Corso di Fisica. Lezione 3 Scalari e vettori Parte 2

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Fisica. Lezione 3 Scalari e vettori Parte 2"

Transcript

1 Corso di Fisica Lezione 3 Scalari e vettori Parte 2

2 Algebra vettoriale Negli anni trascorsi si sono studiate le regole dell algebra applicate agli scalari Ora occorre definire le regole algebriche per queste nuove grandezze Le linee guida da seguire sono due: 1) L algebra dei vettori deve essere una estensione dell algebra degli scalari 2) L algebra dei vettori deve corrispondere a ciò che in natura accade Procederemo ora a definire le operazioni di somma e di prodotto con i vettori utilizzando appunto queste due linee guida. Corso di Fisica 2

3 Somma di scalari Per definire l operazione di somma tra vettori ricordiamo come, alle elementari, si è definita l operazione di somma tra scalari. Per sommare due numeri si fa uso di due righelli Ad esempio prendiamo un primo righello lungo 4 Ed un secondo righello lungo 6 Prendiamo ora il primo righello e dove esso finisce facciamo partire il secondo Otteniamo un righello complessivamente lungo 10 e quindi scriviamo = 10 Corso di Fisica 3

4 Somma di vettori Ripetiamo ora lo stesso procedimento ma applichiamolo ai vettori Prendiamo un vettore a = (a x, a y, a z ) a ed un secondo vettore b = (b x, b y, b z ) b Disegniamo ora il primo vettore e da dove finisce facciamo partire il secondo a b c Il vettore che parte dall inizio di a e termina alla fine di b è il vettore somma c Corso di Fisica 4

5 Costruzione geometrica Consideriamo la figura che ci ha portato a definire il vettore somma c = a + b Dal punto A, inizio del vettore a, facciamo partire una retta parallela al vettore b. Successivamente, dal punto C, fine del vettore b, facciamo partire una retta parallela al vettore a. A a D c B b C Queste due rette si incontreranno in un punto D. Il quadrilatero ABCD è, per costruzione, un parallelogramma i cui lati coincidono, due a due, con i due vettori da sommare Il vettore somma c è costituito dalla diagonale del parallelogramma con origine in A Corso di Fisica 5

6 Regola del parallelogramma In conclusione siamo giunti a definire una regola geometrica per costruire il vettore somma la regola del parallelogramma Siano dati due vettori a e b. Trasliamoli parallelamente a se stessi in modo che abbiamo entrambi origine in un punto O. Dall estremo di ognuno dei due vettori tracciamo due rette parallele all altro vettore. Viene così ad individuarsi un parallelogramma OACB La diagonale di tale parallelogramma che ha origine in O è il vettore somma O c = a + b b a B c A C Corso di Fisica 6

7 Vettori equipollenti Nel definire la regola del parallelogramma abbiamo dovuto traslare i vettori parallelamente a se stessi. Ovviamente questa operazione di traslazione non deve modificare i vettori e di conseguenza possiamo applicarla solo a vettori che godono di questa proprietà. Definiamo pertanto quei vettori che vettori equipollenti possono essere traslati parallelamente a se stessi senza cambiarne le caratteristiche Per quanto detto prima abbiamo che La regola del parallelogramma può essere applicata solo a vettori equipollenti Corso di Fisica 7

8 Somma di molti vettori Possiamo generalizzare l operazione di somma non limitandoci più a due soli vettori ma considerarne molti z = a + b + c + + n A tale scopo accodiamo i vettori uno dopo l altro, in modo che il punto di termine di uno di essi coincida con il punto di inizio del successivo a b c Si ottiene una poligonale che inizia col punto d inizio del primo addendo e termina col punto di fine dell ultimo addendo. z d Il vettore somma è il vettore che chiude la poligonale, ovvero che inizia nel punto iniziale del primo addendo e termina col punto finale dell ultimo addendo Corso di Fisica 8

9 Somma analitica di vettori Determiniamo ora la formula analitica della somma di vettori, partendo dalla regola del parallelogramma. Disegniamo pertanto un sistema di riferimento ed i due vettori da sommare A c C Applichiamo poi la regola del parallelogramma e costruiamo il vettore somma Vediamo ora cosa accade per le componenti. Ad esempio per la componente dei vettori lungo l asse x O a b B Corso di Fisica 9

10 Somma analitica di vettori Studiamo, ad esempio per la componente dei vettori lungo l asse x Il segmento orientato OA rappresenta il vettore a e pertanto la sua proiezione sull asse x è la componente del vettore lungo l asse x: a x. Il segmento orientato OB rappresenta il vettore b e pertanto la sua proiezione sull asse x è la componente del vettore lungo l asse x: b x Per costruzione il segmento AC è parallelo al segmento OB ed ha uguale lunghezza. Di conseguenza la sua proiezione sull asse delle x ha lunghezza uguale a quella del segmento OB. O a a x A Corso di Fisica 10 bx b c B C

11 Somma analitica di vettori Il segmento orientato Oc rappresenta il vettore c e pertanto la sua proiezione sull asse x è la componente del vettore lungo l asse x: c x. Dal disegno appare chiaro che tale proiezione è pari alla somma della proiezione del segmento OA e del segmento AC per cui A c C c x = a x + b x Un analogo risultato si ottiene per l asse y Di conseguenza l operazione di somma tra vettori, analiticamente si esprime con la formula O a a x b b x B c x = a x + b x c y = a y + b y c x Corso di Fisica 11

12 Somma di vettori A seguito di quanto abbiamo detto sinora possiamo affermare che Si definisce vettore somma c = a + b Il vettore che ha per componenti la somma delle componenti omologhe c x = a x + b x c y = a y + b y c z = a z + b z Corso di Fisica 12

13 Fattore di scala Se dobbiamo disegnare una pianta di un locale su di un foglio di carta ovviamente non riportiamo le misure reali ma utilizziamo una scala. Ad esempio se utilizziamo una scala 1:100 intendiamo che ad 1 cm riportato sulla carta corrisponde una distanza reale di 100 cm. Questo tipo di rappresentazione non cambia le forme degli oggetti ma solo le loro dimensioni. Per individuare la posizione reale di un punto P posto sulla cartina in posizione (x, y) occorre applicare la proporzione X = k x Y = k y y ove k è il fattore di scala x Corso di Fisica 13

14 Prodotto di un vettore per uno scalare L operazione che abbiamo appena compiuto corrisponde al prodotto di un vettore per uno scalare. L operazione che abbiamo appena compiuto corrisponde al prodotto di un vettore per uno scalare. Si definisce vettore prodotto di uno scalare per un vettore b = k a Il vettore che ha componenti pari alla componente del vettore per lo scalare b x = k a x b y = k a y b z = k a z Corso di Fisica 14

15 Prodotto di un vettore per uno scalare Determiniamo ora la relazione che lega i due vettori in coordinate polari e a 2 = a x2 + a y 2 θ a = arcsin (a y / a ) b 2 = b x2 + b y2 = k 2 a x2 + k 2 a y 2 = k 2 a 2 θ b = arcsin (b y / b ) = arcsin (k a y / k a = ± θ a ove il segno ± dipende dal segno di k In parole possiamo dire che il prodotto di uno scalare per un vettore fornisce un vettore che ha intensità pari al prodotto della intensità del vettore originario per lo scalare, la stessa direzione e verso uguale se lo scalare è positivo ed opposto se lo scalare è negativo Corso di Fisica 15

16 Prodotto tra vettori Passiamo ora a definire il prodotto tra due vettori poiché esiste sia il campo degli scalari che quello dei vettori possiamo ipotizzare che esista sia un tipo di prodotto tra vettori che ha per risultato uno scalare che un tipo di prodotto tra vettori che ha per risultato un vettore Per distinguerli chiameremo il primo col nome di mentre al secondo daremo il nome di prodotto scalare prodotto vettoriale Corso di Fisica 16

17 Prodotto scalare Consideriamo due vettori: a = (a x, a y, a z ) b = (b x, b y, b z ) e definiamo il loro prodotto scalare k = a b come la somma dei prodotti delle componenti omologhe ovvero, in formula k = a b = a x b x + a y b y + a z b z Corso di Fisica 17

18 Prodotto scalare in coordinate polari Per capire meglio il significato del prodotto scalare tra due vettori esprimiamolo in termini delle coordinate polari Rappresentiamo i due vettori in un sistema di coordinate rettangolari in cui l asse delle x si sovrapponga al vettore a. Risulta allora che: a = ( a, 0) b = ( b cos θ b, b sin θ b ) b ove con θ b abbiamo indicato l angolo al polo del vettore b Calcoliamo ora il prodotto scalare O θ b a k = a b = a x b x + a y b y = a b cos θ b + 0 b sin θ b = a b cos θ b Corso di Fisica 18

19 Prodotto scalare in coordinate polari Osserviamo ora la formula precedente k = a b = a b cos θ b e notiamo che θ b non è soltanto l angolo al polo del vettore b ma anche l angolo tra i due vettori Possiamo allora affermare che Il prodotto scalare è pari al prodotto dei moduli dei due vettori per il coseno dell angolo compreso in formula k = a b = a b cos θ Corso di Fisica 19

20 Significato del prodotto scalare Osservando questa formula k = a b = a b cos θ ed il disegno che mostra i due vettori, possiamo notare che b cos θ è la componente del secondo vettore rispetto al primo. Possiamo allora affermare che moltiplicare scalarmente due vettori significa moltiplicare il modulo del primo per la componente del secondo che si appoggia sul primo b θ a Corso di Fisica 20

21 Commutatività del prodotto scalare Torniamo ora alla definizione del prodotto scalare k = a b = a x b x + a y b y + a z b z ed osserviamo cosa accade se invertiamo l ordine dei fattori h = b a = b x a x + b y a y + b z a z ma il prodotto di due scalari gode della proprietà commutativa e quindi e di conseguenza h = b x a x + b y a y + b z a z = a x b x + a y b y + a z b z = k il prodotto scalare gode della proprietà commutativa Corso di Fisica 21

