Corso di Matematica Generale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Matematica Generale"

Transcript

1 Corso di Matematica Generale Università degli Studi della Basilicata Dipartimento di Matematica, Informatica ed Economia Corso di Laurea in Economia Aziendale A.A. 2015/16 dott.ssa Vita Leonessa Funzioni elementari: funzione potenza 20 ottobre 2015

2 Potenze con esponente naturale Sia n N, n 0. Si definisce potenza n-esima di un numero reale a la seguente espressione: a n = a... a }{{} n volte Per convenzione si pone a 1 = a. Inoltre se n = 0 si definisce a 0 = 1, a R, a 0. (L espressione 0 0 non ha significato!) Esempi: = = 64 ( ) = = ( 3) 2 = ( 3) ( 3) = 9 4 ( π) 0 = 1

3 Potenze con esponente intero negativo Sia n N. Si definisce ( ) 1 n a n = = 1, a R, a 0. a an Esempi: = = 1 64 ( ) ( ) = = 2 2 = ( 3) 2 = 4 ( ) 5 2 = ( 1 3 ( ) ) 2 = 1 9

4 Potenze con esponente intero Proprietà algebriche fondamentali Per ogni n, m Z e per ogni a R si ha a n a m = a n+m (a n ) m = a nm Esempi: = = (5 3 ) 4 = = = = (π 2 ) 3 = π 2 ( 3) = π 6 = 1 π 6

5 Potenze con esponente intero Corollario Per ogni n, m Z e per ogni a R si ha Esempi: = 32 7 = 3 5 = = 52 = 25 a n : a m = an a m = an m.

6 Potenze con esponente intero Ulteriori proprietà Per ogni n Z si ha (ab) n = a n b n, a, b R (con ab 0 qualora n = 0) ( a ) n a n =, a, b R, b 0 b bn Queste regole si possono estendere al caso di più di due potenze. Esempio: (abcdef) n = a n b n c n d n e n f n ATTENZIONE (a + b) n a n + b n Esempio: (2 + 5) 2 = 7 2 = 49, ma = = 29.

7 Potenze con esponente intero Applicazione: interesse composto Supponiamo di depositare 1000 euro su un conto bancario che paga un interesse al tasso dell 5%. Dopo un anno avremo guadagnato interessi per 50 euro, avendo il saldo del conto corrente pari a 1050 euro. Tale saldo può essere calcolato nel modo seguente: = 1000 ( ) = , 05. Supponiamo che questo nuovo importo , 05 euro venga lasciato in deposito per un altro anno al tasso di interesse sempre del 5%. Alla fine del secondo anno il saldo del conto corrente sarà: , , = , 05 ( ) = 1000 (1, 05) 2. Se ogni anno il saldo cresce in base al fattore 1, 05, dopo t anni esso sarà pari a 1000 (1, 05) t euro.

8 Potenze con esponente intero Applicazione: interesse composto Generalizzando... C capitale i tasso annuo di interesse t numero di anni allora otteniamo il seguente principio generale: Una quantità C che cresce del i% all anno varrà, dopo t anni C ( 1 + i ) t i 100 i%. è detto fattore di crescita per un tasso di crescita del

9 Potenze con esponente intero Applicazione: interesse composto Una quantità C che decresce del i% all anno varrà, dopo t anni C ( 1 i ) t i è detto fattore di decrescita per un tasso di decrescita 100 del i%.

10 Potenze con esponente razionale Siano m Z, n N \ {0} e sia a 0. Si definisce a m/n = ( n a) m. Valgono ancora le proprietà algebriche fondamentali. Esempi: 1 a 1/2 = a radice quadrata di a che gode delle seguenti proprietà: ab = a b (a, b 0) a b = a b (a 0, b > 0) ATTENZIONE a + b a + b 2 a 1/n = n a radice n-esima di a Osserviamo che a 1/n avrebbe senso anche se a < 0, purché n sia un numero dispari.

11 Potenze con esponente razionale Esempi: 1 4 7/2 = (4 7 ) 1/2 = /2 = 128 oppure 4 7/2 = (4 1/2 ) 7 = 2 7 = ( 8) 1/3 = 3 8 = 2 perché ( 2) 3 = 8 3 (5 2 ) 3/2 = 5 3 = = 22 (1 + 2) 2 3 = = 3/2

12 Potenze con esponente reale La potenza x r con r R e x > 0 si calcola approssimando in modi via via più accurati l esponente. Calcoliamo per esempio 5 π. Sapendo che π è vicino a 3.1, 5 π sarà circa = 5 31/10 = Un approssimazione migliore è data da 5 π = 5 314/100 = 5 157/

13 Esponente naturale Sia n N, n 0. La funzione potenza con esponente n è definita ponendo f(x) = x n, x R.

14 n pari: proprietà f(0) = 0 f : x R x n [0, + ) }{{} f(x) 0 (f positiva) f( x) = ( x) n = ( 1) n x n = x n = f(x) = f è pari Siano x 1, x 2 R. Si ha (si dimostra per induzione) 0 x 1 < x 2 = 0 x n 1 < x n 2 e quindi f(x 1 ) < f(x 2 ) = f è strettamente crescente in [0, + ). Visto che la f è pari, f è strettamente decrescente in (, 0].

15 n pari: grafico x 2

16 n pari: grafico x 2, x 4

17 n pari: grafico x 2, x 4, x 6

18 n pari: funzione inversa f(x) = x n è strettamente monotona in [0, + ) = f è invertibile in tale insieme.si può pertanto definire la funzione inversa di f(x) = x n (x 0) detta funzione radice n-sima, in simboli f 1 : [0, + ) [0, + ), come segue x f 1 (x) = n x = x 1/n x 0.

19 n pari: funzione inversa f(x) = x n è strettamente monotona in [0, + ) = f è invertibile in tale insieme. Si può pertanto definire la funzione inversa di f(x) = x n (x 0) detta radice n-sima, in simboli f 1 : [0, + ) [0, + ), come segue x, 4 x f 1 (x) = n x = x 1/n x 0.

20 n pari: funzione inversa f(x) = x n è strettamente monotona in [0, + ) = f è invertibile in tale insieme. Si può pertanto definire la funzione inversa di f(x) = x n (x 0) detta funzione radice n-sima, in simboli f 1 : [0, + ) [0, + ), come segue x, 4 x, 6 x f 1 (x) = n x = x 1/n x 0.

21 n dispari: proprietà f : x R x n R f(x) > 0 per x > 0; f(x) < 0 per x < 0 f(0) = 0 f( x) = ( x) n = ( 1) n x n = x n = f(x) = f è dispari Siano x 1, x 2 R. Si è già visto che se 0 x 1 < x 2, allora 0 x n 1 < xn 2 f(x 1) < f(x 2 ) = f è strettamente crescente in [0, + ). Visto che la f è dispari, f è strettamente crescente anche in (, 0], per cui f è strettamente crescente in tutto R.

22 n dispari: grafico x

23 n dispari: grafico x, x 3

24 n dispari: grafico x, x 3, x 5

25 n dispari: funzione inversa f(x) = x n è strettamente monotona in tutto R, da cui si deduce che f è invertibile in tutto R.Si può pertanto definire la funzione inversa di f(x) = x n (x R) detta funzione radice n-sima con n dispari e si indica con 3 x f 1 (x) = n x = x 1/n x R.

26 n dispari: funzione inversa f(x) = x n è strettamente monotona in tutto R, da cui si deduce che f è invertibile in tutto R. Si può pertanto definire la funzione inversa di f(x) = x n (x R) detta funzione radice n-sima con n dispari e si indica con 3 x, 5 x f 1 (x) = n x = x 1/n x R.

27 Esponente reale Si definisce funzione potenza con esponente reale oppure la funzione f : (0, + ) R (se r 0) definita come f(x) = x r per ogni x > 0 la funzione f : [0, + ) R (se r > 0) definita ponendo f(x) = x r per ogni x > 0 e f(0) = 0. Valgono ancora le proprietà algebriche fondamentali. Non ha senso 0 0!

