 05) Rppresentzone

Dettagli

Scomposizione di polinomi 1

Scomposizione di polinomi 1 Somposizione i un polinomio Cpitolo Somposizione i polinomi 1 erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli