8.1 Legge costitutiva dei materiali ortotropi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "8.1 Legge costitutiva dei materiali ortotropi"

Transcript

1 8 Piastre ortotrope L acciaio ed il calcestruzzo hanno un comportamento isotropo, anche se, nelle strutture in cemento armato, le armature possono introdurre un certo grado di anistropia. Esistono tuttavia diversi materiali per i quali non si può usare il modello di comportamento isotropo; tra questi in particolare si notano i materiali fibrosi, sia naturali, come il legno, sia artificiali, come le resine fibro-rinforzate, che hanno un comportamento spiccatamente anisotropo o, più precisamente, ortotropo. Nelle piastre tuttavia una frequente causa di ortotropia è data dalla diversa geomeria della piastra secondo due direzioni ortogonali, come nel caso rappresentato in Fig. 31. In questo caso, pur essendo il materiale isotropo, il comportamento globale della piastra può essere assimilato a quello di una a sezione piena di spessore uniforme, ma realizzata con un materiale di natura anisotropa. I materiali ortotropi si caratterizzano per il fatto di possedere tre piani di simmetria ortogonali. In direzione ortogonale a ciascun piano il comportamento è simmetrico (cioè non cambia se si esegue una rotazione di 180 gradi intorno ad uno degli assi di un riferimento che ha questi come piani coordinati). Nei materiali fibrosi una direzione di ortotropia è determinata da quella delle fibre, mentre le altre sono ortogonali a questa.

2 8.1 Legge costitutiva dei materiali ortotropi Per un materiale iperelastico ortotropo, la relazione tra tensioni e deformazioni ha la forma: ε x ε y ε z γ yz γ xz γ xy = G 11 G 12 G G 12 G 22 G G 13 G 23 G G G G 66 σ x σ y σ z τ yz τ xz τ xy (98) Nel caso delle piastre, essendo per ipotesi σ z =0,eγ xz = γ yz =0,larelazione costitutiva si può ridurre alle sole tre componenti, sia della tensione sia della deformazione, contenute nel piano x, y e l equazione precedente diviene ε x ε y = γ 1 ν xy E y 0 1 σ x E x Ey 0 σ y τ G E x ν yx (99)

3 dove, per la simmetria della matrice (99): ν xy = ν yx (100) E y E x Per le tensioni piane di un materiale ortotropo si hanno cinque costanti elastiche (E x, E y, ν xy, ν yx e G) ma solo quattro sono indipendenti, in virtù della (100). Invertendo la (99) si ottiene la legge costitutiva tra deformazioni e tensioni: In altra forma σ E x x 1 ν xy ν yx σ y = ν yx E y 1 ν xy ν yx τ ν xy E x 1 ν xy ν yx 0 E y ε x 1 ν xy ν yx 0 ε y 0 0 G E x γ (101) σ x = (ε x + ν xy ε y ) 1 ν xy ν yx (102a) E y σ y = (ε y + ν yx ε x ) 1 ν xy ν yx (102b) τ = Gγ (102c)

4 Poiché anche la (101) è simmetrica, si ha ν yx E y = ν xye x (103) 1 ν xy ν yx 1 ν xy ν yx come segue immediatamente dalla (100). 8.2 Equazione delle piastre ortotrope Sostituendo le (11) nelle (102) si ottiene: E x 2 w σ x = 1 ν xy ν yx x 2 + ν xy 2 w y 2 E y 2 w σ y = 1 ν xy ν yx y 2 + ν yx 2 w x 2 τ = 2G 2 w x y z!! z z (104a) (104b) (104c)

5 Quindi, sostituendo queste ultime nelle (2), si ottengono le risultanti delle sollecitazioniinfunzionedellederivatediw: Z h/2 m x = σ E x 2! w xzdz = h/2 1 ν xy ν yx x 2 + ν xy 2 w h 3 y 2 12 = 2! w D x x 2 + ν xy 2 w y 2 (105a) m y = Z h/2 h/2 σ yzdz = E y 1 ν xy ν yx 2! w y 2 + ν yx 2 w h 3 x 2 12 = 2 w D y y 2 + ν yx 2 w x 2! (105b) Z h/2 m xy = τzdz = 2G 2 w h 3 h/2 x y12 = C 2 w (105c) x y incuilecostantidirigidezzad x, D y e C dipendono dalle costanti elastiche E x, E y, ν xy, ν yx e G mediante le relazioni D x = E x h 3 12 (1 ν xy ν yx ) D y = E y h 3 12 (1 ν xy ν yx ) C = Gh3 6 (106)

6 Ovviamente se E x = E y = E, ν xy = ν yx = ν e G = E/2(1+ν), le (105) coincidono con le (16), valide per i materiali isotropi. Sostituendo le (105) nella equazione di equilibrio (5) risulta: 4! w D x x 4 + ν xy 4 w x 2 y 2 +2C 4 w 4! x 2 y 2 + D w y y 4 + ν yx 4 w y 2 x 2 = p (107) Tenendo presente che, per le (103), D x ν xy = D y ν yx, la precedente si semplifica nella che si può riscrivere D x 4 w x 4 + D y 4 w y 4 +2(C + ν xyd x ) 4 w x 2 y 2 = p (108) in cui 4 w D x x 4 +2H 4 w x 2 y 2 + D y 4 w y 4 = p (109) H = C + ν xy D x = C + ν yx D y (110)

