Esercizi sulla Statica dei Fluidi A cura del Prof. T.Papa

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi sulla Statica dei Fluidi A cura del Prof. T.Papa"

Transcript

1 Esercizi su Sttic dei Fuidi A cur de Prof. T.Pp. Un recipiente contenente un iquido scivo ungo un pino incinto di un ngoo ' rispetto 'orizzonte. I coeciente di ttrito cinetico tr recipiente e pino e = 0; 5. Si determini 'ngoo che supercie iber de iquido form co pino incinto durnte i moto de recipiente. Ne riferimento soide co recipiente si h equiibrio tr e forze di supercie e e forze di voume; queste utime dovute peso de iquido e forz di trscinmento. L somm di ti forze e ortogone supercie isobric (equipotenzie). Si veric fcimente che ne cso in cui non fosse presente ttrito, supercie iber de iquido srebbe pre pino incinto. Inftti 'cceerzione di trscinmento e in moduo t = g sin ', oppost 'cceerzione con cui si muove i recipiente. L somm dei vettori g e t e ortogone pino incinto e quindi supercie iber de iquido. Ne cso in cui si presente 'ttrito 'cceerzione di trscinmento risut, in moduo, t = g sin ' g cos ': () L somm dei vettori g e t, dev'essere ortogone supercie iber de iquido m non e ortogone pino incinto. Si consideri 'ngoo che forz peso form con norme supercie iber, vedi gur; esso e dto d rezione tn = t cos ' g t sin ' : () Si veric immeditmente che in ssenz di ttrito tn = tn '. Poiche = ', si h: tn = tn(' ) = tn ' tn + tn ' tn : Sostituendo ne precedente rezione e () e (), si ottiene tn = ; = 8; 53 : I risutto e interessnte m non sorprendente; inftti ne'cceerzione di trscinmento interviene forz di ttrito che e proporzione.. Un recipiente ciindrico di rggio R = 5 cm contenente cqu, ruot ttorno proprio sse, disposto verticmente, compiendo ; 5 giri=s. Spendo che pressione minim su fondo de recipiente e p A = ; 0 tm, si determini 'tezz h che 'cqu rggiunge in corrispondenz prete. Si ssum che pressione estern si ugue d un tmosfer.

2 Ne riferimento ruotnte si h equiibrio tr e forze di pressione e e forze di voume. Le superci equipotenzii, e quindi supercie iber de'cqu, sono prbooidi di rotzione (T. Pp; Lezioni di Fisic, Meccnic, pg. 47) di equzione g(z z 0 ) =! (x + y ); () dove z 0 e 'ordint de vertice de prbooide. L pressione su fondo, p A, e minim in corrispondenz 'sse di rotzione e mssim in corrispondenz prete, dove 'cqu ssume 'tezz h. Pertnto d () si h g(h z 0 ) =! R ; e motipicndo per : gh gz 0 =! R : () D'tr prte: Sostituendo ne () si ottiene: p A = gz 0 + ; ) gz 0 = p A : gh = p A +! R ; ) h = p A g +! R = 0; 49 m g 3. Un poncino di gomm, che puo sopportre un sovrppressione mssim p = 0; 66 tm, e riempito con eio pressione tmosferic. Ne'ipotesi di tmosfer isoterm secondo cui densit de'ri obbedisce egge di Boye = 0 p=, dove 0 e sono densit e pressione iveo de mre, si ccoi que tezz d suoo i poncino espoder. ( 0 = ; 9 kg=m 3, = tm) Fissto un sse z di riferimento voto in to, vrizione innitesim di pressione e dt d dp = gdz = 0 pgdz: Seprndo e vribii ed integrndo si h dove C e un costnte pri n. Pertnto dp p = 0 gdz; ) n p = 0 gz + C; M pressione que i poncino espode e dee () si tre: n n p = 0 gz; ) p = e 0gz= : () p = 0 gz; ) z = g 0 n p, quindi sostituendo ne prim = 8; 5 km: p

3 4. Un recipiente preti vertici poggi su un pino orizzonte ed e rempito, no 'tezz h = 5 cm, con un mss d'cqu m = 30 kg. In esso viene posto geggire un cubo di ghiccio di spigoo = 0 cm. Si determini pressione su fondo, prim e dopo fusione de ghiccio (densit de ghiccio gh = 940 kg=m 3 ). D denizione di pressione come rpporto tr forz norme e supercie, si deduce che pressione su fondo de recipiente e stess prim e dopo fusione de ghiccio; p = + m + m gh g; () A dove e pressione tmosferic ed A supercie de fondo. Poiche A = V h = m h ; dove e densit de'cqu, () si scrive: p = + (m + gh 3 )g h m = N=m : 5. Un'utocistern competmente pien di un iquido di densit = 850 kg=m 3 viggi su un strd pin con veocit costnte. Ad un certo istnte ess fren con cceerzione costnte = ; 5 m=s. Spendo che unghezz de'utocistern e = 7 m e 'tezz de iquido in quiete e z 0 = ; 5 m, determinre i vore de pressione mssim esercitt d iquido durnte frent. Ne riferimento x-z de'utocistern, ntnto che 'cceerzione imprtit d frent e costnte, si h equiibrio tr e forze di pressione e e forze di voume: rp = F + F t ; dove F e F t sono rispettivmente somm dee forze rei e dee forze di trscinmento. Ne cso de probem, forz peso e forz di trscinmento destt d frent F t = m t. Se 'sse x de riferimento e positivo ne verso de moto, essendo 'cceerzione negtiv, te forz e positiv e spinge i iquido contro prete nteriore. L precedente rezione si scrive: rp = gk + t i; che d uogo Si tre: rp = r( t x gz); ) r(p t x + gz) = 0: in cui, per x = 0, z = z 0, p = (pressione tmosferic), Pertnto () divent, L pressione e mssim per x = e z = 0: p t x + gz = cost; () cost = + gz 0 : p = t x gz + gz 0 + : () p mx = t + gz 0 + = 70 N=m : Questo risutto e corretto se si suppone 'utocistern competmente pien di iquido incompressibie e se ess e munit di un opportuno dispositivo che mntiene pressione (tmosferic) supercie iber de iquido. 3

4 Se 'utocistern fosse pert, con preti sucienetemente te, e superci isobriche (equipotenzii) vnno ottenute ssegnndo i corrispondenti vori di p ne (). In prticore, ponendo p =, si h 'equzione de supercie iber: gz = t x + gz 0 0 ) z = t g x + z0 0; (3) dove z 0 0 e 'tezz minim ssunt d iquido (prete posteriore). L (3) e 'equzione di un pino incinto di un ngoo tn = t g ; ) = tn t g : Per trovre e tezze z 0 0 (prete posteriore) ed h (prete nteriore) che ssume i iquido (incompressibie) durnte frent, si osservi che i suo voume rimne o stesso; quindi, quunque si sezione trsverse de serbtoio, sezione medin ongitudine, prim e durnte frent, e costituit d un rettngoo e d un trpezio di ree ugui: z 0 = (h + z0 0); z 0 0 = z 0 h: (4) pertnto (3) divent, Ponendo z = h, x =, si h: z = t g x + z 0 h: L pressione mssim risut h = t g + z 0 h ) h = t g + z 0 = ; 03 m (5) p mx = gh + = t + gz 0 + = 854 N=m : I vore de pressione e eggermente inferiore queo trovto prim (utocistern pien). Si deduce che in que cso sovrppressione e dovut rezione esercitt d prete superiore de serbtoio. Si osservi che, tenuto conto de (5), (4) fornisce: z 0 0 = z 0 t = 0; 96 m: g 6. Un sfer omogene, di voume V = 5 dm 3 e densit, e trttenut, competmente immers ne'cqu di un grnde recipiente, d un funice idee ncort fondo, soggett d un tensione T = 0 kg p. A cus de rottur de funice, sfer emerge rggiungendo un nuov posizione di equiibrio. Determinre frzione di sfer emergente e vrizione de rezione vincore esercitt d fondo. Dett densit de'cqu, tensione de funice e dt d dierenz tr spint d'archimede ed i peso de sfer, T = V g V g; ) = T V g = 00 kg=m3 : Qundo sfer emerge, un prte rimne immers. Detto V i voume di te prte, si h: V g = V g ) V = V : 4

5 pertnto, V V V = V V = L vrizione de rezione vincore e ovvimente: = 0; 8: R = T = 0 kg p = 96; N: 7. Su fondo di un piscin pien d'cqu e ncort un fune idee que sono sste, immerse ne'cqu e distnze diverse, due boe A e B, entrmbe di mss m = 3 kg e densit medi pri d un terzo di que de'cqu. Determinre e tensioni e nei trtti di fune compresi tr i fondo e prim bo A e tr prim e second bo B. Fissto un sse di riferimento voto in bsso, su bo A giscono e forze:,, peso e spint d'archimede; per 'equiibrio si h, + mg m g = 0; dove m e mss d'cqu spostt. Dett densit de'cqu, risut, quindi rezione precedente divent: m = m ; D'tr prte per 'equiibrio de bo B si h: + mg + mg m g = 0: () m g = 0; ) = mg = 58; 8 N: Sostituendo ne () si ottiene: = mg = = 7; 6 N: 8. Un corpo, pressione tmosferic, h densit = 960 kg=m 3 e moduo di compressibiit K = 0 7 P. Determinre minim profondit de'cqu que si deve immergere i corpo perche ondi spontnemente. Considerre 'cqu come iquido incompressibie. L vrizione di pressione e egt vrizione retiv di voume d rezione, p = dove K e i moduo di compressibiit. Poiche K V V ; V V = 0 ; dove 0 e densit ssunt d corpo cus de compressione, si ottiene p = K 0 ; ) gh = K 0 0 ; in cui e densit de'cqu. Pertnto profondit minim que bisogn immergere i corpo viene determint qundo quest'utimo ssume densit de'cqu: gh m = ; ) h m = K g = 8; 63 m 5

6 In queste condizioni i corpo e in equiibrio; ppen piu in bsso di h m esso ond. 9. Un'st di egno uniforme di unghezz e mss m = 0; 3 kg e iber di ruotre ttorno d un sse orizzonte pssnte per un estremo, disposto d un'tezz = sopr supercie iber de'cqu contenut in un grnde recipiente. Spendo che densit de egno e = 600 kg=m 3, determinre rezione vincore su'sse qundo 'st e in posizione d'equiibrio. L rezione e R = mg S; dove S e spint d'archimede. Dett A sezione de'st, densit de'cqu ed im unghezz immers de'st, si h R = Ag A im g = Ag im = mg im : L posizione vertice de'st non e di equiibrio stbie, in qunto i suo bricentro e sopr i centro di spint. In quest posizione ( im = =), risut: R = mg = 0; 5 N: Poiche 'st e vincot ruotre, posizioni di equiibrio stbii sono quee simmetriche rispetto vertice, con un ngoo d'incinzione, per i que somm dei momenti de forz peso e de spint, rispetto 'sse di rotzione, e nu; ossi: Ag sin = A im g im sin : Si tre: = im im; ) Risovendo quest equzione si trov: im = r im im = 0; 63: + = 0: Scrtndo i segno positivo si ottiene, im = 0; 37: pertnto rezione ve: R = mg im = ; 3 N: 6

Esercitazione 1 - Statica del corpo rigido

Esercitazione 1 - Statica del corpo rigido Università degi Studi di ergmo orso di Lure in Ingegneri Tessie orso di Eementi di Meccnic Esercitzione 1 - Sttic de corpo rigido Esercizio n.1 core e rezioni vincori de struttur rppresentt in figur 1.,

Dettagli

Esercizi sugli urti tra punti materiali e corpi rigidi

Esercizi sugli urti tra punti materiali e corpi rigidi Esercizi sugli urti tr punti mterili e corpi rigidi Un st omogene di mss 0.9 kg e di lunghezz 0. m è incerniert nel suo punto di mezzo in un pino orizzontle ed è inizilmente erm. Un proiettile di mss m100g

Dettagli

Esercitazione 03: Calcolo della linea elastica e carico critico di strutture a trave

Esercitazione 03: Calcolo della linea elastica e carico critico di strutture a trave Meccnic e Tecnic dee Costruzioni Meccniche Esercitzioni de corso. eriodo II rof. Leonrdo ERTINI Ing. Ciro SNTUS Esercitzione 03: Ccoo de ine estic e crico critico di strutture trve Indice 1 Trve incstrt

Dettagli

CAP.4. Esempi di strutture

CAP.4. Esempi di strutture A.4 quiibrio di strutture stto finor considerto equiibrio di corpi rigidi singoi soggetti forze e momenti esterni. i trtt or di esminre i cso di strutture, cioè di insiemi di più corpi rigidi coegti fr

Dettagli

Corso di Idraulica per allievi Ingegneri Civili

Corso di Idraulica per allievi Ingegneri Civili Corso di Idrulic per llievi Ingegneri Civili Esercitzione n 1 I due sertoi e B in Figur 1, venti lrghezz comune pri, sono in comuniczione ttrverso l luce di fondo pert nel setto divisorio. Il primo,, contiene

Dettagli

= con n N è insieme infinito n limitato sia inferiormente che superiormente, infatti i suoi elementi verificano la condizione 0 a 1.

