1. FUNZIONI IN UNA VARIABILE

Documenti analoghi
1.4 Geometria analitica

UNITÀ DIDATTICA 2 LE FUNZIONI

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Coordinate cartesiane nel piano

1.3. Logaritmi ed esponenziali

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo

Teoria in sintesi 10. Teoria in sintesi 14

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Verso il concetto di funzione

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler

FUNZIONI ELEMENTARI Funzione retta

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Coordinate Cartesiane nel Piano

Funzioni e grafici. prof. Andres Manzini

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

Introduzione. Test d ingresso

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.

Introduzione alla II edizione. Introduzione. Test d ingresso

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B

Funzioni elementari: funzioni trigonometriche 1 / 17

Anno Scolastico:

1 Funzioni reali di una variabile reale

UNITÀ DIDATTICA 3 FUNZIONI GONIOMETRICHE

GONIOMETRIA. sin (x) = PH OP. ctg (x ) = cos (x) = CB sin (x) cosec (x ) = 1 = ON sin (x)

1 Distanza di un punto da una retta (nel piano)

APPUNTI DI GONIOMETRIA

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Matematica I, Funzione inversa. Funzioni elementari (II).

Programma di Matematica Anno Scolastico 2012/2013 Classe III G

Esercizio L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11. L equazione log 116 x = 1 4. ha soluzione [1] [5] 2 [4] 1 2 [2] 4 [3] Risposta

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

Funzioni (parte II).

Funzioni goniometriche

Formulario di Matematica

ISTITUTO TECNICO INDUSTRIALE G. FERRARIS

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

trasformazione grafico Cosa si deve fare Esempio goniometrico

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f.

Classe III Aritmetica e Algebra Dati e previsioni Geometria Geometria

Prerequisiti di Matematica Trigonometria

Lezione 6 Richiami di Geometria Analitica

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1

Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria. PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13

Esercitazione su grafici di funzioni elementari

Esercitazione su grafici di funzioni elementari e domini di funzioni

3. Generalità sulle funzioni

05 - Funzioni di una Variabile

Esercizi per le vacanze - Classe 3C Prof. Forieri Claudio. Disequazioni. + 3x. x x x

Corso di Analisi Matematica Limiti di funzioni

Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

Il valore assoluto (lunghezza, intensita )

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi.

Equazioni goniometriche elementari. Daniela Valenti, Treccani scuola

2.3. Esercizio. Disegnare il grafico delle seguenti funzioni f(x) = x x, g(x) = max(0, cos(x)), h(x) = min(0, sin(x))

ESERCIZI SUGLI INSIEMI NUMERICI. 1) Mettere in ordine crescente i seguenti numeri reali:

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE

Angolo. Si chiama angolo ciascuna delle due parti di piano in cui esso è diviso da due semirette uscenti da uno stesso punto O.

CENNI DI TRIGONOMETRIA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

Corso di Analisi: Algebra di Base. 7^ Lezione

CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONI GRAFICHE

Funzioni elementari. Tutorial di Barberis Paola - agg grafici con GEOGebra - software open source

CORSO ZERO DI MATEMATICA

f(x) = sin cos α = k2 2 k

Funzioni reali di variabile reale

NOTE DI TRIGONOMETRIA

Contenuti del programma di Matematica. Classe Terza

Andamento e periodo delle funzioni goniometriche

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE SOCIALE MATEMATICA. CAPACITA MODULO 0: RIPASSO Equazioni intere e fratte di primo e secondo grado

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA

APPUNTI DA INTEGRARE ALLA LEZIONE DEL 19/11/10 (LA FUNZIONE SENO LA FUNZIONE COSENO LA FUNZIONE TANGENTE)

y = tgx, la funzione reciproca e la funzione inversa di ciascuna di esse risultano rispettivamente avere le seguenti equazioni:

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

Esercizi Matematica 3

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte):

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI.

2. I numeri reali e le funzioni di variabile reale

1. Funzioni reali di una variabile reale

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso.

Formule Utili Analisi Matematica per Informatici a.a

Corso di Analisi Matematica Funzioni di una variabile

SENO, COSENO E TANGENTE DI UN ANGOLO

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IIIB. Anno Scolastico

Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz

- le disequazioni di grado superiore al secondo: disequazioni biquadratiche, binomie e trinomie

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

Funzioni elementari: funzioni potenza

Funzioni Pari e Dispari

FUNZIONI. }, oppure la

Transcript:

1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di B. La indicheremo con f: A B x y = f(x) Se B R, la funzione si dice reale Se A R, la funzione si dice a variabile reale. A = D f dominio della funzione o insieme di definizione B insieme di arrivo. f(a) = {y B y = f(x), x A } B C f =codominio, insieme dei valori o insieme delle immagini di f G f = {(x, y) A B y = f(x)} grafico di f Se A, B R è una curva del pino cartesiano detta curva di rappresentatrice della funzione. Esempi: 1) f: R R: x f(x) = a Dove a R è una costante. Il grafico G f è una retta parallela all asse delle y. ) f: R R: x f(x) = x Il grafico G f rappresenta la retta bisettrice del primo e terzo quadrante 10

Osservazione: Un insieme di punti del piano cartesiano è il grafico di una funzione f se e solo se ogni retta parallela all asse delle y interseca tale insieme di punti in al massimo un punto. PROPRIETA DELLE FUNZIONI Definizione. Una funzione f: A B si dice iniettiva se per ogni x 1, x A con x 1 x abbiamo che f(x 1 ) f(x ). (Ossia manda elementi distinti di A in elementi distinti di B.) Graficamente la funzione f è iniettiva se qualsiasi retta parallela all asse x interseca G f in al massimo un punto. Definizione:. Una funzione f: A B si dice suriettiva se f(a) = B ovvero tutti i punti di B sono immagine di un punto di A. Definizione: Una funzione f: A B si dice biiettiva o biunivoca se è sia suriettiva che iniettiva. Es 1.9 Una funzione y = f(x) associa al numero x la differenza tra il cubo del numero e il cubo della somma tra il numero e due. Scrivere f(x) e determinare il codominio se il dominio è A = { 1; 0; +1} Es 1.10 E vera o falsa l affermazione: se f(x) = x 1 allora f(x + k) = x + k 1? D ora in poi prenderemo in considerazioni solo funzioni reali a valori reali, cioè funzioni f: A B con A, B R. Rispetto al loro comportamento le funzioni si dividono in funzioni monotone e funzioni non monotone. Definizione Sia f: A R una funzione. Le funzioni monotone sono definite nel modo seguente, fsi dice: i. Crescente se x 1, x A con x 1 < x si ha che f(x 1 ) f(x ) ii. Strettamente crescente se x 1, x A con x 1 < x si ha che f(x 1 ) < f(x ) iii. Decrescente se x 1, x A con x 1 < x si ha che f(x 1 ) f(x ) iv. Strettamente decrescente se x 1, x A con x 1 < x si ha che f(x 1 ) > f(x ) 11

Osservazione: Le funzioni strettamente crescenti o decrescenti sono iniettive. Definizione Data una funzione f: A B, un punto x 0 A è detto punto di massimo (minimo) assoluto per la funzione f se per ogni x A f(x 0 ) f(x) (f(x 0 ) f(x)). In questo caso, f(x 0 ) si dice massimo (minimo) assoluto di f. N.B. Il massimo e il minimo sono valori assunti dalla f e quindi relativi all asse delle y. Definizione Data una funzione f: A B, un punto x 0 A è detto punto di massimo (minimo) relativo per f se esiste un intorno I δ (x 0 ) (x 0 δ; x 0 + δ) con δ > 0, tale che f(x 0 ) f(x) (f(x 0 ) f(x)) x I δ (x 0 ) A. In questo caso, f(x 0 ) si dice massimo (minimo) relativo per f. Osservazione: non sempre una funzione ammette massimi o minimi relativi o assoluti. Definizione Una funzione f: A R si dice limitata superiormente (inferiormente) se C f è limitato superiormente (inferiormente), ovvero esiste M R tale che f(x) M (f(x M)) x R. Una funzione si dice limitata se è limitata sia inferiormente che superiormente. Esempi: 1

Definizioni i. Una funzione f si dice pari se f(x) = f( x) x D f. Graficamente risulta che G f è ii. simmetrico all asse y. Una funzione f si dice dispari se f(x) = f( x) x D f. Graficamente risulta che G f è simmetrico rispetto all origine degli assi. iii. Una funzione f si dice periodica di periodo T se f(x + T) = f(x) x D f. Esempi La funzione f(x) = sin x è una funzione DISPARI e PERIODICA di periodo π; la funzione f(x) = cos x è una funzione PARI e PERIODICA di periodo π. OPERAZIONI TRA FUNZIONI Definizione Siano f: D f C f e g: D g C g due funzioni. Se C f D g allora è definita l applicazione h: D f C g x h(x) = g(f(x)) La funzione h è detta funzione composta di f e g e viene indicata con h = g f. Dunque h(x) = (g f)(x) = g(f(x)). Si usa anche scrivere D f f Cf D g g Cg Osservazione: in generale g f f g. Esempi: 1) f: R R: x 3x, g: R R + : x x Poiché C f D g (sono proprio uguali) allora è possibile definire g f. (g f)(x) = g(f(x)) = g(3x) = 9x Poiché C g D f allora è possibile definire anche la funzione f g (f g)(x) = f(g(x)) = f(x ) = 3x Risulta evidente che g f f g. ) f: R R: x x + 1, g: R\{0} R{0}: x x Poiché C g D f allora è possibile definire f g (f g)(x) = f(g(x)) = f ( x ) = x + 1 Notiamo però che C f D g quindi non è possibile definire g f, per fare ciò dovremo restringere il dominio di f. 3) f: R R: x x +, g: R R: x x Poiché dominio di f, coincide con il codominio di g e viceversa è possibile definire entrambe le funzioni composte f g e g f. (f g)(x) = f(g(x)) = f(x ) = x (g f)(x) = g(f(x)) = g(x + ) = x In entrambi i casi eccezionalmente abbiamo ottenuto la funzione identità di R. Le funzioni f, g dell ultimo esempio devono avere una sorta di relazione speciale in quanto f g = g f ed è uguale alla funzione identità su R (Id R ). Questa relazione si esprime in termini matematici dicendo che f è l inversa di g e viveversa. 13

Definizione Sia f: A B una funzione biiettiva. Esiste allora una funzione f 1 : B A, tale che f 1 f = Id A e f f 1 = Id B La funzione f 1 è detta funzione inversa di f, mentre f è detta funzione invertibile. Oltre alla composizione di funzioni, possiamo definire le usuali operazioni nel modo seguente. Siano f: A R, g: B R due funzioni tali che A B. Allora possiamo definire nell opportuno dominio le seguenti funzioni: i. 1 : x 1 f f(x) D1 = A\{x f(x) = 0}; f ii. kf: x kf(x) D = A ; Questo tipo di operazione è detta scalatura, in quanto la funzione f si restringe nel caso in cui 0 < k < 1 e si allarga nel caso in cui k > 1, ma mantiene fissi i punti di intersezione con l asse delle x. iii. f ± g: x f(x) ± g(x) D = A B; Nel caso particolare in cui g(x) = k una costante otteniamo una traslazione verticale della funzione f verso il basso quando k < 0 e verso l alto quando k > 0. iv. fg: x f(x)g(x) D = A B; f f(x) v. x D = A B\{x g(x) = 0}. g g(x) Per completezza consideriamo anche le seguenti operazioni. Consideriamo f: [a; b] R vi. Traslazione orizzontale g(x) = f(x + k) D g = [a k; b k] Se k > 0 la traslazione è verso destra, se invece k < 0 la traslazione è verso sinistra. vii. Dilatazione o contrazione: g(x) = f(kx) D g = [ a k ; b k ] Se k > 1 stiamo contraendo la funzione f, mentre se 0 < k < 1 stiamo dilatando la funzione f. In questo caso rimango fissi i punti di intersezione tra il grafico G f della funzione e l asse y. 14

1.1 La funzione esponenziale La funzione esponenziale è una funzione della forma f(x) = a x con a > 0, a 1. Tali funzioni ci permettono di estendere il concetto di potenza, ponendo ad esponente un qualsiasi numero reale x R. Ovviamente valgono le proprietà delle potenze: i. a x 1 = 1 a x 1 ii. a x 1a x = a x 1+x iii. (a x 1) x = a x 1x CARATTERISTICHE DELLA FUNZIONE ESPONENZIALE: 1) a x > 0 x R; ) a 0 = 1, quindi il grafico di questa funzione passa per il punto di coordinate (0; 1); 3) D f = R; 4) C f = (0; + ) Un caso particolare è dato dalla funzione f(x) = e x (esponenziale per antonomasia), dove la base e è chiamata numero di Nepero, è un numero reale, trascendente e lo si ricava facendo il lim n (1 + 1 n )n = e e,7183.. ed ha infinite cifre dopo la virgola che non si ripetono. GRAFICI Per quanto riguarda la funzione esponenziale dobbiamo distinguere i casi in cui a > 1 con i casi in cui 0 < a < 1. Supponiamo di avere y = f(x) = x. Compiliamo la tabella seguente per capire l andamento della funzione: x y 0 1 1 4-1 ½ - ¼ In generale possiamo affermare che: i. f è strettamente crescente qualunque sia a > 1; ii. f è limitata inferiormente; iii. f non è pari né dispari. Supponiamo ora di avere y = f(x) = ( 1 )x. Compiliamo la tabella seguente per capire l andamento della funzione: x y 0 1 1 4-1 ½ - ¼ 15

In generale possiamo affermare che: i. f è strettamente decrescente qualunque sia 0 < a < 1; ii. f è limitata inferiormente; iii. f non è pari né dispari. Inoltre qualunque sia a > 0, a x 0 x R. Osservazione: f(x) = x e g(x) = ( 1 )x hanno un grafico simmetrico rispetto all asse y, quindi si ha che f(x) = g( x). Esercizi Equazioni e disequazioni esponenziali: 1) 5 x +x = 5 ) ( 1 )x+1 = 1 3) 4 x + x+1 3 = 0 3 4) 16 < 4 1 x 5) ( 1 3 )x > 1 6) 5 x < 5 7) { x+1 < 3 x 1 1 < 0 16

1. La funzione logaritmo La funzione logaritmo è una funzione della forma f(x) = log a x, con a > 0, a 1. Prima di studiare la funzione vogliamo capire cosa rappresenta il logaritmo di un numero. Definizione Il log a b con a, b > 0 e a 1 rappresenta l esponente da dare alla base a per ottenere l argomento b. Ovvero c = log a b a c = b ( ) Quindi il logaritmo numericamente rappresenta un esponente (quindi può essere sia positivo che negativo) e dalla relazione precedente deduciamo che l argomento b, essendo una potenza con base a,non potrà mai essere un numero non negativo. Da ( ) deduciamo le seguenti IDENTITA : a log a x = x log a a x = x La funzione logaritmo risulta essere l inversa della funzione esponenziale. CARATTERISTICHE DELLA FUNZIONE LOGARITMO: i. log a 1 = 0; ii. D f = (0; + ), C f = R PROPRIETA DEI LOGARITMI (poniamo a, b, c > 0) i. log a (bc) = log a b + log a c ii. b log a c a b log a c iii. log a b c = c log a b GRAFICI Anche per quanto riguarda la funzione logaritmica dobbiamo distinguere i casi in cui a > 1 con i casi in cui 0 < a < 1. Supponiamo di avere y = log x, una funzione con la base maggiore di uno. Compiliamo la tabella seguente per capire l andamento della funzione: x y 1 0 1 4 ½ -1 ¼ - N.B log a x > 0 se x > 1 log a x < 0 se 0 < x < 1 In generale possiamo affermare che: i. f è strettamente crescente qualunque sia a > 1; ii. f non è limitata e ha un asintoto in x = 0; iii. f non è pari né dispari. Supponiamo ora di avere y = f(x) = log1 x. 17

Compiliamo la tabella seguente per capire l andamento della funzione: x y 1 0-1 4 - ½ 1 ¼ N.B log a x > 0 se x > 1 log a x < 0 se 0 < x < 1 In generale possiamo affermare che: i. f è strettamente decrescente qualunque sia 0 < a < 1; ii. f non è limitata e ha un asintoto in x = 0; iii. f non è pari né dispari. Esercizi: 1) log 3 x = 6; ) log 3 (3x 4) = 3) log1(3x + 5) < 0 4) { log1 (x 8) > 0 log 3 ( + x ) > 1 5) ln(x 6x + 7) > ln(x 3) 6) log(log(x 3)) > 0 18

1.3 Goniometria e trigonometria piana Consideriamo due semirette r, r uscenti dallo stesso punto O, l angolo è quella parte di piano ottenuta facendo ruotare una delle due semirette fino a farla sovrapporre all altra. Le due semirette vengono chiamate lati dell angolo. Gli angolo possono essere positivi o negativi dipende se la rotazione avviene in senso antiorario o in senso orario. Inoltra abbiamo differenti unità di misura, gradi sessagesimali (meglio conosciuti), radianti, ect.. Ma cosa sono i RADIANTI? Immaginiamo di tracciare la circonferenza di centro O e raggio OP = OA. Definizione La misura in radianti dell angolo α è α rad = PA Questa definizione è indipendente dal raggio della circonferenza. Infatti si hanno le seguenti relazioni: i. 360 πr = π r ii. 180 πr = π r iii. 90 π Possiamo sfruttare la seguente proporzione: α rad : π = α : 180. OP Definizione Sia C la circonferenza goniometrica e P(x P, y P ) un punto su di essa. Chiamiamo α l angolo che il segmento OP forma con l asse delle ascisse. Allora definiamo le funzione cos α e sin α, nel modo seguente: Ovvero P(cos α, sin α). cos α = x P sin α = y P Osservazione: Nel primo quadrante: α [0, π ], nel secondo quadrante: α [ π, π], nel terzo quadrante: α [π, 3 π], nel quarto quadrante : α [ 3 π, π]. Osservazione: Poiché P C, allora le coordinate di P soddisfano l equazione della circonferenza goniometrica: x + y = 1, quindi abbiamo che cos α + sin α = 1 per ogni α R. Tale uguaglianza viene chiamata IDENTITA FONDAMENTALE della goniometria. 19

Inoltre osserviamo che per come sono stati definiti: 1 cos α 1 1 sin α 1 e cos(α + kπ) = cos α sin(α + kπ) = sin α per ogni k Z. Definizione Si definiscono i. tan α = sin α cos α α π + kπ k Z ii. cot α = cos α sin α α kπ k Z Graficamente la tangente rappresenta il segmento orientato RA mentre la cotangente rappresenta il segmento orientato SA. Sfruttando le regole della geometria piana andiamo a calcolare coseno, seno, tangente e cotangente di alcuni angoli noti. α α rad cos α sin α tan α cot α 0 0 1 0 0 30 45 60 90 π 6 π 4 π 3 π 3 1 1 3 3 3 3 1 1 3 0 1 0 180 π 1 0 0 70 3 π 0 1 0 360 π 1 0 0 3 3 ARCHI ASSOCIATI Sfruttando la simmetria della circonferenza goniometrica si possono ricavare le seguenti formule: cos( α) = cos α cos (α + π ) = sin α cos(π α) = sin α cos(π α) = cos α sin( α) = sin α sin (α + π ) = cos α sin(π α) = cos α sin(π α) = sin α cos(π + α) = cos α cos( 3 π α) = sin α cos(3 π + α) = sin α sin(π + α) = sin α sin( 3 π α) = cos α sin(3 π + α) = cos α 0

FORMULE DI SOMMA E SOTTRAZIONE, DUPLICAZIONE E BISEZIONE i. cos(α ± β) = cos α cos β sin α sin β ii. sin(α ± β) = sin α cos β ± cos α sin β iii. cos α = cos α sin α iv. sin α = sin α cos α v. cos α vi. sin α LA FUNZIONE SENO y = sin x 1+cos α = 1 cos α = i. D f = R, C f = [ 1,1] G f : sinusoide ii. Limitata iii. Dispari iv. Periodica di periodo π v. Non è iniettiva LA FUNZIONE COSENO y = cos x i. D f = R, C f = [ 1,1] G f : cosinusoide ii. Limitata iii. Pari iv. Periodica di periodo π 1

v. Non è iniettiva LA FUNZIONE TANGENTE y = tan x i. D f = {}, ii. C f = R iii. Non è limitata iv. Strettamente crescente v. Dispari vi. Periodica di periodo π vii. Non è iniettiva Esercizi: Disegna il grafico delle seguenti funzioni indicandone il dominio D f 1) f(x) = e x ) f(x) = e x 3 3) f(x) = ln(x 4) 4) f(x) = sin(4x)