28 Esponente reale: grafici Si ottengono grafici con il seguente andamento quando r > 1

29 Esponente reale: grafici Si ottengono grafici con il seguente andamento quando r > 1, 0 < r < 1

30 Esponente reale: grafici Si ottengono grafici con il seguente andamento quando r > 1, 0 < r < 1, r < 0

31 Esponente razionale: applicazioni 1 S 4, 84V 2/3 area approssimata S della superficie di una sfera come funzione del suo volume V. 2 Il flusso di sangue (in litri al secondo) attraverso il cuore di un individuo dal peso x è approssimativamente proporzionale a x Se Y prodotto interno netto K stock di capitale L lavoro t tempo la formula Y = 2, 262K 0,203 L 0,763 (1, 02) t appare in uno studio sulla crescita del prodotto interno.

32 Esercizi svolti a lezione Determinare il dominio, eventuali simmetrie, intersezione con gli assi e lo studio del segno delle seguenti funzioni: 1 f(x) = x 1 2 f(x) = 3 x(x 2 + 1) x 3 f(x) = x x 1 f(x) = x 2 2x 3

Capitolo 5. Funzioni. Grafici.

Capitolo 5. Funzioni. Grafici. Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali

+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali Funzioni reali di variabile reale Una reale di variabile reale è una funzione nella quale il dominio d è un sottoinsieme di r e il condominio c è anch esso un sottoinsieme di r. F:r r Definizione classica.

Dettagli

Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A. 2010-2011 - Analisi Matematica - Le funzioni elementari - p.

Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A. 2010-2011 - Analisi Matematica - Le funzioni elementari - p. Le funzioni elementari Corsi di Laurea in Tecniche di Radiologia... A.A. 200-20 - Analisi Matematica - Le funzioni elementari - p. /43 Funzioni lineari e affini Potenze ad esponente naturale Confronto

Dettagli

Le funzioni elementari. La struttura di R. Sottrazione e divisione

Le funzioni elementari. La struttura di R. Sottrazione e divisione Le funzioni elementari La struttura di R La struttura di R è definita dalle operazioni Addizione e moltiplicazione. Proprietà: Commutativa Associativa Distributiva dell addizione rispetto alla moltiplicazione

Dettagli

Funzione Composta. Date due funzioni g : A B e f : B C si può definire la funzione composta: notazione funzionale y = f (g(x))

Funzione Composta. Date due funzioni g : A B e f : B C si può definire la funzione composta: notazione funzionale y = f (g(x)) Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f (g()) notazione funzionale = f (g()) La composizione ha senso se il valore g() appartiene al

Dettagli

Corso di Analisi Matematica. Funzioni continue

Corso di Analisi Matematica. Funzioni continue a.a. 203/204 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni continue Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

Anno 5 4 Funzioni reali. elementari

Anno 5 4 Funzioni reali. elementari Anno 5 4 Funzioni reali elementari 1 Introduzione In questa lezione studieremo alcune funzioni molto comuni, dette per questo funzioni elementari. Al termine di questa lezione sarai in grado di definire

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

TEMATICA 1 - FUNZIONI ED EQUAZIONI

TEMATICA 1 - FUNZIONI ED EQUAZIONI Docente Materia Classe Cristina Frescura Matematica 4B Programmazione Preventiva Anno Scolastico 2012-2013 Data 28 novembre 2012 Obiettivi Cognitivi Nota bene: gli obiettivi minimi sono sottolineati U.D.

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Anno 5 Funzioni reali: proprietà

Anno 5 Funzioni reali: proprietà Anno 5 Funzioni reali: proprietà 1 Introduzione In questa lezione impareremo a riconoscere le proprietà delle funzioni reali. Al termine di questa lezione sarai in grado di definire i concetti di: funzione

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

CLASSE terza SEZIONE E A.S. 2014-15 PROGRAMMA SVOLTO

CLASSE terza SEZIONE E A.S. 2014-15 PROGRAMMA SVOLTO CLASSE terza SEZIONE E A.S. 2014-15 L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo grado.. IL PIANO CARTESIANO Il piano cartesiano.

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elementi di matematica finanziaria 1. Percentuale Si dice percentuale di una somma di denaro o di un altra grandezza, una parte di questa, calcolata in base ad un tanto per cento, che si chiama tasso percentuale.

Dettagli

Università degli Studi di Trento Facoltà di Scienze Cognitive. Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata

Università degli Studi di Trento Facoltà di Scienze Cognitive. Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Università degli Studi di Trento Facoltà di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Commenti alle lezioni del CORSO DI ANALISI MATEMATICA a.a. 2005/2006

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

Studio di una funzione. Schema esemplificativo

Studio di una funzione. Schema esemplificativo Studio di una funzione Schema esemplificativo Generalità Studiare una funzione significa determinarne le proprietà ovvero Il dominio. Il segno. Gli intervalli in cui cresce o decresce. Minimi e massimi

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 1 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Syllabus: argomenti di Matematica delle prove di valutazione

Syllabus: argomenti di Matematica delle prove di valutazione Syllabus: argomenti di Matematica delle prove di valutazione abcdef... ABC (senza calcolatrici, senza palmari, senza telefonini... ) Gli Argomenti A. Numeri frazioni e numeri decimali massimo comun divisore,

Dettagli

Piano di lavoro di Matematica

Piano di lavoro di Matematica ISTITUTO DI ISTRUZIONE SUPERIORE Liceo Scientifico ALDO MORO Istituto to Tecnico Via Gallo Pecca n. 4/6-10086 Rivarolo Canavese Tel 0124 454511 - Fax 0124 454545 - Cod. Fiscale 85502120018 E-mail: segreteria@istitutomoro.it

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

FUNZIONI ESPONENZIALE E LOGARITMICA

FUNZIONI ESPONENZIALE E LOGARITMICA FUNZIONI ESPONENZIALE E LOGARITMICA Le potenze con esponente reale La potenza a x di un numero reale a è definita se a>0 per ogni x R se a=0 per tutti e soli i numeri reali positivi ( x R + ) se a

Dettagli

2 FUNZIONI REALI DI VARIABILE REALE

2 FUNZIONI REALI DI VARIABILE REALE 2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento

Dettagli

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015. CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015. CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2014/2015 CLASSE III SEZ. Ae INDIRIZZO LICEO ECONOMICO PROGRAMMA DI FISICA PROFESSORESSA: REGALBUTO PAOLA LE GRANDEZZE: LE GRANDEZZE FONDAMENTALI E DERIVATE,

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni +2 CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio

Dettagli

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3

modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3 livello A1 modulo A1.1 modulo A1.2 matematica livello A2 modulo A2.1 modulo A2.2 livello A insiemi e appartenenza interpretazione grafica nel piano traslazioni proprietà commutatività associatività elemento

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

MATEMATICA GENERALE Corsi di laurea EA, ELI, EMIF PROVA INTERMEDIA del 4 novembre 2010 Cognome Nome.................................................... Matricola.......................... Anno di Corso..........................................

Dettagli

Funzioni trascendenti

Funzioni trascendenti Funzioni trascendenti Lucia Perissinotto I.T.I.S. V.Volterra San Donà di Piave Beatrice Hitthaler I.T.I.S. V.Volterra San Donà di Piave 17 novembre 007 Sommario Esponiamo la teoria fondamentale delle funzioni

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE ANALISI DI SITUAZIONE - LIVELLO COGNITIVO DEFINIZIONE DEGLI OBIETTIVI COMPORTAMENTALI

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE ANALISI DI SITUAZIONE - LIVELLO COGNITIVO DEFINIZIONE DEGLI OBIETTIVI COMPORTAMENTALI SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE Disciplina: Matematica e Complementi di Matematica Classe: 4 AI A.S. 2015/16 Docente: Carollo Maristella ANALISI DI SITUAZIONE - LIVELLO COGNITIVO

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

4. Funzioni elementari

4. Funzioni elementari ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari A. A. 2014-2015 L.Doretti 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale Università degli Studi di Catania A.A. 2012-2013 Corso di laurea in Ingegneria Industriale Corso di Analisi Matematica I (A-E) (Prof. A.Villani) Elenco delle dimostrazioni che possono essere richieste

Dettagli

Programma di Matematica

Programma di Matematica Programma di Matematica Modulo 1. Topologia in R 2. Funzioni in R 3. Limite e continuità di una funzione Unità didattiche Struttura algebrica di R Insiemi reali limitati e illimitati Intorno di un punto