= con n N è insieme infinito n limitato sia inferiormente che superiormente, infatti i suoi elementi verificano la condizione 0 a 1. Introduzione concetto di imite Prim di vvire i discorso sui imiti è opportuno rivedere i signiicto di cuni termini che sono di uso comune ne trttzione de imite di un unzione. Insieme imitto superiormente:

Dettagli

100 Ed ancora. Esercizio n 626

100 Ed ancora. Esercizio n 626 Esercizio n 66 Un ine eettric h resistenz = 1,3 Ω e rettnz X = 1,07 Ω; ess è imentt ingresso con tensione V p = 41 V ed iment rrivo un impedenz Z u vente ngoo crtteristico ϕ υ = 36,87. In queste condizioni

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Corsi di Laurea in Ingegneria Meccanica e Informatica e corsi V.O. Anno Accademico 2014/2015 Meccanica Razionale, Fisica Matematica

Corsi di Laurea in Ingegneria Meccanica e Informatica e corsi V.O. Anno Accademico 2014/2015 Meccanica Razionale, Fisica Matematica orsi di Lure in Ingegneri Meccnic e Informtic e corsi V.. nno ccdemico 2014/2015 Meccnic Rzionle, Fisic Mtemtic Nome... N. Mtricol... ncon, 15 gennio 2015 1. Un lmin pin omogene qudrt D di mss m e lto

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

Un carrello del supermercato viene lanciato con velocità iniziale

Un carrello del supermercato viene lanciato con velocità iniziale Esempio 44 Un utomobile procede lungo l utostrd ll velocità costnte di m/s, ed inizi d ccelerre in vnti di m/s.5 proprio nell istnte in cui super un cmion fermo in un re di sost. In quel preciso momento

Dettagli

da ClJl Sl rlcava la seguente equazione di quarto grado per t:

da ClJl Sl rlcava la seguente equazione di quarto grado per t: 40 SEZONE FORMULE D BSEZONE E RSEZONE PER LE FG D ORDNE 3.. 1. Le formue di bisezione. probem dee formue di bisezione per e FG di ordine 3 in e stto sotnto ccennto e rinvito d uteriore trttmento in tr

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Calcolare M, T, N nella sezione S Calcolare lo sforzo nel pendolo PQ III. 12 oo T S. α 3 oo. 1/cos α

Calcolare M, T, N nella sezione S Calcolare lo sforzo nel pendolo PQ III. 12 oo T S. α 3 oo. 1/cos α F P Q S Ccore M, T, N ne sezione S Ccore o sforzo ne pendoo PQ F 4 IV 24 45 2 V 5 II 23 T S S 12 oo III 1 I α 3 oo 1/cos α 1/cos α p t + h F s=cm.2 Sezionetrve = m /3 t=cm.1 h=cm 40 b=cm.25 _ X 1 p + t

Dettagli

Soluzioni per il problema delle piastre

Soluzioni per il problema delle piastre Corso di Progetto di Strutture POTENZA,.. 0 03 Souzioni per i proem dee pistre Dott. Mrco VONA DiSGG, Università di Bsiict mrco.von@unis.it http://www.unis.it/utenti/von/ LA PIASTRA INDEFINITA APPOGGIATA

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2010/2011 Meccanica Razionale

Corso di Laurea in Ingegneria Meccanica Anno Accademico 2010/2011 Meccanica Razionale Corso di Lure in Ingegneri Meccnic nno ccdemico 2010/2011 Meccnic Rzionle Nome... N. Mtricol... ncon, 25 febbrio 2011 1. Un st mterile pesnte di mss m elunghezzl si muove nel pino verticle (, ), con l

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Equilibrio del corpo rigido

Equilibrio del corpo rigido Equiibrio de corpo rigido Probema1 Due sbarrette omogenee AB e BC aventi a stessa unghezza e a stessa massa di 6 kg, vengono sadate ne punto B in modo da formare un angoo di 90. Le due sbarrette così unite

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 1) Un corpo di massa m = 1 kg e velocità iniziale v = 5 m/s si muove su un piano orizzontale scabro, con coefficiente di attrito

Dettagli

Soluzione a) La forza esercitata dall acqua varia con la profondita` secondo la legge di Stevino: H H

Soluzione a) La forza esercitata dall acqua varia con la profondita` secondo la legge di Stevino: H H eccnic Un bcino d cqu, profondo, e` contenuto d un prti verticle di lunghezz (orizzontle, lungo y) L, vincolt l terreno nel punto B. Per sostenere l prti si usno lcuni pli fissti d un estremit` sull prti,

Dettagli

I PROBLEMI DI MASSIMO E DI MINIMO

I PROBLEMI DI MASSIMO E DI MINIMO I PROBLEMI DI MASSIMO E DI MINIMO Souzioni di pobemi ttti d ibo: Coso Bse Bu di Mtemti, vo. 5 [1] (Pobem n. pg. 1 ) Individu i punto de ett xy5 pe i que è minim distnz d oigine degi ssi oodinti. Consideimo

Dettagli

COLPO D ARIETE: MANOVRE DI CHIUSURA

COLPO D ARIETE: MANOVRE DI CHIUSURA Università degli studi di Rom Tor Vergt Corso di Idrulic. Prof. P. Smmrco COLPO D ARIETE: MANOVRE DI CHIUSURA Appunti integrtivi l testo E. Mrchi, A. Rubtt - Meccnic dei Fluidi dlle lezioni del prof. P.

