Anno 4 I Triangoli rettangoli
|
|
|
- Gabriella Roberto
- 9 anni fa
- Visualizzazioni
Transcript
1 Anno 4 I Tringoli rettngoli 1
2 Introduzione In quest lezione esmineremo i tringoli rettngoli, studindo le relzioni metriche tr i lti e gli ngoli di un tringolo. Enunceremo i teoremi sui tringoli rettngoli e illustreremo loro ppliczioni. Al termine dell lezione sri in grdo di: enuncire i teoremi sui tringoli rettngoli utilizzre i teoremi sui tringoli rettngoli In quest lezione esmineremo i tringoli rettngoli, studindo le relzioni metriche tr i lti e gli ngoli di un tringolo. Enunceremo i teoremi sui tringoli rettngoli e illustreremo le loro ppliczioni. Al termine dell lezione sri pertnto in grdo di: enuncire i teoremi sui tringoli rettngoli; utilizzre i teoremi sui tringoli rettngoli.
3 I teoremi sui tringoli rettngoli Goniometri: misurzione degli ngoli e delle funzioni ssocite d essi. Trigonometri: studio delle relzioni metriche tr i lti e gli ngoli di un tringolo. A P H e ABC sono simili BC:AB=PH:AP e AC:AB=AH:AP AP=1, PH=sen(α), AH=cos(α) BC=AB sen(α) =csen(α) AC=AB sen(α) b=ccos(α) Lo studio dei tringoli rettngoli f prte dell trigonometri. L trigonometri è l prte dell mtemtic che studi le relzioni tr i lti e gli ngoli di un tringolo. Il compito principle dell trigonometri è quello di clcolre le misure degli elementi di un tringolo, come i lti, gli ngoli, le medine, le bisettrici, etc., prtendo d ltre misure già note e servendosi di prticolri relzioni. Illustrimo or i teoremi sui tringoli rettngoli. Disegnimo un tringolo rettngolo ABC con l ngolo retto in C, e indichimo con, b e c i tre lti del tringolo rispettivmente opposti i vertici A, B e C. Trccimo l circonferenz goniometric con il centro in A. Considerimo i due tringoli APH e ABC. Essi sono simili e quindi possimo scrivere: BC:AB=PH:AP e AC:AB=AH:AP. Poiché AP=1, PH=sinα e AH=cosα, si h: BC=ABsinα ovvero =csinα e AC=ABcosα ovvero b=ccos(α). Queste due uguglinze portno enuncire il primo teorem dei tringoli rettngoli. 3
4 Primo teorem dei tringoli rettngoli In un tringolo rettngolo l misur di un cteto è ugule quell dell ipotenus per il seno dell ngolo opposto o per il coseno dell ngolo dicente d esso. Primo teorem: BC=AB sen(α) =c sen(α) AC=AB cos(α) b=c cos(α) Enuncimo, dunque, il primo teorem sui tringoli rettngoli. In un tringolo rettngolo l misur di un cteto è ugule quell dell ipotenus per il seno dell ngolo opposto o per il coseno dell ngolo dicente d esso. Disegnimo un tringolo rettngolo vente i lti, b e c. Il primo teorem si potrà esprimere in formule: =csen(α) e b=ccos(α). 4
5 Secondo teorem dei tringoli rettngoli Secondo teorem: BC:AC=PH:AH BC:AC=sen(α):cos(α) BC:AC=tn(α ) =b tn(α) AC:BC=cos(α):sen(α) AC:BC=cotn(α) b= cotn(α) In un tringolo rettngolo l misur di un cteto è ugule quell dell ltro cteto per l tngente dell ngolo opposto o per l cotngente dell ngolo dicente l cteto. Enuncimo, or, il secondo teorem sui tringoli rettngoli. Considerimo l figur. Per l similitudine dei tringoli APH e ABC, si può scrivere: BC:AC=PH:AH. Poiché PH=sen(α) e AH=cos(α), si h: BC:AC=sen(α): cos(α) ovvero BC:AC=tn(α), cioè =btn(α). Allo stesso modo, AC:BC=cos(α):sen(α) ovvero AC:BC=cotn(α), cioè b=cotn(α). Le due relzioni scritte portno l seguente teorem: in un tringolo rettngolo l misur di un cteto è ugule quell dell ltro cteto per l tngente dell ngolo opposto o per l cotngente dell ngolo dicente l cteto. 5