7 8.3 Ortotropia geometrica Quando l ortotropia dipende dalla natura del materiale le costanti D x, D y e H si determinano a partire dalle caratteristiche del materiale, che possono essere misurate sperimentalmente mediante apposite prove. Quando, al contrario, il materiale è isotropo e l anisotropia dipende dalla diversa geometria di due sezioni ortogonali della piastra, come nel caso mostrato in Fig. 31, le relazioni costitutive sono ancora quelle del materiale elastico espresse dalle (15), ma nel calcolo della risultante si dovrà tener conto delle specifiche caratteristiche geometriche della piastra. Per una piastra come quella in Fig. 31, simmetrica rispetto al piano medio, le relazioni cinematiche (11) sono ancora valide. Tuttavia il contributo alla tensione normale σ y del termine legato alla contrazione ortogonale ν 2 w x2 si manifesta solo all interno dello spessore h della piastra, non negli irrigidimenti. Tenendo conto

8 di ciò, applicando le (15), si avrà dunque m x = Z h/2 h/2 σ xzda = E ³ 1 ν 2 Eh 3 12 ³ 1 ν 2 2 w x 2 + w ν 2 y 2 2 w x 2 + w ν 2 y 2!! Z h/2 h/2 z2 dz = 2 w = D x x 2 + w ν 2 y 2! (111a) m y = 1 s y ZA x σ y zda = E 12 ³ 1 ν 2 h 3 µ 1 b s " E 2! Z s ³ 1 ν 2 w y 2 + w h/2 ν 2 x 2 s h/2 z2 dz +2 2 Z w h1 y 2 b /2 z 2 dz h/2 + b 2 w s h3 1 y 2 νeh3 12 ³ 2 2 w 2 1 ν x 2 += D w y y 2 νd x 2! w D y x 2 Per il momento torcente, trascurando il contributo degli irrigidimenti, si può (111b) #

9 assumere Z h/2 Z h/2 m xy = m xy = τ xyzdz = E 2 w h/2 (1 + ν) x y h/2 z2 dz = Eh3 2 w 12 (1 + ν) x y = D x (1 ν) 2 w x y (111c) Sostituendo le (111) nella (5) si ha 4 w D x x 4 + ν 4 w x 2 y 2 ovvero dove D x =! 4 w +2D x (1 ν) x 2 y 2 + D y 4 w y 4 + νd x 4 w y 2 x 2 = p (112) 4 w D x x 4 +2D x 4 w x 2 y 2 + D y 4 w y 4 = p (113) Eh 3 12 ³ 1 ν 2 D y = D x ( 1+ b s " µh1 3 1#) h (114)

10 La (113) coincide con la (109) se si pone H = D x (115) Icoefficienti di un materiale ortotropo che dia luogo a caratteristiche equivalenti a quelle della piastra irrigidita si ottengono confrontando le (111) con le (105), e si trova che ( " µh1 3 1#) E x = E ν xy = ν E y = E D y = E 1+ b ν yx = ν D x D x s h D y (116) Inoltre, poché C = H ν xy D x, tenendo conto delle (106) e della (115) risulta G = 6 h 3 (H νd x)= 6D x h 3 (1 ν) = E 2(1+ν) (117) Un caso più complesso è quello illustrato in Fig. 32, che rappresenta una piastra irrigidita in modo asimmetrico rispetto al piano medio. Il problema è complicato dal fatto che i baricentri delle due sezioni ortogonali non giacciono più sullo stesso

11 x y h h 1 z s b Figura 31: Piastra irrigidita simmetricamente x y h h 1 z s b Figura 32: Piastra irrigidita in modo asimmetrico.

12 piano. Una formulazione approssimata si può ancora ottenere rappresentando la piastra come ortotropa. Con tale approssimazione, se si assume ν = 0, si ottengono i seguenti valori per i coefficienti della piastra[1]: D x = 12 Eh 3 ½ 1 s b 1 ³ D y = EJ h s h1 3 ¾ H = C = Eh K t s (118) in cui J è il momento d inerzia della sezione a T (tratteggiata in Fig. 32) e K t è la rigidezza torsionale di un irrigidimento. Per il modello di materiale equivalente, avendo posto ν =0,siavrà ν xy = ν yx = 0 e quindi E x = ½ 1 b s E 1 ³ E y = E 12J h sh h1 3 ¾ 3 G = 6C h 3 = E 2 µ 1+ 12K t sh 3 E (119)

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012

Dettagli

Il modello di trave adottato dal Saint-Venant si basa sulle seguenti ipotesi:

Il modello di trave adottato dal Saint-Venant si basa sulle seguenti ipotesi: IL PROBLEM DEL DE SINT-VENNT Il problema del De Saint-Venant è un particolare problema di equilibrio elastico di notevole interesse applicativo, potendosi considerare alla base della teoria tecnica delle

Dettagli

Elementi finiti solidi

Elementi finiti solidi Esercitazioni del corso di Costruzione di Macchine 2 e Progettazione FEM a cura dell ing. Francesco Villa Elementi finiti solidi Costruzione di Macchine 2 e Progettazione FEM Prof. Sergio Baragetti Dalmine

Dettagli

REGOLA DELLE MISCELE, TEORIA DELLA LAMINAZIONE

REGOLA DELLE MISCELE, TEORIA DELLA LAMINAZIONE REGOLA DELLE MISCELE, TEORIA DELLA LAMINAZIONE Si va ad analizzare la matrice di legame costitutivo che lega le σ con le ε. Si va a considerare il materiale da isotropo a ortotropo ovvero una lamina che

Dettagli

Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico

Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico 5 Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico Tema 5.1 Si consideri un corpo continuo libero nello spazio, di forma parallelepipedica e di dimensioni a

Dettagli

Capitolo 11. TORSIONE (prof. Elio Sacco) 11.1 Sollecitazione di torsione Torsione nella sezione circolare

Capitolo 11. TORSIONE (prof. Elio Sacco) 11.1 Sollecitazione di torsione Torsione nella sezione circolare Capitolo TORSIONE (prof. Elio Sacco). Sollecitazione di torsione Si esamina il caso in cui la trave è soggetta ad una coppia torcente e 3 agente sulla base L della trave. Si utilizza il metodo seminverso

Dettagli

PressoFlessione. b=33. Trasportando la forza P verso l alto della quantità b = -33 mm, abbiamo la seguente situazione:

PressoFlessione. b=33. Trasportando la forza P verso l alto della quantità b = -33 mm, abbiamo la seguente situazione: Esercizio N.1 Sapendo che la grandezza della forza orizzontale P è 8 kn, determinare la tensione (a) nel punto A, (b) nel punto B. Lo schema statico e le azioni interne sull asta sono le seguenti. P b=33

Dettagli

Le piastre:classificazione

Le piastre:classificazione Le piastre 1. piastre sottili h/l= 1/50-1/10 : piastre sottili con rigidezza flessionale che portano distribuzioni di carico bidimensionale prevalentemente attraverso momenti flettenti, momenti torcenti

Dettagli

Risoluzione delle Piastre Le piastre sottili in regime elastico

Risoluzione delle Piastre Le piastre sottili in regime elastico Corso di rogetto di Strutture OTENZA, a.a. 1 13 Risoluione delle iastre Le piastre sottili in regime elastico Dott. arco VONA DiSGG, Università di Basilicata marco.vona@unibas.it http://www.unibas.it/utenti/vona/

Dettagli

Compositi: teoria dei laminati

Compositi: teoria dei laminati Compositi: teoria dei laminati Introduzione Il laminato singolo Equazioni costitutive e proprietà Criteri di rottura Fibre fuori asse Introduzione: progettazione Materiali e frazione fibre Spessore laminato

Dettagli

Calcolo di una trave a C

Calcolo di una trave a C Calcolo di una trave a C Analisi matematica e FEM con Abaqus Giacomo Barile 26/01/2015 Calcolo analitico e simulato di una trave a C di differenti materiali (ERGAL e Graphite/Epoxy) sottoposta ad uno sforzo

Dettagli

Lezione. Tecnica delle Costruzioni

Lezione. Tecnica delle Costruzioni Lezione Tecnica delle Costruzioni 1 Comportamento e modellazione del cemento armato 2 Modellazione del cemento armato Comportamento del cemento armato Il comportamento del cemento armato dipende dalle

Dettagli

modulo B2 Il cemento armato: metodo agli stati limite

modulo B2 Il cemento armato: metodo agli stati limite modulo Il cemento armato: metodo agli stati limite ESERCIZIO SVOLTO Unità 4 La flessionomposta La flessionomposta: sforzo normale e flessione retta Costruire la frontiera del dominio di resistenza della

Dettagli

6 Stato Limite Ultimo per tensioni normali

6 Stato Limite Ultimo per tensioni normali 6 Stato Limite Ultimo per tensioni normali Legami costitutivi non lineari Si considerano i seguenti legami costitutivi non lineari del calcestruzzo e dell acciaio Legame parabola - rettangolo Legame stress

Dettagli

ESERCIZIO 2 (punti 13) La sezione di figura è

ESERCIZIO 2 (punti 13) La sezione di figura è SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 27/06/2005 Tema A : allievo ESERCIZIO 1 (punti 13) Data la struttura una volta iperstatica di figura, soggetta alla variazione termica uniforme sulla biella

Dettagli

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k,

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE 1. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, determinare un equazione omogenea del piano parallelo al vettore v = i+j,

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura

Dettagli

Giacomo Sacco Appunti di Costruzioni Edili

Giacomo Sacco Appunti di Costruzioni Edili Giacomo Sacco Appunti di Costruzioni Edili Le tensioni dovute a sforzo normale, momento, taglio e a pressoflessione. 1 Le tensioni. Il momento, il taglio e lo sforzo normale sono le azioni che agiscono

Dettagli

Corso di Scienza delle Costruzioni (Corso di Laurea Specialistica in Ingegneria Elettrica)

Corso di Scienza delle Costruzioni (Corso di Laurea Specialistica in Ingegneria Elettrica) Corso di Scienza delle Costruzioni (Corso di Laurea Specialistica in Ingegneria Elettrica) Corso di Meccanica Analitica e dei Continui (Corso di Laurea Specialistica in Ingegneria Nucleare e della Sicurezza

Dettagli

Introduzione al corso Le Piastre

Introduzione al corso Le Piastre Corso di Progetto di Strutture POTENZA, a.a. 2012 2013 Introduzione al corso Le Piastre Dott. Marco VONA DiSGG, Università di Basilicata marco.vona@unibas.it http://www.unibas.it/utenti/vona/ PROGRAMMA

Dettagli

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa.

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa. τ : P P' oppure P'=τ(P) P immagine di P trasformato di P secondo τ se α è una figura geometrica α =τ(α) è la figura geometrica trasformata x' = f (x, y) τ : y' = g(x, y) espressione analitica della trasformazione

Dettagli

3) DIMENSIONAMENTO DI UNA SEZIONE INFLESSA

3) DIMENSIONAMENTO DI UNA SEZIONE INFLESSA 3) DIMENSIONAMENTO DI UNA SEZIONE INFLESSA Quanto segue ci consente di dimensionare l altezza di una trave inflessa con un criterio di imporre che la tensione massima agente sulla sezione della trave sia

Dettagli

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale Esercizio N.1 Un asta di acciaio è lunga 2.2 m e non può allungarsi più di 1.2 mm quando le si applica un carico di 8.5 kn. Sapendo che E = 200 GPa, determinare: (a) il più piccolo diametro dell asta che

Dettagli

Condizioni di drenaggio nei terreni saturi

Condizioni di drenaggio nei terreni saturi e non 1 Condizioni di drenaggio nei terreni saturi In un terreno saturo, soggetto ad una variazione di tensione totale Δσ costante nel tempo, si verificano tre condizioni di drenaggio successive : t :

Dettagli

Micromeccanica e Macromeccanica dei MaterialiCompositi

Micromeccanica e Macromeccanica dei MaterialiCompositi Micromeccanica e Macromeccanica dei Materialiompositi orso di Tecnologie dei Materiali non onvenzionali - Prof. Luigi arrino Micromeccanica Micromeccanica La micromeccanica studia le proprietà della singola

Dettagli

Formulazione dell equazione del moto. Prof. Adolfo Santini - Dinamica delle Strutture 1

Formulazione dell equazione del moto. Prof. Adolfo Santini - Dinamica delle Strutture 1 Formulazione dell equazione del moto Prof. Adolfo Santini - Dinamica delle Strutture 1 Sistema a un grado di libertà In alcuni sistemi strutturali la massa, lo smorzamento e la rigidezza sono concentrati

Dettagli

LEZIONE 2. MATERIALI E CARICHI DELLA COSTRUZIONE Parte I. I materiali della costruzione

LEZIONE 2. MATERIALI E CARICHI DELLA COSTRUZIONE Parte I. I materiali della costruzione Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A. 2007-2008 Facoltà di Architettura Università degli Studi di Genova LEZIONE 2 MATERIALI E CARICHI DELLA COSTRUZIONE Parte I. I materiali della costruzione

Dettagli

3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia

3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia 3 Geometria delle masse e momento di ordine ESERCIZI SVOLTI Considerata la sezione rappresentata in figura, calcolare i raggi d inerzia massimo e minimo, tracciare l ellisse d inerzia e il nocciolo centrale

Dettagli

Criteri di Resistenza e Sicurezza

Criteri di Resistenza e Sicurezza Criteri di Resistenza e Sicurezza Per uno stato di tensione monoassiale sono sufficienti le due tensioni limiti t e c per delimitare il dominio di crisi. z F z z z t y z x ε z F Teorie di rottura Carichi

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

Lezione 17 - Il solido isotropo

Lezione 17 - Il solido isotropo Lezione 17 - Il solido isotropo ü [A.a. 2011-2012 : ultima revisione 23 agosto 2011] Si e' visto che le costanti elastiche previste dalla teoria di Green sono, in generale, 21. Non sembra possibile ridurre

Dettagli

Solai e solette con armatura incrociata

Solai e solette con armatura incrociata modulo B3 Le strutture in cemento armato Unità Elementi strutturali verticali e orizzontali Solai e solette con armatura incrociata I solai e le solette che presentano una armatura resistente in una sola

Dettagli

II Università degli Studi di Roma

II Università degli Studi di Roma Versione preliminare gennaio TOR VERGATA II Università degli Studi di Roma Dispense di Geometria. Capitolo 3. 7. Coniche in R. Nel Capitolo I abbiamo visto che gli insiemi di punti P lineare di primo grado

Dettagli

sulla MECCANICA DEI TERRENI

sulla MECCANICA DEI TERRENI Assimilando il mezzo polifase a un continuo, in ciascun punto del mezzo è possibile definire uno stato tensionale individuato dal tensore degli sforzi s ij e uno stato di deformazione definito dal tensore

Dettagli

Scienza delle costruzioni - Luigi Gambarotta, Luciano Nunziante, Antonio Tralli ESERCIZI PROPOSTI

Scienza delle costruzioni - Luigi Gambarotta, Luciano Nunziante, Antonio Tralli ESERCIZI PROPOSTI . Travi isostatiche ad asse rettilineo ESERCIZI PROPOSTI Con riferimento alle tre strutture isostatiche di figura, costituite da tre tratti, determinare: ) Reazioni vincolari; ) Diagrammi del momento flettente

Dettagli

Horae. Horae Software per la Progettazione Architettonica e Strutturale

Horae. Horae Software per la Progettazione Architettonica e Strutturale 1 IL MATERIALE X-LAM Nel programma CDSWin il materiale X-LAM pu ò essere utilizzato solo come elemento parete verticale. Quindi, dal punto di vista strutturale, il suo comportamento è prevalentemente a

Dettagli

Statica delle murature

Statica delle murature Statica delle murature Corso di Laurea Specialistica in Ingegneria Edile - A.A. 2006-2007 Università degli Studi di Cagliari Prof. ing. Antonio Cazzani antonio.cazzani@ing.unitn.it http://www.ing.unitn.it/~cazzani/didattica/sdm

Dettagli

Corpo affine elastico vincolato

Corpo affine elastico vincolato Esercizio [5-1] 1 Corpo affine elastico vincolato e 2 e 1 Un corpo a forma di parallelepipedo retto, con spigoli paralleli a e 1 di lunghezza l 1, spigoli paralleli a e 2 di lunghezza l 2 e spigoli paralleli

Dettagli

223 CAPITOLO 15: ANALISI DELLA DEFORMAZIONE CAPITOLO 15: ANALISI DELLA DEFORMAZIONE

223 CAPITOLO 15: ANALISI DELLA DEFORMAZIONE CAPITOLO 15: ANALISI DELLA DEFORMAZIONE 223 Lo studio di un problema geotecnico può essere fatto in due diverse situazioni: condizioni di rottura o condizioni di esercizio. A seconda del tipo di analisi che si decide di eseguire possono essere

Dettagli

Soluzione - calcolo di {t} 1 e {t} 2 : {t} 1 =[σ]{n} 1 = {t} 2 =[σ]{n} 2 =

Soluzione - calcolo di {t} 1 e {t} 2 : {t} 1 =[σ]{n} 1 = {t} 2 =[σ]{n} 2 = Unità : Stato di tensione e di deformazione Esercizio Dato un tensore della tensione [σ], date inoltre due dimensioni {n} e {n} - trovare le componenti dei vettori della tensione {t} e {t} agenti sulle

Dettagli

4 SOLLECITAZIONI INDOTTE. 4.1 Generalità

4 SOLLECITAZIONI INDOTTE. 4.1 Generalità 4 SOLLECITAZIONI INDOTTE 4.1 Generalità Le azioni viste inducono uno stato pensionale interno alla struttura e all edificio che dipende dalla modalità con cui le azioni si esplicano. Le sollecitazioni

Dettagli

Solai e solette con armatura incrociata: comportamento e calcolo

Solai e solette con armatura incrociata: comportamento e calcolo Solai e solette con armatura incrociata: comportamento e calcolo Consideriamo la piastra di figura a riferita a un sistema di assi cartesiani x e y, e in particolare le due strisce ortogonali t x e t y

Dettagli

INTEGRALI TRIPLI Esercizi svolti

INTEGRALI TRIPLI Esercizi svolti INTEGRLI TRIPLI Esercizi svolti. Calcolare i seguenti integrali tripli: (a xye xz dx dy dz, [, ] [, ] [, ]; (b x dx dy dz, {(x, y, z : x, y, z, x + y + z }; (c (x + y + z dx dy dz, {(x, y, z : x, x y x

Dettagli

SOLUZIONE. Calcolo resistenze di progetto materiali: conglomerato: f ck = 200 dan / cm 2 (tab. 9.3_b); f ctk = 15daN / cm 2 f ctm = 22daN / cm 2

SOLUZIONE. Calcolo resistenze di progetto materiali: conglomerato: f ck = 200 dan / cm 2 (tab. 9.3_b); f ctk = 15daN / cm 2 f ctm = 22daN / cm 2 (*)ESEMPIO 4. Sia data la trave di sezione rettangolare delle dimensioni di 20 cm x 40 cm, descritta all esempio 1 (vedere particolari in figura 16.22). Supponendo che la struttura sia stata confezionata

Dettagli

ESERCITAZIONE SUL CRITERIO

ESERCITAZIONE SUL CRITERIO TECNOLOGIE DELLE COSTRUZIONI AEROSPAZIALI ESERCITAZIONE SUL CRITERIO DI JUVINALL Prof. Claudio Scarponi Ing. Carlo Andreotti Ing. Carlo Andreotti 1 IL CRITERIO DI JUVINALL La formulazione del criterio

Dettagli

Analisi incrementale di travi e telai EPP: Il diagramma Momento-Curvatura

Analisi incrementale di travi e telai EPP: Il diagramma Momento-Curvatura Analisi incrementale di travi e tai EPP: Il diagramma omento-curvatura Ipotesi di Eulero-Bernoulli: sezione trasversale rimane piana, normale all asse inflesso dla trave γ0, scorrimento nullo Il diagramma

Dettagli

Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Sollecitazioni semplici PARTE TERZA. Prof. Daniele Zaccaria

Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Sollecitazioni semplici PARTE TERZA. Prof. Daniele Zaccaria Dispense del Corso di SCIENZA DELLE COSTRUZIONI Prof. Daniele Zaccaria Dipartimento di Ingegneria Civile Università di Trieste Piazzale Europa 1, Trieste PARTE TERZA Sollecitazioni semplici Corsi di Laurea

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

Messina 100 anni dopo. Eccentricità correttive per la valutazione della risposta sismica di edifici esistenti mediante analisi statica non lineare

Messina 100 anni dopo. Eccentricità correttive per la valutazione della risposta sismica di edifici esistenti mediante analisi statica non lineare AGE Conference 2008 Messina 100 anni dopo Eccentricità correttive per la valutazione della risposta sismica di edifici esistenti mediante analisi statica non lineare Messina, 26 novembre 2008 Aurelio Ghersi

Dettagli

MECCANICA COMPUTAZIONALE DELLE STRUTTURE

MECCANICA COMPUTAZIONALE DELLE STRUTTURE MEANIA OMPUTAZIONALE DELLE STRUTTURE Elio Sacco DiMSAT Università di assino Tel: 0776.299659 Email: sacco@unicas.it Motivazione Fenomeno in natura Leggi della fisica Risoluzione (Meccanica computazionale)

Dettagli

TEOREMA DI BETTI E LINEE DI INFLUENZA (prof. Elio Sacco)

TEOREMA DI BETTI E LINEE DI INFLUENZA (prof. Elio Sacco) Capitolo 5 TEOEMA DI BETTI E LINEE DI INFLUENZA (prof. Elio Sacco) 5.1 Teorema di Betti Siano S 1 = {b 1, p 1, û 1 } ed S 2 = {b 2, p 2, û 2 } due differenti sistemi di sollecitazioni agenti sul medesimo

Dettagli

MECCANICA DEL CONTINUO - TENSIONI

MECCANICA DEL CONTINUO - TENSIONI MECCANICA DEL CONTINUO - TENSIONI Si consideri un corpo continuo in equilibrio sotto l azione di un sistema di forze esterne (P 1, P,, P N ). Per studiare l effetto di queste sollecitazioni in un generico

Dettagli

ESERCIZIO 1 (Punti 9)

ESERCIZIO 1 (Punti 9) UNIVERSITA DI PISA - ANNO ACCADEMICO 007-8 CORSO DI LAUREA IN ING. ELETTRICA (N.O.) CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 15-06-009 ESERCIZIO 1 (Punti 9) Data

Dettagli

E data la sezione inflessa di c.a. di dimensioni B=30 cm, H=60 cm, con semplice armatura (As=25 cm 2 ).

E data la sezione inflessa di c.a. di dimensioni B=30 cm, H=60 cm, con semplice armatura (As=25 cm 2 ). PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 9/0/007 Esercizio n 1 Sia data una colonna di acciaio HEA 40 alla quale è collegata, con un vincolo a cerniera, una trave IPE 400. Il collegamento bullonato

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Febbraio 04 Cognome: Nome: Matricola: Compito A Es: 8 punti Es: 8 punti Es: 8 punti Es4: 8 punti Totale a) Determinare

Dettagli

Costruzioni in zona sismica A.A Fattore di struttura & Metodi di Analisi

Costruzioni in zona sismica A.A Fattore di struttura & Metodi di Analisi Costruzioni in zona sismica A.A. 2016-2017 Fattore di struttura & Metodi di Analisi Fattore di struttura ( 3.2.3.5) Qualora le verifiche agli stati limite ultimi non vengano effettuate tramite l uso di

Dettagli

29. Mezzi elastici RELAZIONE SFORZO-DEFORMAZIONE

29. Mezzi elastici RELAZIONE SFORZO-DEFORMAZIONE 29. Mezzi elastici I mezzi continui solidi sono caratterizzati da piccole deformazioni, che consentono di stabilire una relazione lineare tra sforzo e deformazione nota come legge di Hook. Linearizzando

Dettagli

FINALE: PROVA 1: + = PROVA 2: + =

FINALE: PROVA 1: + = PROVA 2: + = SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 29/06/2006 Tema C : allievo PROVA 1: + = PROVA 2: + = FINALE: ESERCIZIO 1 (punti 12) La struttura una volta iperstatica di figura è soggetta al carico q,

Dettagli

MODELLO TRAVE DI TIMOSHENKO (prof. Elio Sacco)

MODELLO TRAVE DI TIMOSHENKO (prof. Elio Sacco) Capitolo 3 MODELLO TRVE DI TIMOSHENKO (prof. Elio Sacco) 3. Cinematica La cinematica della trave è definita dalla deformazione dell asse e dalle rotazioni delle sezioni. Nel seguito viene trattato esclusivamente

Dettagli

; r 0 2 m = l 2 (s 2 θ + c 2 θ) = l 2

; r 0 2 m = l 2 (s 2 θ + c 2 θ) = l 2 1 Calcolo del momento d inerzia Esercizio I.1 Pendolo semplice Si faccia riferimento alla Figura 1, dove è rappresentato un pendolo semplice; si utilizzeranno diversi sistemi di riferimento: il primo,

Dettagli

UNIVERSITÀ DEGLI STUDI DI FIRENZE FACOLTÀ DI INGEGNERIA CORSO DI FISICA MATEMATICA ANNO ACCADEMICO Analisi meccanica di una calotta sferica

UNIVERSITÀ DEGLI STUDI DI FIRENZE FACOLTÀ DI INGEGNERIA CORSO DI FISICA MATEMATICA ANNO ACCADEMICO Analisi meccanica di una calotta sferica UNIVERSITÀ DEGLI STUDI DI FIRENZE FACOLTÀ DI INGEGNERIA CORSO DI FISICA MATEMATICA ANNO ACCADEMICO 2010 2011 Analisi meccanica di una calotta sferica Docente: Prof. Marco Modugno Revisore: Ing. Enzo Marino

Dettagli

REGISTRO DELLE LEZIONI 2006/2007. Tipologia. Addì Tipologia. Addì Tipologia

REGISTRO DELLE LEZIONI 2006/2007. Tipologia. Addì Tipologia. Addì Tipologia Introduzione ai contenuti del corso. Descrizione dell'organizzazione del corso e delle modalità di svolgimento delle lezioni e degli esami. Teoria lineare della trave. Ipotesi di base. Problema assiale:

Dettagli

costituito dai seguenti sei componenti linearmente indipendenti:

costituito dai seguenti sei componenti linearmente indipendenti: RCHM D MECCNC DEL CONTNUO. Tensore degli sforzi Lo stato di tensione in corrispondenza di un punto appartenente ad un continuo è rappresentato, in base al teorema di Cauch t [ T] nˆ.., dal tensore doppio

Dettagli

modulo D L acciaio Gruppo III

modulo D L acciaio Gruppo III 1 Calcolo dei pilastri composti Pilastri (o aste) composti Calcolo della snellezza equivalente La snellezza equivalente viene calcolata con le seguenti relazioni: aste calastrellate: λ eq = λ y2 + λ 1

Dettagli

Esercizio geometria delle aree

Esercizio geometria delle aree Salvatore Trotta Università degli Studi di Napoli - Federico II 15 aprile 2014 Consideriamo la seguente figura asimmetrica: Suddivisa la figura in tre rettangoli e fissato un sistema di riferimento arbitrario

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. Un isometria è perciò una trasformazione geometrica che conserva la distanza tra due punti. onsideriamo alcune particolari trasformazioni isometriche. 2.1.1. Traslazioni hiamiamo vettore un segmento sul

Dettagli

Considerazioni introduttive

Considerazioni introduttive a linea elastica onsiderazioni introduttie In un elemento strutturale deformabile in cui una dimensione è prealente rispetto alle altre due, è possibile determinare la configurazione secondo la uale uesto

Dettagli

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/12/2011 Esercizio n 1

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/12/2011 Esercizio n 1 PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/1/011 Esercizio n 1 Sia data una sezione di c.a. avente dimensioni 40 x 60 cm. I materiali impiegati sono: a) calcestruzzo Rck=0 N/, b) acciaio tipo B450C.

Dettagli

MECCANICA COMPUTAZIONALE

MECCANICA COMPUTAZIONALE MECCANICA COMPUTAZIONALE Capitolo Libreria di elementi Rev. 9 maggio 007 (rev. 9/05/007) Capitolo : /57 Argomenti trattati nel capitolo Biella rivisitata (formulazione isoparametrica) Elementi continui

Dettagli

Modellazione e calcolo assistito di strutture meccaniche

Modellazione e calcolo assistito di strutture meccaniche Modellazione e calcolo assistito di strutture meccaniche Lezione 1 Introduzione al metodo FEM Il metodo degli elementi finiti FEM: Finite Element Method E un metodo numerico Inizialmente è stato sviluppato

Dettagli

Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u.

Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Fissiamo nello spazio un sistema di riferimento cartesiano ortogonale O, x, y, z, u. Definizione Una quadriche è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee

Dettagli

Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà. Proprietà delle matrici di rigidezza e di flessibilità

Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà. Proprietà delle matrici di rigidezza e di flessibilità Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà Proprietà delle matrici di rigidezza e di flessibilità Prof. Adolfo Santini - Dinamica delle Strutture Introduzione In

Dettagli

Prodotto scalare, covarianza e controvarianza, tensore metrico

Prodotto scalare, covarianza e controvarianza, tensore metrico Prodotto scalare, covarianza e controvarianza, tensore metrico Marco Bonvini 29 settembre 2005 1 Prodotto scalare Sia V spazio lineare su R; dati u, v V il loro prodotto scalare, indicato con (u, v), è:

Dettagli

Dalla meccanica del continuo alle Equazioni di Lagrange g per i solidi elastici. Dinamica delle Strutture Aerospaziali

Dalla meccanica del continuo alle Equazioni di Lagrange g per i solidi elastici. Dinamica delle Strutture Aerospaziali Dalla meccanica del continuo alle Equazioni di Lagrange g per i solidi elastici Franco Mastroddi http://www.diaa.uniroma1.it/docenti/f.mastroddi dal Dinamica delle Strutture Aerospaziali Anno Accademico

Dettagli

1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche.

1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche. Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Quadriche Esercizi 1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche. (a) x + y + z + xy xz yz 6x 4y + z

Dettagli

Pressoflessione. Introduzione

Pressoflessione. Introduzione Pressoflessione verifica allo stato limite ultimo Introduzione Sperimentalmente, si osserva che il comportamento di una sezione in C.A. con armatura semplice, soggetta a sollecitazione di pressoflessione

Dettagli

Le incognite del progetto o della verifica si trovano attraverso la scrittura di condizioni di Equilibrio.

Le incognite del progetto o della verifica si trovano attraverso la scrittura di condizioni di Equilibrio. Capitolo 4 27 Progetto e verifica a flessione 4 4.1 Ipotesi e legami costitutivi Il progetto e la verifica di sezioni inflesse saranno eseguiti sia facendo riferimento al secondo stadio (comportamento

Dettagli

SIGMAc SOFT - programmi di calcolo strutturale PROCEDURA FINDLIM TEST CASES

SIGMAc SOFT - programmi di calcolo strutturale PROCEDURA FINDLIM TEST CASES TC FINDLIM test cases 1 SIGMAc SOFT - programmi di calcolo strutturale PROCEDURA FINDLIM TEST CASES La procedura FindLim calcola i momenti flettenti ultimi di una sezione in c.a. composta da una sezione

Dettagli

Modelli agli elementi finiti Analisi strutturale.

Modelli agli elementi finiti Analisi strutturale. Modelli agli elementi finiti Analisi strutturale carmelo.demaria@centropiaggio.unipi.it + Analisi agli elemen, fini, Il FEM è un metodo numerico (pertanto approssimato) che perme;e la risoluzione di equazioni

Dettagli

Regione Campania - Genio Civile

Regione Campania - Genio Civile Regione Campania - Genio Civile Controllo di progetti relativi ad edifici in muratura Il materiale muratura Valutazione delle caratteristiche meccaniche B. Calderoni - D.A.P.S. Università di Napoli Federico

Dettagli

4. Sia Γ la conica che ha fuoco F (1, 1) e direttrice d : x y = 0, e che passa per il punto P (2, 1).

4. Sia Γ la conica che ha fuoco F (1, 1) e direttrice d : x y = 0, e che passa per il punto P (2, 1). Geometria Complementi ed esercizi sulle coniche 1 (a) Scrivere l equazione dell ellisse Γ che ha fuochi F 1 ( 1, 1), F (1, 1) e che passa per il punto P (1, 1) (b) Determinare il centro, gli assi e i vertici

Dettagli

Resistenza dei materiali

Resistenza dei materiali Scheda riassuntiva capitoli 8-1 Resistenza dei materiali a resistenza dei materiali mette in relazione tra loro i seguenti elementi: Trazione/ Carichi compressione Taglio Flessione Torsione Deformazioni