Dettagli

7.5. BARICENTRI 99. Esempio 7.18 (Baricentro di una lamina ellissoidale omogenea). Consideriamo la lamina ellissoidale omogenea in figura.

7.5. BARICENTRI 99. Esempio 7.18 (Baricentro di una lamina ellissoidale omogenea). Consideriamo la lamina ellissoidale omogenea in figura. 7.5. BAICENTI 99 P J Q Gli ssi HJ e PQ (che isecno i lti opposti del rettngolo) sono ssi di simmetri mterile. il ricentro dell lmin coincide con l intersezione dei due ssi: G, G H Esempio 7.18 (Bricentro

Dettagli

Per un aereo da turismo si esegua il dimensionamento, con relativo disegno di definizione, dell asta di controventatura dell ala avente lunghezza

Per un aereo da turismo si esegua il dimensionamento, con relativo disegno di definizione, dell asta di controventatura dell ala avente lunghezza Per un ereo d turismo si esegu i dimensionmento, con retivo disegno di definizione, de st di controventtur de vente unghezz 00 ed è in grdo di ssorbire sforzi di trzione e compressone. i esegu inotre o

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

4 π. dm 28 s. m s M T. dm dt. Esercizio B2.1 Analisi del processo di fonderia SOLUZIONE

4 π. dm 28 s. m s M T. dm dt. Esercizio B2.1 Analisi del processo di fonderia SOLUZIONE Esercizio B. Anlisi del processo di fonderi Si deve fricre un getto in ghis del peso di 50 kg e densità pri 7, kg/dm. Dimensionre il dimetro del cnle di colt spendo che il dislivello fr il cino e gli ttcchi

Dettagli

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO RECUPERO ESTIVO PER LE CLASSI ^D- E SCIENTIFICO Argomenti d rivedere: I QUADRIMESTRE: ) Equzioni di secondo grdo e relzioni tr coefficienti e rdici

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

L equilibrio della variazione di entalpia del sistema aria+garza risulta quindi: Dalla definizione di mixing ratio :

L equilibrio della variazione di entalpia del sistema aria+garza risulta quindi: Dalla definizione di mixing ratio : Strumenti di misur dell umidità relti: psicrometro bulbo bgnto e entilto. Deduzione dell equzione psicrometric. Tempertur del bulbo bgnto e umidità relti. Relzione con il punto di ruggid. Lo psicrometro

Dettagli

Prova in itinere di Fondamenti di meccanica razionale e Meccanica razionale del

Prova in itinere di Fondamenti di meccanica razionale e Meccanica razionale del Prov in itinere di Fondmenti di meccnic rzionle e Meccnic rzionle del.4.1 Esercizio 1 Un lmin rigid omogene, di mss m, è post nel pino coordinto Oxy di un tern crtesin ortogonle Oxyz Oê 1 ê ê. Il bordo

Dettagli

Travi soggette a taglio e momento flettente

Travi soggette a taglio e momento flettente Trvi soggette tglio e momento flettente Qundo i crichi o i momenti hnno vettori perpendicolri ll sse si prl di sollecitzioni su trvi o bems Il pino di inflessione è quello ove giscono i crichi e che contiene

Dettagli

Risoluzione verifica di matematica 3C del 17/12/2013

Risoluzione verifica di matematica 3C del 17/12/2013 Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Anlisi e Geometri Esercizi sugli integrli Integrli propri. Clcolre i seguenti integrli immediti: I = I = I 5 = ln e e d I = e + e + 6e + e d I = rtg ln ( + ln ) d I 6 = e e + d d rtg + ( + ) ( + ( + )

Dettagli

Note sul moto circolare uniforme.

Note sul moto circolare uniforme. Note sul moto circolre uniforme. Muro Sit e-mil: murosit@tisclinet.it Versione proisori, ottobre 2012. Indice 1 Il moto circolre uniforme in sintesi. 1 2 L ide di Hmilton 2 3 Esercizi 5 3.1 Risposte.......................................