6 Risoluzione dei tringoli rettngoli conoscendo due lti Risolvere un tringolo rettngolo signific determinre le misure dei suoi lti e dei suoi ngoli conoscendo lmeno un lto e un ltro dei suoi elementi (un ngolo o un lto). Esempio: sono noti due cteti Esempio: sono noti un cteto e l ipotenus tn(α)= α=rctn( ) b b β= - α c= sen( ) sen(α)= α=rcsen ( ) c c β= - α b=c cos(α) oppure b=c sen(β) Ci occupimo, or, dell risoluzione dei tringoli rettngoli. Risolvere un tringolo rettngolo signific determinre le misure dei suoi lti e dei suoi ngoli conoscendo lmeno un lto e un ltro dei suoi elementi (un ngolo o un lto). Ci occuperemo di quttro csi: due csi in cui si conoscono due lti e due csi in cui si conoscono un lto e un ngolo. Il primo cso è quello in cui sono noti due cteti, e b, e si vogliono trovre α, β e c. Per il secondo teorem dei tringoli rettngoli tn(α)=/b, cioè α=rctn( /b). Ricordndo che α+β=π/ si h β=π/-α e c=/sen(α). Il secondo cso rigurd invece l conoscenz di un cteto e di un ipotenus. Supponimo che sino noti e c e voglimo trovre α, β e b. Dl primo teorem bbimo: sen(α)=/c ovvero α=rcsen (/c). β=π/-α e b=ccos(α) oppure b=csen(β). 6
7 Risoluzione dei tringoli rettngoli conoscendo un lto e un ngolo Esempio: sono noti un cteto e un ngolo cuto Esempio: sono noti l ipotenus e un ngolo cuto β= - α b= tn(β) β= - α =c sen(α) c= b b=c sen(β) Il terzo cso è quello in cui si conoscono un cteto e un ngolo cuto. Sino noti e α e voglimo determinre β, b e c. Si osservi che β=π/- α. Per il secondo teorem dei tringoli rettngoli: b=tn(β). Applicndo infine il teorem di Pitgor, si h: c= ( +b ). Vedimo infine l ultimo cso: sono noti l ipotenus e un ngolo cuto. Sino noti c e α e voglimo determinre, β, e b. Si osservi che β=π/- α. Per il primo teorem sui tringoli si h: =csen(α) e b=csen(β). 7
8 Conclusione Tringoli Rettngoli Primo Teorem Risoluzione dei tringoli Secondo teorem In quest lezione bbimo illustrto i tringoli rettngoli. Abbimo dimostrto geometricmente l vlidità del primo teorem e l vlidità del secondo teorem. Abbimo poi illustrto l risoluzione dei tringoli rettngoli, che si serve dei due teoremi enunciti precedentemente. 8
Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica
Matema&ca TRIGONOMETRIA La trigonometria DOCENTE: Vincenzo Pappalardo MATERIA: Matematica INTRODUZIONE Finora ci siamo occupati di goniometria, ossia della misura di angoli e delle funzioni goniometriche
Anno 2. Triangoli rettangoli e teorema delle corde
Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,
Teoremi di geometria piana
l congruenz teoremi sugli ngoli γ teorem sugli ngoli complementri Se due ngoli sono complementri di uno stesso ngolo α β In generle: Se due ngoli sono complementri di due ngoli congruenti α γ β teorem
Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3.
MODULO 3 LEZIONE 3 parte 2 Trigonometria: La risoluzione dei triangoli. Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che
MATEMATICA Classe Prima
Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi
Anno 5. Applicazione del calcolo degli integrali definiti
Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei
a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto.
Tringolo rettngolo In un tringolo rettngolo : un teto è ugule l prodotto dell ipotenus per il seno dell ngolo opposto l teto. = sen = sen un teto è ugule l prodotto dell ipotenus per il oseno dell ngolo
COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA
COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA PROBLEMI DI APPLICAZIONE DELL'ALGEBRA ALLA GEOMETRIA ) Inscrivere in un semicirconferenz di dimetro r un rettngolo ABCD vente il lto AB sul dimetro
26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:
ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di
24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze
Alunno/.. Alunno/ Pgin Esercitzione in preprzione ll PROVA d ESAME Buon Lvoro Prof.ss Elen Sper. Il piccolo fermcrte dell figur è relizzto nel seguente modo. Si prende un cubo di lto cm e su un fcci si
si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x
Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in
Triangoli rettangoli
Tringoli rettngoli Teori in sintesi Teoremi sui tringoli rettngoli Teorem In un tringolo rettngolo l misur di un cteto è ugule quell dellipotenus moltiplict per il coseno dellngolo cuto esso dicente o
TEOREMI FONDAMENTALI DI GEOMETRIA ELEMENTARE
uthor: Ing, Giulio De Meo GEOMETRIA TEOREMI FONDAMENTALI DI GEOMETRIA ELEMENTARE L somm degli ngoli interni di un poligono di n lti è (n - ) 180. L somm degli ngoli esterni di un qulsisi poligono vle 360.
Elementi di Geometria. Lezione 02
Elementi di Geometri Lezione 02 Angoli complementri e supplementri Due ngoli si dicono complementri qundo l loro somm è un ngolo retto. In Figur 15 i due ngoli e sono complementri perché, sommti come descritto
Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O.
Angolo Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O. Trigonometria - Corso di matematica - Alessia Ceccato 1 Circonferenza goniometrica
b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.
Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()
Sezione Esercizi ; ; ; 1 4. f ) 13 + g ) , 100, 125; f ) 216; 8 27 ; ; e ) g ) 0; h )
Sezione Esercizi Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli (qundo è possiile clcolrle) 00 l ) m ) n ) o ) 0,0 0,0 0,000 0, Determin le seguenti rdici qudrte
triangolo equilatero di lato 9 cm. Quanto misura il lato del rombo?
GB00001 Il perimetro di un rombo è triplo di quello di un ) 24 cm. b) 21 cm. c) 26,5 cm. d) 20,25 cm. d tringolo equiltero di lto 9 cm. Qunto misur il lto del rombo? GB00002 Due segmenti AB e CD sono tli
Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001
Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +
2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:
Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo
Contenuti di matematica classe prima liceo scientifico di ordinamento e delle scienze applicate.
Contenuti di mtemtic clsse prim liceo scientifico di ordinmento e delle scienze pplicte. SAPERE Sper definire, rppresentre e operre con gli insiemi. Conoscere gli insiemi numerici N, Z, Q e sperci operre
Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.
Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione
Appunti di matematica 3 Indice
Appunti di mtemtic Indice. Ripsso di lgebr e geometri del biennio. Geometri nlitic Il pino crtesino Rett Circonferenz Prbol Ellisse Iperbole Complementi di geometri nlitic. Successioni numeriche. Funzione
SCOMPOSIZIONE IN FATTORI
Sintesi di Mtemtic cur di Griell Grzino SCOMPOSIZIONE IN FATTORI ) Rccoglimento fttore comune ( Applicile d un polinomio di un numero qulunque di termini purchè i termini presentino lmeno un letter o un
CONCETTI PRIMITIVI DELLA GEOMETRIA. Punto. Punto. Linea. Piano. La linea retta. Piano PAGINA 1
NTTI PRIMITIVI LL MTRI Il punto è un entità geometric priv di dimensione. Si indic con un letter miuscol dell lfbeto ltino. sso si individu d intersezioni di linee rette o di rchi o nche d mbedue. L line
Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito
Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di
Gli Elementi di Euclide
Gli Elementi di Euclide Muro Sit e-mil: [email protected] Versione provvisori. Novembre 2011. 1 Indice 1 L struttu degli Elementi. 1 2 Le prime proposizioni 3 3 Il quinto postulto 4 Simplicio: Voi procedete
11. Geometria piana ( ) ( ) 1. Formule fondamentali. Rettangolo. A = b = h = = b h. b = base h = altezza. Quadrato
11. Geometri pin 1. Formule fonmentli Rettngolo = h = h = h p = + h p = + h h= p = p h + ( ) = h = h h= = se = igonle p = perimetro h = ltezz = re p = semiperimetro Qurto = l l = = l l = l = lto = igonle
1 COORDINATE CARTESIANE
1 COORDINATE CARTESIANE In un sistem di ssi crtesini (,) un punto P è identificto dll su sciss e dll su ordint : Asciss : distnz di P dll sse delle ordinte Ordint :distnz di P dll sse delle scisse P(-4,4)
Anno 4 I Triangoli qualsiasi
Anno 4 I Triangoli qualsiasi 1 Introduzione In questa lezione descriveremo i triangoli qualunque. Enunceremo i teoremi su questi triangoli e illustreremo le loro applicazioni. Al termine della lezione
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic [email protected] www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero
Ing. Alessandro Pochì
Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll
Nome..Cognome.classe 4C 7 Maggio Verifica di Matematica
Noe..Cognoe.clsse 4C 7 Mggio Verific di Mtetic PROBLEMA ( punti In un tringolo ABC il lto BC isur e l ngolo opposto è di. Deterinre in funzione dell piezz di ABC ˆ CH l ndento di f ( essendo CH e bisettrici
Lezione 14. Risoluzione delle equazioni algebriche.
Lezione Prerequisiti: Lezioni 8,. Risoluzione delle equzioni lgebriche. Si F un cmpo, e si K un chiusur lgebric di F. Si f ( ) F[ ] non costnte. Studimo i metodi di risoluzione per l equzione f ( ) = 0,
Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati).
ppunti di geometria.s. 013-014 1 Prof. Luigi ai PPUNTI ngoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). In un triangolo l angolo
Anno 2. Potenze di un radicale e razionalizzazione
Anno Potenze di un rdicle e rzionlizzzione Introduzione In quest lezione impreri utilizzre le ultime due tipologie di operzioni sui rdicli, cioè l potenz di un rdicle e l rdice di un rdicle. Successivmente
Geometria analitica. punti, rette, circonferenza, ellisse, iperbole, parabola. ITIS Feltrinelli anno scolastico Il piano cartesiano
Geometri nlitic punti, rette, circonferenz, ellisse, iperbole, prbol ITIS Feltrinelli nno scolstico 007-008 Il pino crtesino Si dice pino crtesino un sistem formto d due rette perpendicolri che si intersecno
Il valore assoluto (lunghezza, intensita )
Il valore assoluto (lunghezza, intensita ) = se 0 - se < 0 = 5 5-0, = 0 3, = 3 Il valore assoluto di un numero reale è quindi sempre un numero positivo. Geometricamente rappresenta la misura della distanza
PNI 2005 SESSIONE STRAORDINARIA - QUESITI QUESITO 1
www.mtefili.it PNI 005 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si considerino un tronco di pirmide qudrngolre regolre, l cui bse mggiore bbi re qudrupl dell minore, e un pino equidistnte dlle bsi del
Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale
Esercitzione di Mtemtic sulle equzioni di secondo grdo (o d esse riconducibili) nel cmpo rele 1. Risolvere, nel cmpo rele, le seguenti equzioni di secondo grdo: () 81x 0; (b) (x 1) 7x ; (c) 7x x 0; (d)
POTENZA CON ESPONENTE REALE
PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic [email protected] www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,
2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2
Domande di matematica per l esame di stato per il liceo classico Analisi matematica 1. Spiega quando una funzione è un infinitesimo e quando è un infinito per x che tende a x 0. Quali sono i possibili
{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.
Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8
Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo
Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle
LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE
LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE 1. LE FUNZIONI SENO E COSENO LE FUNZIONI SENO, COSENO E TANGENTE DEFINIZIONE Seno e coseno Consideriamo la circonferenza goniometrica e un angolo orientato
AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.
AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert
FORMULARIO DEI TRIANGOLI
RISOLUZIONE TRIANGOLI GENERICI Pagina 1 di 15 FORMULARIO DEI TRIANGOLI Teorema di Pitagora OP= 1 PP = sen OP = cos QQ = tan = Definizione seno Definizione coseno Definizione tangente TT = cotan = Consideriano
( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S
Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.
fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio
Scomposizione di un polinomio in fttori Scomporre in fttori primi un polinomio signific esprimerlo come il prodotto di due più polinomi non più scomponibili Ad esempio 9 = ( 3) fttore 1 ( + 3) fttore +
sen ; e sul teorema del coseno. 2
Esercizi sul grafico di funzioni: Lunghezza di una corda ( ) sen e sul teorema del coseno Esercizi sulla equazione della circonferenza centrata in un generico punto (, ) R Il prodotto di una funzione pari
PRODOTTI NOTEVOLI. Esempi
PRODOTTI NOTEVOLI In lger ci sono delle regole per eseguire in modo più reve e più veloce l moltipliczione tr prticolri polinomi. Queste regole (o meglio formule si chimno prodotti notevoli. Anlizzimo
MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO. Coordinatrice: Prof. ANTONINA CASTANIOTTO
LICEO SCIENTICO STATALE LEONARDO DA VINCI GENOVA.s.04-5 MODALITA DIVALUTAZIONE DEGLI STUDENTI CON CARENZE NEL SECONDO QUADRIMESTRE ESITO SOSPESO MATEMATICA BIENNIO Coordintrice: Prof. ANTONINA CASTANIOTTO
Triangolo rettangolo
Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa
1 Integrale delle funzioni a scala
INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]
Antonella Greco, Rosangela Mapelli. E-Matematica. E-Book di Matematica per il triennio. Volume 1
Antonell Greco, Rosngel Mpelli E-Mtemtic E-Book di Mtemtic per il triennio Volume COPIA SAGGIO Cmpione grtuito fuori commercio d esclusivo uso dei docenti Grmond 009 Tutti i diritti riservti Vi Tevere,
Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica
Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione
Il lemma di ricoprimento di Vitali
Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per
INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma
INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente
Risoluzione dei triangoli rettangoli
Risoluzione dei triangoli rettangoli In questa dispensa esamineremo il problema della risoluzione dei triangoli rettangoli. Riprendendo la definizione di seno e coseno, mostreremo come questi si possano
INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1
INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 6/7 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo
TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto.
TRIGONOMETRIA DA RICORDARE: Due angoli si dicono supplementari quando la loro somma è pari a 80 Due angoli si dicono complementari quando la loro somma è pari a 90 Due angoli si dicono opposti quando la
Teorema della Divergenza (di Gauss)
eorem dell ivergenz (di Guss) i un dominio tridimensionle regolre, l cui frontier è un superficie chius orientt con cmpo normle unitrionˆ uscente d. e F(,,z) F (,,z) i F (,,z) j F (,,z) k è un cmpo vettorile
5 Geometria analitica
58 Formulrio di mtemtic 5 eometri nlitic 5.1 Punti e rett distnz di due punti d ( ) + ( y y ) 1 1 distnz tr due punti con ugule sciss d y y1 distnz tr due punti con ugule ordint d 1 punto medio di un segmento
Rapporti e proporzioni numeriche
Rpporti e proporzioni numeriche Rpporti. Per rpporto tr due numeri e b, di cui il secondo diverso d zero, s intende il quoziente estto dell divisione dei due numeri dti, cioè :b oppure /b. Ad esempio dire
MATEMATIKA OLASZ NYELVEN
Mtemtik olsz nyelven középszint 061 É RETTSÉGI VIZSGA 007. október 5. MATEMATIKA OLASZ NYELVEN KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Indiczioni