Dettagli

FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO. Si chiama funzione lineare (o funzione affine) una funzione del tipo = +

FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO. Si chiama funzione lineare (o funzione affine) una funzione del tipo = + FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO Si chiama funzione lineare (o funzione affine) una funzione del tipo = + dove m e q sono numeri reali fissati. Il grafico di tale funzione è una retta, di cui

Dettagli

21. Studio del grafico di una funzione: esercizi

21. Studio del grafico di una funzione: esercizi 1. Studio del grafico di una funzione: esercizi Esercizio 1.6. Studiare ciascuna delle seguenti funzioni in base allo schema di pagina 194, eseguendo anche il computo della derivata seconda e lo studio

Dettagli

I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione

I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione Lezioni del 29 settembre e 1 ottobre. 1. Funzioni iniettive, suriettive, biiettive. Sia f : A B una funzione da un insieme A ad un insieme B. Sia a A e sia b = f (a) B l elemento che f associa ad a, allora

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 12 febbraio 2013

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 12 febbraio 2013 Tempo massimo 2 ore. Consegnare solamente la bella copia. Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 212/213 12 febbraio 213 1. Disegnare il grafico della funzione: [1

Dettagli

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando i

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è. A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2.

Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è. A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2. 1 Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2. Esercizio 2. Sia f(x) = sin(log x ). Questa funzione è Esercizio 3.

Dettagli

Quesiti di Analisi Matematica A

Quesiti di Analisi Matematica A Quesiti di Analisi Matematica A Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Analisi Matematica A. Per una buona preparazione é consigliabile rispondere ad alta

Dettagli

Capitolo 2: funzioni reali di una variabile reale e applicazioni FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI

Capitolo 2: funzioni reali di una variabile reale e applicazioni FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI Capitolo : funzioni reali di una variabile reale e applicazioni CAPITOLO FUNZIONI REALI DI UNA VARIABILE REALE E APPLICAZIONI Sono le funzioni aventi come dominio e codominio dei sottoinsiemi dei numeri

Dettagli

Problemi al contorno per equazioni e sistemi di equazioni ellittiche, paraboliche ed iperboliche in domini a frontiera non regolare.

Problemi al contorno per equazioni e sistemi di equazioni ellittiche, paraboliche ed iperboliche in domini a frontiera non regolare. Prof.ssa Diomeda Lorenza Maria Professore Ordinario Dipartimento di Scienze Economiche Area Matematica Facoltà di Economia, Via C.Rosalba 53- Bari Tel. 080-5049169 Fax 080-5049207 E-mail diomeda@matfin.uniba.it

Dettagli

UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida. 4 x

UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida. 4 x UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida Con questa guida si vuol proporre un esempio di studio di funzione con Derive. La versione che ho utilizzato per questo studio è la 6.0. Consideriamo

Dettagli

In base alla definizione di limite, la definizione di continuità può essere data come segue:

In base alla definizione di limite, la definizione di continuità può essere data come segue: Def. Sia f una funzione a valori reali definita in un intervallo I (itato o ilitato) e sia un punto interno all intervallo I. Si dice che f è continua nel punto se: ( )= ( ) Una funzione f è continua in

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2014/2015

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2014/2015 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2014/2015 CLASSE 4^ B SETTORE TECNOLOGICO: Costruzioni, Ambiente e Territorio Disciplina: Matematica Testi in uso: Nuova Matematica a Colori-3

Dettagli

Funzioni. Parte prima. Daniele Serra

Funzioni. Parte prima. Daniele Serra Funzioni Parte prima Daniele Serra Nota: questi appunti non sostituiscono in alcun modo le lezioni del prof. Favilli, né alcun libro di testo. Sono piuttosto da intendersi a integrazione di entrambi. 1

Dettagli

G1. Generalità sulle funzioni

G1. Generalità sulle funzioni G. Generalità sulle funzioni G. Notazioni utilizzate Dati due numeri detti estremi dell intervallo, l intervallo è l insieme dei numeri reali compresi tra essi. Per esempio con la notazione

Dettagli

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ;

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; 1. Un triangolo ha area 3 e due lati che misurano 2 e 3. Qual è la misura del terzo lato? : L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; nel nostro

Dettagli

4. Funzioni elementari algebriche

4. Funzioni elementari algebriche ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari algebriche A. A. 2013-2014 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

Prof. Gabriele Vezzosi... Settore Inquadramento MAT03...

Prof. Gabriele Vezzosi... Settore Inquadramento MAT03... UNIVERSITÀ DEGLI STUDI Registro dell insegnamento Anno Accademico 2014/2015 Facoltà Ingegneria....................................... Insegnamento Matematica................................ Settore Mat03............................................

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

FUNZIONI ELEMENTARI Esercizi risolti

FUNZIONI ELEMENTARI Esercizi risolti FUNZIONI ELEMENTARI Esercizi risolti 1 Discutendo graficamente la disequazione x > 3+x, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi Rappresentare nel piano x, y) l insieme

Dettagli

Registro dell'insegnamento

Registro dell'insegnamento Registro dell'insegnamento Anno accademico 2015/2016 Prof. MATTEO FOCARDI Settore inquadramento MAT/05 - ANALISI MATEMATICA REGISTRO Scuola Scienze della Salute Umana NON CHIUSO Dipartimento Matematica

Dettagli

Esercizi sullo studio completo di una funzione

Esercizi sullo studio completo di una funzione Esercizi sullo studio completo di una funzione. Disegnare il grafico delle funzioni date, utilizzando ogni informazione utile che si può ricavare dalla funzione e dalle sue derivate prima e seconda. a.

Dettagli

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che:

Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che: MATEMATICA 2005 Se log a b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b L espressione y = log b x significa che: A) y é l esponente di una potenza di base b e di valore x B) x è l

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Definizione: Si chiama successione numerica una funzione definita su IN a valori in IR, cioè una legge che associa ad ogni intero n un numero reale a n. Per abuso di linguaggio, si

Dettagli

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego

CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12. Disciplina : MATEMATICA. Docente Prof.ssa Paola Perego CONVITTO NAZIONALE MARIA LUIGIA di Parma CLASSE 4B LICEO SCIENTIFICO PROGRAMMA SVOLTO A.S. 2011-12 Disciplina : MATEMATICA Docente Prof.ssa Paola Perego COMPETENZE CONOSCENZE Funzione esponenziale e logaritmica

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I Andrea Corli e Alessia Ascanelli gennaio 9 Indice Introduzione iii Nozioni preliminari. Fattoriali e binomiali..................................... Progressioni..........................................

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

PROGRAMMA DI MATEMATICA

PROGRAMMA DI MATEMATICA PROGRAMMA DI MATEMATICA A.S. 2014-2015 CLASSE IV SEZ. B INDIRIZZO SIA PROF. Orlando Rocco Carmelo ODULO MODULO ORD. ARGOMENT O 1 SEZ 1 FUNZIONI E LIMITIDI FUNZIONI ARGOMENTO 1 TOMO E SEZ 1 FUNZIONI E LIMITIDI

Dettagli

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio ITCS Erasmo da Rotterdam Anno Scolastico 014/015 CLASSE 4^ M Costruzioni, ambiente e territorio INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA e COMPLEMENTI di MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO

Dettagli

Elenco moduli Argomenti Strumenti / Testi Letture. Tassi equivalenti. Rendite temporanee e perpetue. Rimborso di prestiti.

Elenco moduli Argomenti Strumenti / Testi Letture. Tassi equivalenti. Rendite temporanee e perpetue. Rimborso di prestiti. Pagina 1 di 9 DISCIPLINA: MATEMATICA APPLICATA INDIRIZZO: SISTEMI INFORMATIVI AZIENDALI CLASSE: 4 SI DOCENTE : ENRICA GUIDETTI Elenco moduli Argomenti Strumenti / Testi Letture 1 Ripasso Retta e coniche;

Dettagli

I.P.S.S. Severini a.s. 2015-16 Curriculum Verticale MATEMATICA

I.P.S.S. Severini a.s. 2015-16 Curriculum Verticale MATEMATICA Curriculum Verticale MATEMATICA I Docenti di Matematica dell IPSS concordano, per l a.s. 2015/16, i seguenti punti: numero minimo di verifiche annue (riferite ad una frequenza regolare): 6, di varia tipologia