Dettagli

Esercizi sulle curve in forma parametrica

Esercizi sulle curve in forma parametrica Esercizi sulle curve in form prmetric Esercizio. L Elic Cilindric. Dt l curv di equzioni prmetriche: xt cos t yt sin t t 0 T ] > 0 b IR zt bt trovre: versore tngente normle binormle vettore curvtur rggio

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

Ellisse riferita al centro degli assi

Ellisse riferita al centro degli assi Appunti delle lezioni tenute in clsse: ellisse e iperole Ellisse riferit l centro degli ssi Dti due punti F ed F detti fuochi, l ellisse è il luogo geometrico dei punti P del pino per cui è costnte l somm

Dettagli

TRASFORMAZIONI GEOMETRICHE DEL PIANO

TRASFORMAZIONI GEOMETRICHE DEL PIANO TRASFORMAZIONI GEOMETRICHE DEL PIANO INTRODUZIONE Per trsformzione geometric pin si intende un corrispondenz iunivoc fr i punti di un pino, ossi un funzione iiettiv che ssoci d ogni punto P del pino un

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

rappresenta il momento statico della superficie A rispetto all asse x che è anche uguale

rappresenta il momento statico della superficie A rispetto all asse x che è anche uguale pint su un superfiie inlint - Centro di pint Considerimo un superfiie pin inlint di un ngolo rispetto ll orizzontle e prendimo un sistem di riferimento on intersezione sse di intersezione tr l superfiie

Dettagli

Reazioni vincolari in. Strutture isostatiche

Reazioni vincolari in. Strutture isostatiche ezioni vincolri in Strutture isosttiche ezioni trsmesse di vincoli terr I vincoli terr trmettono ll struttur rezioni corrispondenti i gdl impediti F Il crrello trsmette un forz dirett come l'sse del crrello

Dettagli

Rapporti e proporzioni numeriche

Rapporti e proporzioni numeriche Rpporti e proporzioni numeriche Rpporti. Per rpporto tr due numeri e b, di cui il secondo diverso d zero, s intende il quoziente estto dell divisione dei due numeri dti, cioè :b oppure /b. Ad esempio dire

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

v 0 = 2,4 m/s T = 1,8 s v = 0 =?

v 0 = 2,4 m/s T = 1,8 s v = 0 =? Esercitzione n 4 FISICA SPERIMENTALE I (C.L. Ing. Edi.) (Prof. Gbriele Fv) A.A. 00/0 Dinic del punto terile. Un corpo viene lncito lungo un pino liscio inclinto di rispetto ll orizzontle con velocità v

Dettagli

Esercitazione 2-15 Ottobre Equilibrio idrostatico

Esercitazione 2-15 Ottobre Equilibrio idrostatico Esercitione di Meccnic dei fluidi con Fondmenti di Ingegneri Chimic Esercitione 2-15 Ottobre 2015 Equilibrio idrosttico È stt ricvt leione l equione fondmentle dell sttic dei fluidi pesnti e incomprimibili,

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Ottica ondulatoria. Interferenza e diffrazione

Ottica ondulatoria. Interferenza e diffrazione Ottic ondultori Interferenz e diffrzione Interferenz delle onde luminose Sorgenti coerenti: l differenz di fse rest costnte nel tempo Ond luminos pin che giunge su uno schermo contenente due fenditure

Dettagli

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a Determinre l posizione del centro di tglio dell seguente sezione pert di spessore sottile

Dettagli

ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA

ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA Freni e frizioni ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA 1. forz di ttuzione del meccnismo. coppi trsmess 3. perdit di energi 4. incremento di tempertur 1

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione eori di Jourwski ü [A.. 0-03 : ultim revisione 4 gennio 03] Si pplic l teori di Jourwski l fine di clcolre l distribuzione di tensioni tngenzili su lcune sezioni soggette sforzo di tglio.. Sezione d ê

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 25 Settembre 2014

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 25 Settembre 2014 OSO DI LAUEA IN SIENZE BIOLOGIHE Prova scritta di FISIA 5 Settembre 4 ) Un corpo puntiforme di massa m5 g appoggia nel punto A su un piano inclinato di 3 ed è trattenuto mediante una fune di tensione T,

Dettagli

disegno in scala Innanzitutto di valutare a dinamica del moto di arresto del pericolo. Si individua il diagramma di corpo libero del sistema globale:

disegno in scala Innanzitutto di valutare a dinamica del moto di arresto del pericolo. Si individua il diagramma di corpo libero del sistema globale: olitecnico di orino eem ispositivi e istemi Meccnici Esercizio 3 Un utocrro con cmio "in olle" viene rento su tutte le ruote l limite dell'derenz in rettilineo orizzontle. oto il peso totle e l posizione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione ordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione ordinri Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA In un pino, riferito d un sistem

Dettagli

1 COORDINATE CARTESIANE

1 COORDINATE CARTESIANE 1 COORDINATE CARTESIANE In un sistem di ssi crtesini (,) un punto P è identificto dll su sciss e dll su ordint : Asciss : distnz di P dll sse delle ordinte Ordint :distnz di P dll sse delle scisse P(-4,4)

Dettagli

Teorema della Divergenza (di Gauss)

Teorema della Divergenza (di Gauss) eorem dell ivergenz (di Guss) i un dominio tridimensionle regolre, l cui frontier è un superficie chius orientt con cmpo normle unitrionˆ uscente d. e F(,,z) F (,,z) i F (,,z) j F (,,z) k è un cmpo vettorile

Dettagli

FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Appello del 12 settembre 2008

FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Appello del 12 settembre 2008 FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Appello del 12 settembre 2008 1) Una nave pirata è ormeggiata a L = 500 m da un forte costruito su un isola, a livello del mare. Il forte è difeso da un cannone

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

IL PIANO DELLE CAPACITÀ Dagli appunti del prof. Giulio Russo Krauss

IL PIANO DELLE CAPACITÀ Dagli appunti del prof. Giulio Russo Krauss 6 IL PIANO DELLE CAPACITÀ Dgi ppunti de prof. Giuio Russo Kruss - Premess. Ne premess de cpitoo XXXII si è detto che i pini generi di un nve sono que insieme di disegni che definiscono suddivisione degi

Dettagli

ESERCITAZIONE SECONDO PREESAME

ESERCITAZIONE SECONDO PREESAME ESERCITAZIE SECD REESAME 1) Clcolre il peso molecolre di un sostnz A poco voltile che form un soluzione con il benzene spendo che qundo 18.5 g di A sono sciolti in 85.8 g di benzene, l soluzione congel

Dettagli

VOLUMI, MASSE, DENSITÀ

VOLUMI, MASSE, DENSITÀ VOLUMI, MASSE, DENSITÀ In clsse è già stt ftt un'esperienz di misur dell densità prtire d misure di mss e di volume. In quel cso è stt misurt l mss in mnier dirett con un bilnci, e il volume in mnier indirett.

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 01 1) FLUIDI: Un blocchetto di legno (densità 0,75 g/ cm 3 ) di dimensioni esterne (10x0x5)cm 3 è trattenuto mediante una fune

Dettagli

(n r numero di registro) n r numero di registro =17

(n r numero di registro) n r numero di registro =17 Clcolo dell riprtizione dell portnz tr superficie lre e impennggio orizzontle di cod per lcun punti crtteristici del digrmm d inviluppo in diverse condizioni di peso. Punti: A- C- D- E- F- G- K- H- C -

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Liceo Scientifico Statale Leonardo da Vinci Via Possidonea Reggio Calabria Anno Scolastico 2008/2009 Classe III Sezione G

Liceo Scientifico Statale Leonardo da Vinci Via Possidonea Reggio Calabria Anno Scolastico 2008/2009 Classe III Sezione G Liceo Scientifico Sttle Leonrdo d Vinci Vi Possidone 14 8915 Reggio Clbri Anno Scolstico 008/009 Clsse III Sezione G Dirigente scolstico: Preside Prof. ss Vincenzin Mzzuc Professore coordintore del progetto:

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

A Qual è la capacità dei due condensatori prima dell inserimento delle piastre? Quella dopo?

A Qual è la capacità dei due condensatori prima dell inserimento delle piastre? Quella dopo? 3 luglio 2008 II Prov di esonero di Fisic Generle per Edile-Architettur (esercizi 1, 2, 3) Prov scritt di Fisic Generle per Edile-Architettur (esercizi 1, 2, 3) Prov scritt di Fisic I per Automzione ed

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

3 Esercizi. disegno in scala

3 Esercizi. disegno in scala olitecnico di orino eem ispositivi e istemi Meccnici Esercizio 3 Un utocrro con cmio "in olle" viene rento su tutte le ruote l limite dell'derenz in rettilineo orizzontle. oto il peso totle e l posizione

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE "FERMI"

ISTITUTO TECNICO INDUSTRIALE STATALE FERMI ISTITUTO TECNICO INDUSTIALE STATALE "EMI" TEVISO GAA NAZIONALE DI MECCANICA 212 ropost di soluzione rim rov cur di Benetton rncesco (vincitore edizione 211 unzionmento: L gru bndier girevole sopr riportt

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

CONDUTTORI TEMPERATURA E PORTATA

CONDUTTORI TEMPERATURA E PORTATA CONDUTTOR TEPERATURA E PORTATA riscdento di un conduttore è custo d corrente che o percorre. Non è però questo i soo eeento che deterin su tepertur di funionento; ess dipende nche d tri fttori, che sono:

Dettagli

La Cinematica Un punto materiale si muove lungo una circonferenza di raggio 20 cm con frequenza di 5,0 Hz.