Dettagli

Verifiche di deformabilità e di stabilità degli elementi inflessi

Verifiche di deformabilità e di stabilità degli elementi inflessi modulo D L acciaio Unità Il metodo alle tensioni ammissibili 1 Verifiche di deformabilità e di stabilità degli elementi inflessi Verifica nei confronti dello svergolamento (instabilità laterale) Esaminiamo

Dettagli

Stabilità dell equilibrio elastico: formulazione generale

Stabilità dell equilibrio elastico: formulazione generale Stabilità dell equilibrio elastico: formulazione generale Travi soggette a carico di punta Instabilità flesso-torsionale Instabilità per avvitamento solo torsionale Cenni alla teoria di Timoshenko-Vlasov

Dettagli

Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa

Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa t = 15 h = 175 Si consideri la sezione rappresentata in figura (sezione di trave inflessa) sulla quale agisca un taglio verticale T

Dettagli

Costruzioni in zona sismica

Costruzioni in zona sismica Costruzioni in zona sismica Lezione 7 Sistemi a più gradi di libertà Il problema dinamico viene formulato con riferimento a strutture con un numero finito di gradi di libertà. Consideriamo le masse concentrate

Dettagli

Nell'atomo l'energia dell'elettrone varia per quantità discrete (quanti).

Nell'atomo l'energia dell'elettrone varia per quantità discrete (quanti). 4. ORBITALI ATOMICI Energia degli orbitali atomici Nell'atomo l'energia dell'elettrone varia per quantità discrete (quanti). Il diagramma energetico dell'atomo di idrogeno: i livelli (individuati da n)

Dettagli

QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO

QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO QUANTITÀ DI MOTO E MOMENTO DELLA QUANTITÀ DI MOTO Quantità di Moto Definizione 1 Per un punto P dotato di massa m e velocità v, sidefinisce quantità di moto il seguente vettore Q := m v. (1) Definizione

Dettagli

PARAMETRI ELASTICI E TERMOFISICI DEL SILICIO CRISTALLINO

PARAMETRI ELASTICI E TERMOFISICI DEL SILICIO CRISTALLINO RAP TECHNICAL NOTE 006 INFN-LNF, Frascati 9/1/2009 PARAMETRI ELASTICI E TERMOFISICI DEL SILICIO CRISTALLINO A. Marini La nota contiene dati di riferimento a temperature ambiente e di interesse criogenico

Dettagli

TRASFORMAZIONI GEOMETRICHE E FUNZIONI

TRASFORMAZIONI GEOMETRICHE E FUNZIONI TRASFORMAZIONI GEOMETRICHE E FUNZIONI La trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti di un piano; è indicata con t ed è un applicazione del piano in se che trasforma

Dettagli

za Bozza - Appunti di Scienza delle Costruzioni 1, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 -

za Bozza - Appunti di Scienza delle Costruzioni 1, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 - 11 Calcolo di spostamenti e rotazioni in travature isostatiche 81 11 Calcolo di spostamenti e rotazioni in travature isostatiche Consideriamo d ora in avanti travature linearmente termoelastiche dello

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

La flessione composta, primo e secondo stadio

La flessione composta, primo e secondo stadio La flessione composta, primo e secondo stadio 1 stadio (Formule di Scienza delle Costruzioni) Con riferimento alla sezione omogeneizzata vale la formula di Scienza delle Costruzioni Pertanto: 1 stadio

Dettagli

La torsione. Cristoforo Demartino. Università degli Studi di Napoli Federico II. 30 maggio 2012

La torsione. Cristoforo Demartino. Università degli Studi di Napoli Federico II. 30 maggio 2012 Napoli, 30 maggio 2012 La torsione Cristoforo Demartino Università degli Studi di Napoli Federico II 30 maggio 2012 Napoli, 30 maggio 2012 Outline della lezione Introduzione Torsione in travi a sezione

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

COSTRUZIONE DEL DIAGRAMMA MOMENTO-CURVATURA (SEMPLIFICATO)

COSTRUZIONE DEL DIAGRAMMA MOMENTO-CURVATURA (SEMPLIFICATO) COSTRUZIONE DEL DIAGRAMMA MOMENTO-CURVATURA (SEMPLIFICATO) 1 PREMESSA La sopravvivenza delle strutture in cemento armato sottoposte ad azioni eccezionali non può essere affidata alla sola resistenza, per

Dettagli

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

PROPRIETÀ MECCANICHE DEI POLIMERI. Proprietà meccaniche

PROPRIETÀ MECCANICHE DEI POLIMERI. Proprietà meccaniche PROPRIETÀ MECCANICHE DEI POLIMERI Informazioni necessarie per la progettazione di componenti in materiale polimerico: MODULO DI YOUNG (RIGIDEZZA) RESISTENZA ULTIMA DUTTILITÀ / FRAGILITÀ Ricavate da curve

Dettagli

Integrali tripli / Esercizi svolti

Integrali tripli / Esercizi svolti M.Guida, S.Rolando, Integrali tripli / Esercizi svolti ESERCIZIO. Rappresentare graficamente l insieme (x, y) R :y x, x + y e calcolare l integrale e x+y dxdy. Posto V (x, y, z) R :(x, y), z, calcolare

Dettagli

Alcune strutture, seppur adeguatamente dimensionate dal punto di vista della resistenza, raggiungono il cedimento per fenomeni di instabilità.

Alcune strutture, seppur adeguatamente dimensionate dal punto di vista della resistenza, raggiungono il cedimento per fenomeni di instabilità. lcune strutture, seppur adeguatamente dimensionate dal punto di vista della resistenza, raggiungono il cedimento per fenomeni di instabilità. osservazione diretta mostra che il comportamento delle travi

Dettagli