Dettagli

Cos è una funzione? (x,y) Є f o y=f(x)

Cos è una funzione? (x,y) Є f o y=f(x) Cos è una funzione? Dati gli insiemi X e Y non vuoti, si chiama funzione da in una relazione f tale che per ogni x Є X esiste uno ed un solo elemento y Є Y tale che (x,y) Є f. Data la funzione f:x->r,

Dettagli

Indirizzo odontotecnico a.s. 2015/2016

Indirizzo odontotecnico a.s. 2015/2016 I.P.S.I.A E. DE AMICIS - ROMA PROGRAMMAZIONE DIDATTICA DI MATEMATICA Classe 5C Indirizzo odontotecnico a.s. 2015/2016 Prof. Rossano Rossi La programmazione è stata sviluppata seguendo le linee guida ministeriali

Dettagli

PROGETTAZIONE DISCIPLINARE MATEMATICA classe 2^

PROGETTAZIONE DISCIPLINARE MATEMATICA classe 2^ PROGETTAZIONE DISCIPLINARE MATEMATICA classe 2^ PER RICONOSCERE, RAPPRESENTARE E RISOLVERE PROBLEMI I. Q. II. Q. CONTENUTI / ATTIVITA 1 bim. 2 bim. 3 bim. 4 bim. 1a) Individuazione di situazioni problematiche

Dettagli

Università degli Studi di Pavia Facoltà di Medicina e Chirurgia

Università degli Studi di Pavia Facoltà di Medicina e Chirurgia Università degli Studi di Pavia Facoltà di Medicina e Chirurgia CORSO DI LAUREA TRIENNALE CLASSE DELLLE LAUREE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE CLASSE 2 Corso Integrato di Fisica, Statistica,

Dettagli

Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica

Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica Nome... N. Matricola... Ancona, 29 marzo 2014 1. (7 punti) Studiare la funzione determinandone: f(x) = e x x il dominio;

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Prova di recupero di economia aziendale per la classe 2ª ITE

Prova di recupero di economia aziendale per la classe 2ª ITE Prova di recupero di economia aziendale per la classe 2ª ITE di Lidia Sorrentino 1. Segna con una crocetta la risposta corretta (alcuni questi possono avere più risposte esatte). 1. L interesse è il compenso

Dettagli

COGNOME... NOME... Classe... Data... 1.a Calcolare le seguenti espressioni: 3. 220 245

COGNOME... NOME... Classe... Data... 1.a Calcolare le seguenti espressioni: 3. 220 245 Capitolo I radicali Risoluzione algebrica erifica per la classe seconda Espressioni numeriche Equazioni lineari Esistenza Operazioni Espressioni letterali.a Calcolare le seguenti espressioni:. 5. 8 3.

Dettagli

UNIVERSITÀ DI BOLOGNA - SCUOLA DI MEDICINA e CHIRURGIA - CAMPUS DI RIMINI. SETTIMANA DAL 29 Febbraio AL 4 MARZO

UNIVERSITÀ DI BOLOGNA - SCUOLA DI MEDICINA e CHIRURGIA - CAMPUS DI RIMINI. SETTIMANA DAL 29 Febbraio AL 4 MARZO SETTIMANA DAL 29 Febbraio AL 4 MARZO Ora Lunedì 29/02/2016 Martedì 1/03/2016 Mercoledì 2/03/16 Giovedì 3/03/16 Venerdì 4/03/16 Prof N. C. Rossi SETTIMANA DAL 7 AL 11 MARZO Prof N. C. Rossi Ora Lunedì 7/3/16

Dettagli

Corso di Laurea in Ingegneria Informatica Analisi Numerica

Corso di Laurea in Ingegneria Informatica Analisi Numerica Corso di Laurea in Ingegneria Informatica Lucio Demeio Dipartimento di Scienze Matematiche 1 2 Analisi degli errori Informazioni generali Libro di testo: J. D. Faires, R. Burden, Numerical Analysis, Brooks/Cole,

Dettagli

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una

Dettagli

Una ricetta per il calcolo dell asintoto obliquo. Se f(x) è asintotica a mx+q allora abbiamo f(x) mx q = o(1), da cui (dividendo per x) + o(1), m =

Una ricetta per il calcolo dell asintoto obliquo. Se f(x) è asintotica a mx+q allora abbiamo f(x) mx q = o(1), da cui (dividendo per x) + o(1), m = Una ricetta per il calcolo dell asintoto obliquo Se f() è asintotica a m+q allora abbiamo f() m q = o(1), da cui (dividendo per ) m = f() q + 1 f() o(1) = + o(1), mentre q = f() m = o(1). Dunque si ha

Dettagli

SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI

SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI.Definizioni e insieme di definizione. Una funzione o applicazione f è una legge che ad ogni elemento di un insieme D ( dominio )fa corrispondere un

Dettagli

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme:

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: Lezione 1 Gli Insiemi La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: degli iscritti ad un corso di laurea delle stelle in cielo dei punti di un piano

Dettagli

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari Capitolo 6 Funzioni 6. Concetto di funzione e definizioni preliminari Definizione 6. Dati due insiemi non vuoti D e C, si dice applicazione o funzione una qualsiasi legge (relazione) che associa ad ogni

Dettagli

Lezione 6 (16/10/2014)

Lezione 6 (16/10/2014) Lezione 6 (16/10/2014) Esercizi svolti a lezione Esercizio 1. La funzione f : R R data da f(x) = 10x 5 x è crescente? Perché? Soluzione Se f fosse crescente avrebbe derivata prima (strettamente) positiva.

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenziali e logaritmi Corso di accompagnamento in matematica Lezione 4 Sommario 1 La funzione esponenziale Proprietà Grafico 2 La funzione logaritmo Grafico Proprietà 3 Equazioni / disequazioni esponenziali

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Facoltà di Economia. Anno Accademico 2009-2010 - Programma del Corso. Matematica Generale (PROGRAMMA EFFETTIVAMENTE SVOLTO)

Facoltà di Economia. Anno Accademico 2009-2010 - Programma del Corso. Matematica Generale (PROGRAMMA EFFETTIVAMENTE SVOLTO) Insegnamento Docente Corso di Laurea CFU 8 Lingua di Insegnamento Italiano Semestre di svolgimento Primo Tipologia Fondamentale SSD SECS-S/06 Codice di Ateneo Anno di Corso Primo Matematica Generale (PROGRAMMA

Dettagli

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : ' = y y' = Consideriamo il punto P(,5) se eseguiamo tra trasformazione

Dettagli

RDefinizione (Funzione) . y. . x CAPITOLO 2

RDefinizione (Funzione) . y. . x CAPITOLO 2 CAPITOLO 2 Funzioni reali di variabile reale Nel capitolo precedente è stata introdotta la nozione generale di funzione f : A B, con A e B insiemi arbitrari. Nel presente capitolo si analizzeranno più

Dettagli

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche.

sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. sezioni incluso Espandi tutto 0. Elementi di matematica elementare (parzialmente incluso) Sezione 0.1: I numeri reali Sezione 0.2: Regole algebriche. Potenze e percentuali Sezione 0.3: Disuguaglianze Sezione

Dettagli

Guida pratica per la prova scritta di matematica della maturità scientifica

Guida pratica per la prova scritta di matematica della maturità scientifica Giulio Donato Broccoli Guida pratica per la prova scritta di matematica della maturità scientifica Comprende: Metodi matematici fondamentali per affrontare i temi assegnati Esercizi interamente svolti

Dettagli

Esame di Matematica Discreta Laurea Triennale in Informatica e Comunicazione Digitale Sede di Taranto 28/9/2005

Esame di Matematica Discreta Laurea Triennale in Informatica e Comunicazione Digitale Sede di Taranto 28/9/2005 Sede di Taranto 28/9/2005 1. Dati gli insiemi A = {1, 2, 3, 4, 5} e B = {a, b, c}, determinare tutte le applicazioni surgettive f : A B tali che f(2) = f(3) = a f(x) a per x {2, 3}. 2. Risolvere il sistema

Dettagli