La Cinematica Un punto materiale si muove lungo una circonferenza di raggio 20 cm con frequenza di 5,0 Hz. Un punto mterile si muove luno un circonferenz di rio cm con frequenz di 5, Hz. Clcolre l velocità tnenzile ed il numero di iri compiuti in s. R L velocità tnenzile l clcolimo ttrverso l su definizione:

Dettagli

Esercitazione Dicembre 2014

Esercitazione Dicembre 2014 Esercitzione 10 17 Dicembre 2014 Esercizio 1 Un economi chius è crtterizzt di seguenti dti: A = 400 M = 250 γ = 1.5 (moltiplictore dell politic fiscle) β = 0.8 moltiplictore dell politic monetri z = 0.25

Dettagli

Capitolo 12. Dinamica relativa

Capitolo 12. Dinamica relativa Cpitolo 12 Dinmic reltiv 12.1 Le forze pprenti 1. Sppimo dll cinemtic reltiv che l ccelerzione di un punto P in un riferimento K e l ccelerzione ' di P in un riferimento K ' sono legte l un ll ltr dll

Dettagli

ELEMENTI DI DINAMICA DEI FLUIDI

ELEMENTI DI DINAMICA DEI FLUIDI Corso di Fisic tecnic e mbientle.. 011/01 - Docente: Prof. Crlo Isetti ELEMENTI DI DINAMICA DEI FLUIDI 6.1 GENERALITÀ Il moto più semplice cui si f riferimento è in genere il moto stzionrio, che è crtterizzto

Dettagli

LE GRANDEZZE FISICHE. estensive. Grandezze. intensive non dipendono dalla quantità di materia temperatura, peso specifico

LE GRANDEZZE FISICHE. estensive. Grandezze. intensive non dipendono dalla quantità di materia temperatura, peso specifico LE GRANDEZZE FISICHE estensive dipendono dll quntità di mteri mss, volume, lunghezz Grndezze intensive non dipendono dll quntità di mteri tempertur, peso specifico LA MISURA DI UNA GRANDEZZA FISICA Per

Dettagli

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio Scomposizione di un polinomio in fttori Scomporre in fttori primi un polinomio signific esprimerlo come il prodotto di due più polinomi non più scomponibili Ad esempio 9 = ( 3) fttore 1 ( + 3) fttore +

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì REAZIONI VINCOLARI AGGIORNAMENTO DEL 23/09/2012

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì REAZIONI VINCOLARI AGGIORNAMENTO DEL 23/09/2012 Sussii ittici per i corso i PGETTZIE, CSTUZII E IPITI Prof. Ing. rncesco Znghì EZII ICLI GGIET DEL 3/9/ Corso i PGETTZIE, CSTUZII E IPITI Prof. Ing. rncesco Znghì incoi Un vincoo è usisi conizione che

Dettagli

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici. Il Primo Principio dell Termodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld

Dettagli

Esercizi di dinamica 2

Esercizi di dinamica 2 Esercizi di dinaica ) Un corpo di assa.0 kg si trova su un piano orizzontae scabro. I coefficiente di attrito statico tra corpo e piano è s 0.8. I corpo è sottoposto a azione di una forza orizzontae 7.0

Dettagli

L entalpia è una funzione di stato di un sistema ed esprime la quantità di energia che esso può scambiare con l'ambiente.

L entalpia è una funzione di stato di un sistema ed esprime la quantità di energia che esso può scambiare con l'ambiente. L entlpi è un funzione di stto di un sistem ed esprime l quntità di energi che esso può scmire con l'miente. L definizione formle dell'entlpi è: H = U + PV dove U rppresent l'energi intern del sistem,

Dettagli

Si supponga ora che, con le stesse condizioni iniziali, l urto avvenga elasticamente. Calcolare in questo caso:

Si supponga ora che, con le stesse condizioni iniziali, l urto avvenga elasticamente. Calcolare in questo caso: 1 Esercizio (tratto da Probema 8.21 de Mazzodi 2) Un asta rigida di sezione trascurabie, unga = 1 m e di massa M = 12 Kg è imperniata ne centro ed è ibera di ruotare in un piano orizzontae xy. Contro un

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013 Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 013 Problema 1 Un cubo di legno di densità ρ = 800 kg/m 3 e lato a = 50 cm è inizialmente in quiete, appoggiato su un piano orizzontale.

Dettagli

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α Trigonometri I In quest prim prte dell trigonometri denimo le funzioni trigonometriche seno, coseno e tngente e le loro funzioni inverse. Vedremo nche come utilizzrle nell risoluzione dei tringoli. Comincimo

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli