Anno 4 I Tringoli rettngoli 1
Introduzione In quest lezione esmineremo i tringoli rettngoli, studindo le relzioni metriche tr i lti e gli ngoli di un tringolo. Enunceremo i teoremi sui tringoli rettngoli e illustreremo loro ppliczioni. Al termine dell lezione sri in grdo di: enuncire i teoremi sui tringoli rettngoli utilizzre i teoremi sui tringoli rettngoli In quest lezione esmineremo i tringoli rettngoli, studindo le relzioni metriche tr i lti e gli ngoli di un tringolo. Enunceremo i teoremi sui tringoli rettngoli e illustreremo le loro ppliczioni. Al termine dell lezione sri pertnto in grdo di: enuncire i teoremi sui tringoli rettngoli; utilizzre i teoremi sui tringoli rettngoli.
I teoremi sui tringoli rettngoli Goniometri: misurzione degli ngoli e delle funzioni ssocite d essi. Trigonometri: studio delle relzioni metriche tr i lti e gli ngoli di un tringolo. A P H e ABC sono simili BC:AB=PH:AP e AC:AB=AH:AP AP=1, PH=sen(α), AH=cos(α) BC=AB sen(α) =csen(α) AC=AB sen(α) b=ccos(α) Lo studio dei tringoli rettngoli f prte dell trigonometri. L trigonometri è l prte dell mtemtic che studi le relzioni tr i lti e gli ngoli di un tringolo. Il compito principle dell trigonometri è quello di clcolre le misure degli elementi di un tringolo, come i lti, gli ngoli, le medine, le bisettrici, etc., prtendo d ltre misure già note e servendosi di prticolri relzioni. Illustrimo or i teoremi sui tringoli rettngoli. Disegnimo un tringolo rettngolo ABC con l ngolo retto in C, e indichimo con, b e c i tre lti del tringolo rispettivmente opposti i vertici A, B e C. Trccimo l circonferenz goniometric con il centro in A. Considerimo i due tringoli APH e ABC. Essi sono simili e quindi possimo scrivere: BC:AB=PH:AP e AC:AB=AH:AP. Poiché AP=1, PH=sinα e AH=cosα, si h: BC=ABsinα ovvero =csinα e AC=ABcosα ovvero b=ccos(α). Queste due uguglinze portno enuncire il primo teorem dei tringoli rettngoli. 3
Primo teorem dei tringoli rettngoli In un tringolo rettngolo l misur di un cteto è ugule quell dell ipotenus per il seno dell ngolo opposto o per il coseno dell ngolo dicente d esso. Primo teorem: BC=AB sen(α) =c sen(α) AC=AB cos(α) b=c cos(α) Enuncimo, dunque, il primo teorem sui tringoli rettngoli. In un tringolo rettngolo l misur di un cteto è ugule quell dell ipotenus per il seno dell ngolo opposto o per il coseno dell ngolo dicente d esso. Disegnimo un tringolo rettngolo vente i lti, b e c. Il primo teorem si potrà esprimere in formule: =csen(α) e b=ccos(α). 4
Secondo teorem dei tringoli rettngoli Secondo teorem: BC:AC=PH:AH BC:AC=sen(α):cos(α) BC:AC=tn(α ) =b tn(α) AC:BC=cos(α):sen(α) AC:BC=cotn(α) b= cotn(α) In un tringolo rettngolo l misur di un cteto è ugule quell dell ltro cteto per l tngente dell ngolo opposto o per l cotngente dell ngolo dicente l cteto. Enuncimo, or, il secondo teorem sui tringoli rettngoli. Considerimo l figur. Per l similitudine dei tringoli APH e ABC, si può scrivere: BC:AC=PH:AH. Poiché PH=sen(α) e AH=cos(α), si h: BC:AC=sen(α): cos(α) ovvero BC:AC=tn(α), cioè =btn(α). Allo stesso modo, AC:BC=cos(α):sen(α) ovvero AC:BC=cotn(α), cioè b=cotn(α). Le due relzioni scritte portno l seguente teorem: in un tringolo rettngolo l misur di un cteto è ugule quell dell ltro cteto per l tngente dell ngolo opposto o per l cotngente dell ngolo dicente l cteto. 5
Risoluzione dei tringoli rettngoli conoscendo due lti Risolvere un tringolo rettngolo signific determinre le misure dei suoi lti e dei suoi ngoli conoscendo lmeno un lto e un ltro dei suoi elementi (un ngolo o un lto). Esempio: sono noti due cteti Esempio: sono noti un cteto e l ipotenus tn(α)= α=rctn( ) b b β= - α c= sen( ) sen(α)= α=rcsen ( ) c c β= - α b=c cos(α) oppure b=c sen(β) Ci occupimo, or, dell risoluzione dei tringoli rettngoli. Risolvere un tringolo rettngolo signific determinre le misure dei suoi lti e dei suoi ngoli conoscendo lmeno un lto e un ltro dei suoi elementi (un ngolo o un lto). Ci occuperemo di quttro csi: due csi in cui si conoscono due lti e due csi in cui si conoscono un lto e un ngolo. Il primo cso è quello in cui sono noti due cteti, e b, e si vogliono trovre α, β e c. Per il secondo teorem dei tringoli rettngoli tn(α)=/b, cioè α=rctn( /b). Ricordndo che α+β=π/ si h β=π/-α e c=/sen(α). Il secondo cso rigurd invece l conoscenz di un cteto e di un ipotenus. Supponimo che sino noti e c e voglimo trovre α, β e b. Dl primo teorem bbimo: sen(α)=/c ovvero α=rcsen (/c). β=π/-α e b=ccos(α) oppure b=csen(β). 6
Risoluzione dei tringoli rettngoli conoscendo un lto e un ngolo Esempio: sono noti un cteto e un ngolo cuto Esempio: sono noti l ipotenus e un ngolo cuto β= - α b= tn(β) β= - α =c sen(α) c= b b=c sen(β) Il terzo cso è quello in cui si conoscono un cteto e un ngolo cuto. Sino noti e α e voglimo determinre β, b e c. Si osservi che β=π/- α. Per il secondo teorem dei tringoli rettngoli: b=tn(β). Applicndo infine il teorem di Pitgor, si h: c= ( +b ). Vedimo infine l ultimo cso: sono noti l ipotenus e un ngolo cuto. Sino noti c e α e voglimo determinre, β, e b. Si osservi che β=π/- α. Per il primo teorem sui tringoli si h: =csen(α) e b=csen(β). 7
Conclusione Tringoli Rettngoli Primo Teorem Risoluzione dei tringoli Secondo teorem In quest lezione bbimo illustrto i tringoli rettngoli. Abbimo dimostrto geometricmente l vlidità del primo teorem e l vlidità del secondo teorem. Abbimo poi illustrto l risoluzione dei tringoli rettngoli, che si serve dei due teoremi enunciti precedentemente. 8