22 Prodotto vettoriale Passiamo ora a definire il prodotto vettoriale tra due vettori c = a ^ b Dobbiamo notare, per prima cosa, che questo prodotto si può definire esclusivamente per spazi a 3 dimensioni. La definizione analitica del prodotto vettoriale ha una forma piuttosto complessa e la sua memorizzazione è, in questa fase, inutile. Provvederemo pertanto a darne una definizione semi quantitativa, basata cioè sulla determinazione della intensità, direzione e verso del vettore risultato Corso di Fisica 22

23 Modulo del prodotto vettoriale Definiamo le proprietà del prodotto vettoriale tra due vettori c = a ^ b ovvero il suo modulo, la direzione ed il verso. b Dati due vettori a e b, il loro prodotto vettoriale c ha modulo pari a ovvero è pari al c = a b sin θ θ a prodotto dei moduli dei vettori per il seno dell angolo compreso Corso di Fisica 23

24 Direzione del prodotto vettoriale Per quanto riguarda la direzione del prodotto vettoriale tra due vettori c = a ^ b possiamo notare che i due vettori individuano univocamente un piano che li contiene entrambi. A sua volta questo piano individua univocamente una retta ad esso perpendicolare. Diremo allora che il Vettore prodotto di due vettori ha la direzione della retta perpendicolare al piano che contiene i due vettori b θ a Corso di Fisica 24

25 Verso del prodotto vettoriale Più complessa è la definizione del verso del prodotto vettoriale tra due vettori c = a ^ b Tra tutte le regole possibili mostriamo qui la cosiddetta regola del cavaturaccioli Prendiamo cioè in considerazione quello strumento che viene comunemente utilizzato per estrarre i tappi di sughero dalle bottiglie. Se facciamo ruotare il cavaturaccioli nel verso in cui il primo vettore deve ruotare per sovrapporsi al secondo dal lato più corto il cavaturaccioli avanzerà in un verso che è proprio il verso del vettore prodotto vettoriale Corso di Fisica 25

26 Anticommutatività del prodotto vettoriale Abbiamo visto che il prodotto scalare gode della proprietà commutativa ed ora mostreremo che il prodotto vettoriale gode della proprietà opposta. Studiamo pertanto la relazione che esiste tra i due vettori c = a ^ b d = b ^ a Per le definizioni che abbiamo dato i due vettori hanno uguale modulo ed uguale direzione ma verso opposto. Infatti la definizione del verso impone di individuare il verso di rotazione per cui il primo vettore si sovrappone al secondo. Invertire l ordine dei vettori pertanto inverte il verso di rotazione e quindi il verso del vettore risultato. Si ha pertanto c = a ^ b = - d = b ^ a e quindi il prodotto vettoriale gode della proprietà anticommutativa. Corso di Fisica 26

27 Doppio prodotto vettoriale Poiché il risultato di un prodotto vettoriale è un vettore esso può essere ancora moltiplicato vettorialmente per un altro vettore ottenendo il doppio prodotto vettoriale d = a ^ (b ^ c) Riportiamo qui il risultato di tale prodotto, senza dimostrarlo d = a ^ (b ^ c) = b ( a c ) c ( a b ) Corso di Fisica 27

Algebra dei vettori OPERAZIONI FRA VETTORI SOMMA DI VETTORI

Algebra dei vettori OPERAZIONI FRA VETTORI SOMMA DI VETTORI Algebra dei vettori Il vettore è un oggetto matematico che è caratterizzato da modulo, direzione e verso. Si indica graficamente con una freccia. Un vettore è individuato da una lettera minuscola con sopra

Dettagli

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:

Dettagli

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1

Corso di Fisica. Lezione 2 Scalari e vettori Parte 1 Corso di Fisica Lezione 2 Scalari e vettori Parte 1 Scalari e vettori Consideriamo una libreria. Per determinare quanti libri ci sono su uno scaffale basta individuare lo scaffale in questione e contare

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

La matematica del CAD. Vettori e Matrici

La matematica del CAD. Vettori e Matrici La matematica del CAD Vettori e Matrici IUAV Disegno Digitale Camillo Trevisan I programmi CAD riducono tutti i problemi geometrici in problemi analitici: la proiezione di un punto su un piano viene, ad

Dettagli

Prof. Luigi De Biasi VETTORI

Prof. Luigi De Biasi VETTORI VETTORI 1 Grandezze Scalari e vettoriali.1 Le grandezze fisiche (ciò che misurabile e per cui è definita una unità di misura) si dividono due categorie, grandezze scalari e grandezza vettoriali. Si definisce

Dettagli

Vettori e geometria analitica in R 3 1 / 25

Vettori e geometria analitica in R 3 1 / 25 Vettori e geometria analitica in R 3 1 / 25 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte

Dettagli

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale VETTORI Costruzione di un vettore bidimensionale Nel piano con un righello si traccia una retta r tratteggiata Su r si disegna un segmento di lunghezza l d una delle estremità si disegni la punta di una

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con.

Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con. Vettori. Il vettore è un ente geometrico rappresentato da un segmento orientato, che è caratterizzato da una direzione, da un verso e da un modulo. Il punto di partenza si chiama coda (o punto di applicazione),

Dettagli

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b

e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b 8) Prodotto scalare o prodotto interno Si definisce prodotto scalare s di due vettori A e B, l area del rettangolo che ha per lati il modulo del vettore A e la lunghezza della proiezione del vettore B

Dettagli

Spazi vettoriali. Vettori geometrici. Spazi vettoriali R n. Spazi vettoriali.

Spazi vettoriali. Vettori geometrici. Spazi vettoriali R n. Spazi vettoriali. Spazi vettoriali Vettori geometrici. Spazi vettoriali R n. Spazi vettoriali. Piano vettoriale geometrico G 2 Il contesto del discorso che svolgiamo in questa parte e il piano della geometria elementare,

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIBRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

Vettori paralleli e complanari

Vettori paralleli e complanari Vettori paralleli e complanari Lezione n 9 1 (Composizione di vettori paralleli e complanari) Continuando lo studio delle grandezze vettoriali in questa lezione ci interesseremo ancora di vettori. In particolare

Dettagli

I vettori. I vettori sono gli oggetti matematici che costituiscono la base di tutte le teorie fisiche.

I vettori. I vettori sono gli oggetti matematici che costituiscono la base di tutte le teorie fisiche. Vettori I vettori I vettori sono gli oggetti matematici che costituiscono la base di tutte le teorie fisiche. Le grandezze fisiche si distinguono essenzialmente in due grandi classi. Quelle che risultano

Dettagli

VETTORI. OPERAZIONI CON I VETTORI. RAPPRESENTAZIONE CARTESIANA DEI VETTORI. APPLICAZIONI.

VETTORI. OPERAZIONI CON I VETTORI. RAPPRESENTAZIONE CARTESIANA DEI VETTORI. APPLICAZIONI. VETTORI. OPERAZIONI CON I VETTORI. RAPPRESENTAZIONE CARTESIANA DEI VETTORI. APPLICAZIONI. Sia AB un segmento orientato. Ad esso è possibile associare: 1) la direzione, cioè la direzione della retta su

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Vettori e Calcolo vettoriale

Vettori e Calcolo vettoriale Vettori e Calcolo vettoriale Ci poniamo nello spazio ordinario S, in cui valgono gli assiomi della geometria euclidea. I vettori vengono rappresentati mediante frecce, con un punto iniziale e un punto

Dettagli

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni Svolgimento Esercizi Esercizi: 1) Una particella arriva nel punto (-2,2) dopo che le sue coordinate hanno subito gli incrementi x=-5, y=1. Da dove è partita? 2) Disegnare il grafico di C = 5/9 (F -32)

Dettagli

Grandezze scalari e vettoriali-esempi

Grandezze scalari e vettoriali-esempi Grandezze scalari e vettoriali-esempi Massa Tempo Temperatura Pressione Posizione lungo un asse (linea) Volume Lavoro Energia Posizione nel piano Posizione nello spazio Velocità Accelerazione Forza Quantità

Dettagli

a) Perché posso affermare che sono complanari? b) Determina l equazione del piano che li contiene

a) Perché posso affermare che sono complanari? b) Determina l equazione del piano che li contiene Esercizi svolti Esercizio 1. Dati i punti: A(1, 1, 0), B( 1, 1, 4), C(1, 1, 3), D(2, 2, 8) dello spazio R 3 a) Perché posso affermare che sono complanari? b) Determina l equazione del piano che li contiene

Dettagli

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 1: Cenni al calcolo vettoriale Anno Accademico 2008-2009

Dettagli

Appunti di Matematica 2 - Il piano cartesiano - Il piano cartesiano. Sistema di riferimento cartesiano ortogonale

Appunti di Matematica 2 - Il piano cartesiano - Il piano cartesiano. Sistema di riferimento cartesiano ortogonale Il piano cartesiano Sistema di riferimento cartesiano ortogonale Fissare nel piano un sistema di riferimento cartesiano ortogonale significa fissare due rette perpendicolari orientate chiamate asse e asse

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 1 GEOMETRIA 2009/10 Esercizio 1.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

FISICA. I Vettori. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. I Vettori. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica ISICA I Vettori Autore: prof. Pappalardo Vincenzo docente di Matematica e isica GRANDEZE ISICHE SCALARI E VETTORIALI Le grandezze fisiche possono essere suddivise in due grandi categorie: definizione GRANDEZZE

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione 1 La traslazione Per poter applicare una traslazione ad una generica figura geometrica si deve: ± creare il vettore di traslazione AB mediante il comando Vettore tra due punti; ± cliccare con il mouse

Dettagli

VETTORI GEOMETRICI / RICHIAMI

VETTORI GEOMETRICI / RICHIAMI M.GUIDA, S.ROLANDO, 2016 1 VETTORI GEOMETRICI / RICHIAMI Chiamiamo vettore un qualsiasi segmento orientato del piano o dello spazio. Orientare un segmento significa scegliere un verso per percorrerlo,

Dettagli

LE GRANDEZZE FISICHE. Capitolo Introduzione. 2.2 Grandezze dimensionali ed adimensionali

LE GRANDEZZE FISICHE. Capitolo Introduzione. 2.2 Grandezze dimensionali ed adimensionali Capitolo 2 LE GRANDEZZE FISICHE 2.1 Introduzione La fisica si occupa della spiegazione dei fenomeni naturali. Essa cerca di determinare quali sono le cause prime di tali fenomeni e, da queste, di ricavare

Dettagli

Geometria Analitica nello Spazio

Geometria Analitica nello Spazio Geometria Analitica nello Spazio Andrea Damiani 4 marzo 2015 Equazione della retta - forma parametrica Se sono dati il punto A(x 0, y 0, z 0 ) e il vettore v (v x, v y, v z ), il generico punto P (x, y,

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Corsi di Laurea dei Tronchi Comuni 2 e 4 Dr. Andrea Malizia 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale 2 Sistemi di riferimento e spostamento 3 Sistemi di

Dettagli

Parte 9. Geometria del piano

Parte 9. Geometria del piano Parte 9. Geometria del piano A. Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Vettori geometrici del piano, 1 2 Lo spazio vettoriale VO 2, 3 3 Sistemi di riferimento, 8 4 Equazioni

Dettagli

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale

Lezione 2 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Dr. Andrea Malizia Prof. Maria Guerrisi 1 Richiami sui sistemi di riferimento Richiami di trigonometria Vettori Calcolo vettoriale Sistemi di riferimento e spostamento 2 Sistemi di riferimento e spostamento

Dettagli

CALCOLO VETTORIALE ELEMENTI DI ANALISI MATEMATICA

CALCOLO VETTORIALE ELEMENTI DI ANALISI MATEMATICA ELEMENTI DI ANALISI MATEMATICA CALCOLO VETTORIALE - DEFINIZIONE DI VETTORE - COMPONENTI DI UN VETTORE - SOMMA E DIFFERENZA - PRODOTTO SCALARE - PRODOTTO VETTORIALE - VETTORE GRADIENTE - FLUSSO DI UN VETTORE

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO LEZIONE statica-1 CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO GRANDEZZE SCALARI E VETTORIALI: RICHIAMI DUE SONO LE TIPOLOGIE DI GRANDEZZE ESISTENTI IN FISICA

Dettagli

Algebra vettoriale. Capitolo 5. 5.1 Grandezze scalari. 5.2 Grandezze vettoriali

Algebra vettoriale. Capitolo 5. 5.1 Grandezze scalari. 5.2 Grandezze vettoriali Capitolo 5 5.1 Grandezze scalari Si definiscono scalari quelle grandezze fisiche che sono descritte in modo completo da un numero accompagnato dalla sua unità di misura. La temperatura dell aria in una

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali Per caratterizzare completamente una grandezza fisica, a volte è sufficiente dare soltanto un numero (scalare), mentre altre volte questo non è sufficiente. Massa, lunghezza,

Dettagli

SCALARI E VETTORI SOMMA DI VETTORI

SCALARI E VETTORI SOMMA DI VETTORI SLRI E VETTORI lcune grandee fisiche per esempio, la massa di un oggetto, la posiione di un punto possono essere caratteriate matematicamente mediante un numero. Tali grandee o osservabili sono dette scalari.

Dettagli

vettori V Sia inoltre l angolo che il primo vettore deve percorrere per sovrapporsi al secondo. * **

vettori V Sia inoltre l angolo che il primo vettore deve percorrere per sovrapporsi al secondo. * ** Prodotto scalare di vettori. Consideriasmo due vettori u e v e siano O e O due rappresentanti applicati in O. Indichiamo come al solito con u = O la norma (cioè l intensità) del vettore u Sia inoltre l

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri:

DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: 1. modulo: la lunghezza del segmento 2. direzione: coincidente con la direzione

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMETO DELLA MATEMATICA. LEZIONE n 13

METODI E TECNOLOGIE PER L INSEGNAMETO DELLA MATEMATICA. LEZIONE n 13 METODI E TECNOLOGIE PER L INSEGNAMETO DELLA MATEMATICA LEZIONE n 13 Parte terza TRASFORMAZIONI GEOMETRICHE Dalle indicazioni nazionali: Descrivere, denominare e classificare figure geometriche, identificando

Dettagli

figura. A figura. B Il modulo è la lunghezza o intensità del vettore. Il punto di applicazione è l origine del vettore detto anche coda.

figura. A figura. B Il modulo è la lunghezza o intensità del vettore. Il punto di applicazione è l origine del vettore detto anche coda. Martinelli Sara 1A Lab. Di fisica del Liceo Scopo: verificare la regola del parallelogramma. Materiale utilizzato: Telaio 5 morse Asta orizzontale Base metallica 2 piantane verticali Pesi Goniometro stampato

Dettagli

Esercizi Riepilogativi Svolti

Esercizi Riepilogativi Svolti Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile-Architettura e dell Edilizia SPAZI EUCLIDEI. TRASFORMAZIONI. ORIENTAZIONI. FORMULE DI GEOMETRIA IN R. Docente:

Dettagli

CORSO DI PROGETTAZIONE COSTRUZIONI ED IMPIANTI

CORSO DI PROGETTAZIONE COSTRUZIONI ED IMPIANTI CORSO DI PROGETTAZIONE COSTRUZIONI ED IMPIANTI A.S. 2012-2013 Casi particolari di sistemi di forze Nel caso di un sistema composto da n forze tutte parallele tra loro, la ricerca del risultante R del sistema

Dettagli

Cap. 11 I Quadrilateri

Cap. 11 I Quadrilateri Cap. 11 I Quadrilateri Definizione di quadrilatero Si definisce quadrilatero un poligono di 4 lati Definizione di poligono Definiamo poligono una porzione di piano delimitata da una spezzata chiusa Gli

Dettagli

( 1 ) AB:A B =BC:B C =CA:C A

( 1 ) AB:A B =BC:B C =CA:C A Goniometria II parte Funzioni goniometriche: seno, coseno tangente Ricordiamo che: Due triangoli si dicono simili se hanno gli angoli ordinatamente uguali e i lati omologhi (nel caso dei triangoli i lati

Dettagli

Capitolo 1 Vettori applicati e geometria dello spazio

Capitolo 1 Vettori applicati e geometria dello spazio Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore

Dettagli

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Materiale utilizzato: Telaio (carrucole,supporto,filo), pesi, goniometro o foglio con goniometro stampato, righello Premessa

Dettagli

I numeri complessi. Capitolo 7

I numeri complessi. Capitolo 7 Capitolo 7 I numeri complessi Come abbiamo fatto per i numeri reali possiamo definire assiomaticamente anche i numeri complessi. Diciamo che l insieme C dei numeri complessi è un insieme su cui sono definite

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 )

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Testo 1: Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Lavoro di gruppo T1: discuti assieme ai tuoi compagni il significato di quanto hai letto

Dettagli

sen ; e sul teorema del coseno. 2

sen ; e sul teorema del coseno. 2 Esercizi sul grafico di funzioni: Lunghezza di una corda ( ) sen e sul teorema del coseno Esercizi sulla equazione della circonferenza centrata in un generico punto (, ) R Il prodotto di una funzione pari

Dettagli

Istituzioni di Matematica per Scienze Ambientali

Istituzioni di Matematica per Scienze Ambientali per Scienze Ambientali GEOMETRIA ANALITICA - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, 5 - Novembre 2012 Coordinate La corrispondenza tra numeri reali e punti di una retta

Dettagli

Appunti ed esercizi di geometria analitica PRIMA PARTE

Appunti ed esercizi di geometria analitica PRIMA PARTE Appunti ed esercizi di geometria analitica PRIMA PARTE Per la teoria studiare su il libro di testo La retta e i sistemi lineari, modulo E, da pagina 594 a pagina 597. Esercizi da pagina 617 a pagina 623.

Dettagli

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax

I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: 049.80.40.211 Fax 049.80.40.277 marconi@provincia.padova.it www.itismarconipadova.it Settore tecnologico Indirizzo meccanica meccatronica ed energia

Dettagli

FUNZIONI GONIOMETRICHE

FUNZIONI GONIOMETRICHE FUNZIONI GONIOMETRICHE ANGOLI Col termine angolo indichiamo la parte di piano limitata da due semirette aventi la stessa origine, chiamata vertice. Possiamo definire anche l angolo come la parte di piano

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Capitolo 6. I poligoni. (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15)

Capitolo 6. I poligoni. (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15) (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15) (vertici, lati, diagonali, convessità, angoli, perimetro) 6.2 I triangoli 6.3 I quadrilateri 6.4 I poligoni regolari 6.5 Le altezze 6.6 Le aree Un poligono è la parte

Dettagli

RAPPRESENTAZIONE VETTORIALE

RAPPRESENTAZIONE VETTORIALE RAPPRESENTAZIONE VETTORIALE Le grandezze fisiche elettriche variabili nel tempo con legge sinusoidale che si incontreranno nello studio delle correnti alternate, come ad esempio le tensioni e le correnti,

Dettagli

Matematica Lezione 4

Matematica Lezione 4 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 4 Sonia Cannas 18/10/2018 Proporzioni Esempio Da un rubinetto di una vasca fuoriescono 60 litri di acqua in 4 minuti. Quanti litri

Dettagli

Rette e piani in R 3

Rette e piani in R 3 Rette e piani in R 3 In questa dispensa vogliamo introdurre in modo elementare rette e piani nello spazio R 3 (si faccia riferimento anche al testo Algebra Lineare di S. Lang). 1 Rette in R 3 Vogliamo

Dettagli

Elementi di calcolo vettoriale

Elementi di calcolo vettoriale Mathit Elementi di calcolo ettoriale Nozione di ettore Grandezze ettoriali e grandezze scalari Segmenti orientati e ettori Definizioni Operazioni con i ettori Somma e differenza di ettori Moltiplicazione

Dettagli

Lezione I Vettori geometrici e spazi vettoriali

Lezione I Vettori geometrici e spazi vettoriali .. Lezione I Vettori geometrici e spazi vettoriali A. Bertapelle 2 ottobre 2012 Vettori geometrici Definizione naïf di vettore Un vettore geometrico è un ente dotato di direzione, lunghezza e verso. Si

Dettagli

1 Distanza di un punto da una retta (nel piano)

1 Distanza di un punto da una retta (nel piano) Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di

Dettagli

LA DISTANZA DA CENTRO RAPPRESENTA IL RAGGIO CISCUNA DELLE DUE PARTI IN CUI E DIVISA UNA CIRCONFERENZA SI CHIAMA ARCO

LA DISTANZA DA CENTRO RAPPRESENTA IL RAGGIO CISCUNA DELLE DUE PARTI IN CUI E DIVISA UNA CIRCONFERENZA SI CHIAMA ARCO LA CIRCONFERENZA LA CIRCONFERENZA E IL LUOGO DEI PUNTI EQUIDISTANTI DA UN PUNTO FISSO DETTO CENTRO LA DISTANZA DA CENTRO RAPPRESENTA IL RAGGIO UN SEGMENTO CHE CONGIUNGE DUE PUNTI DELLA CIRCONFERENZA SI

Dettagli

Appunti di Elementi di Meccanica. Vettori nel piano. v 1.0

Appunti di Elementi di Meccanica. Vettori nel piano. v 1.0 Appunti di Elementi di Meccanica Vettori nel piano v 1.0 1 Vettori Figura 1: Rappresentazione di un vettore Il vettore è un ente geometrico che, nella meccanica, consente di rappresentare efficacemente

Dettagli

Corso di Fisica I per Matematica

Corso di Fisica I per Matematica Corso di Fisica I per Matematica DOCENTE: Marina COBAL: marina.cobal@cern.ch Tel. 339-2326287 TESTO di RIFERIMENTO: Mazzoldi, Nigro, Voci: Elementi d fisica,meccanica e Termodinamica Ed. EdiSES FONDAMENTI

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado Una disequazione di secondo grado è una disequazione del tipo (oppure a b c o a b c ) a b c oppure a b c I) Cominciamo considerando disequazioni in cui a Esempio Consideriamo

Dettagli

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario.

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario. Capitolo 4 Le rotazioni 4.1 Richiami di teoria E' opportuno ricordare che, dato un angolo orientato ao ˆ b, si usa la convenzione di prendere come verso positivo quello antiorario e come verso negativo

Dettagli

Che cos è una forza? 2ª lezione (21 ottobre 2006): Idea intuitiva: forza legata al concetto di sforzo muscolare.

Che cos è una forza? 2ª lezione (21 ottobre 2006): Idea intuitiva: forza legata al concetto di sforzo muscolare. 2ª lezione (21 ottobre 2006): Che cos è una forza? Idea intuitiva: forza legata al concetto di sforzo muscolare. L idea intuitiva è corretta, ma limitata ; le forze non sono esercitate solo dai muscoli!

Dettagli

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma.

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma. Matematica II, 20.2.. Lunghezza di un vettore nel piano Consideriamo il piano vettoriale geometrico P O. Scelto un segmento come unita, possiamo parlare di lunghezza di un vettore v P O rispetto a tale

Dettagli

Appunti di Matematica 2 - Il piano cartesiano. La retta nel piano cartesiano - Il piano cartesiano. Sistema di riferimento cartesiano ortogonale

Appunti di Matematica 2 - Il piano cartesiano. La retta nel piano cartesiano - Il piano cartesiano. Sistema di riferimento cartesiano ortogonale ppunti di Matematica Il piano cartesiano Sistema di riferimento cartesiano ortogonale Fissare nel piano un sistema di riferimento cartesiano ortogonale significa fissare due rette perpendicolari orientate

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

Bivettori. Determinanti. Prodotto vettoriale.

Bivettori. Determinanti. Prodotto vettoriale. Bivettori. Determinanti. Prodotto vettoriale. 10 Dicembre 2018 Per approfondimenti: bibliografia e siti web sull algebra geometrica (Geometric Algebra): http://geometry.mrao.cam.ac.uk/ https://assets.cambridge.org/052148/0221/sample/0521480221ws.pdf

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Lezione 1

Lezione 1 Lezione 1 Ordini di grandezza Dimensioni fisiche Grandezze scalari e vettoriali Algebra dei vettori Coordinate Cartesiane e rappresentazioni grafiche Verifica Cenno sulle dimensioni delle grandezze fisiche

Dettagli

Matematica Lezione 6

Matematica Lezione 6 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 6 Sonia Cannas 25/10/2018 Retta passante per un punto e direzione assegnata Data l equazione di una retta in forma esplicita y = mx

Dettagli

COMPOSIZIONE DELLE FORZE

COMPOSIZIONE DELLE FORZE Andrea Ferrari e Stefano Mazzotta 1 G Sabato 5-02-2011, Laboratorio di fisica del liceo scientifico Leonardo da Vinci. Viale dei tigli. Gallarate. COMPOSIZIONE DELLE FORZE Materiale utilizzato: Telaio,

Dettagli

Geometria Analitica Piana.

Geometria Analitica Piana. 8 novembre 201 Geometria Analitica Piana 1 Geometria Analitica Piana. Applicazione: problema sul Parallelogramma. Quesito sulla costruzione della figura. Testo: Sono date le equazioni 3x y + = 0 e 4x +

Dettagli

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008

ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008 LGER VETTORILE DEFINIZIONE DI VETTORE (1) Sia E lo spazio tridimensionale della geometria euclidea. Consideriamo due punti e appartenenti a E Si chiama segmento orientato, e si indica con (,) il segmento

Dettagli

Angoli e loro misure

Angoli e loro misure Angoli e loro misure R s Unità di misura: gradi, minuti, secondi 1 o =60' 1'=60'' Es: 35 o 41'1'' radianti α(rad) s R Angolo giro = 360 o = R/R = rad R=1 arco rad Es.: angolo retto R Arco 4 : se R=1 π

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

1 Congruenza diretta e inversa

1 Congruenza diretta e inversa 1 Congruenza diretta e inversa PROPRIETÀ. La congruenza tra due figure piane mantiene inalterata la lunghezza dei segmenti e l ampiezza degli angoli; ciò che cambia è la posizione delle figure nel piano.

Dettagli

- Fondamenti di calcolo vettoriale - VETTORI

- Fondamenti di calcolo vettoriale - VETTORI VETTORI Definizione: Il vettore è un segmento orientato ovvero un segmento su cui è fissato un verso di percorrenza. Graficamente il verso del vettore è rappresentato da una freccia. A A A Segmento orientato

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

la somma delle distanze dai due fuochi assume il valore costante 2a.

la somma delle distanze dai due fuochi assume il valore costante 2a. Appendice A Le coniche A.1 L ellisse Rappresentazione implicita L ellisse di semiassi a e b (0 < b a) è una curva del piano dotata di due assi di simmetria ortogonali che, nel riferimento individuato da

Dettagli

Capitolo 2. Cenni di geometria analitica nel piano

Capitolo 2. Cenni di geometria analitica nel piano Capitolo Cenni di geometria analitica nel piano 1 Il piano cartesiano Il piano cartesiano è una rappresentazione grafica del prodotto cartesiano R = R R La rappresentazione grafica è possibile se si crea

Dettagli

Spazi vettoriali Esercizi teorici 1

Spazi vettoriali Esercizi teorici 1 Capitolo 1: Fare 23 Spazi vettoriali Esercizi teorici 1 Argomenti: consolidamento della teoria, ragionamento astratto Difficoltà: Prerequisiti: definizione di campo 1. (Questo esercizio serve per familiarizzare

Dettagli

INSIEMI DI NUMERI COMPLESSI E LORO RAPPRESENTAZIONE SUL PIANO COMPLESSO. di Francesco Camia

INSIEMI DI NUMERI COMPLESSI E LORO RAPPRESENTAZIONE SUL PIANO COMPLESSO. di Francesco Camia INSIEMI DI NUMERI COMPLESSI E LORO RAPPRESENTAZIONE SUL PIANO COMPLESSO di Francesco Camia 1)Rappresentare nel piano complesso gli insiemi: A = { 2, 3 }, B = { : =+1+2, }. Siccome nel piano complesso e

Dettagli

- Fondamenti di calcolo vettoriale - VETTORI

- Fondamenti di calcolo vettoriale - VETTORI VETTORI Definizione: Il vettore è un segmento orientato ovvero un segmento su cui è fissato un verso di percorrenza. Graficamente il verso del vettore è rappresentato da una freccia. A A A Segmento orientato

Dettagli

Istituzioni di Matematiche II Recupero seconda prova intermedia (6 giugno 2003)

Istituzioni di Matematiche II Recupero seconda prova intermedia (6 giugno 2003) Istituzioni di Matematiche II Recupero seconda prova intermedia (6 giugno 2003) Nome Cognome 1. Considerando gli oggetti in figura, costruire: (a) il poligono ottenuto dal poligono A per riflessione rispetto

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli