Controlli Automatici - Parte A

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Controlli Automatici - Parte A"

Transcript

1 Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 17 luglio 18 - Quiz Per ciascuno dei seguenti quesiti (si considerino solo le domande numerate normalmente o che recano il nome del docente con cui si è seguito il corso), segnare con una crocetta le risposte che si ritengono corrette. Alcuni quesiti possono avere più risposte corrette. I quiz si ritengono superati se vengono individuate almeno metà delle risposte esatte (punti 5.5 su 11), diversamente il compito verrà ritenuto insufficiente a prescindere dal risultato della seconda prova. 1. Quali dei seguenti sistemi sono asintoticamente stabili? s+ G(s) = s(s+3)(s+1) s+ G(s) = (s+1) (s+3) s G(s) = (3s+1)(s+4) s+ G(s) = (3s+1)(s +4). La funzione di trasferimento G(s) = Y(s) X(s) = s +s+3 5s 3 +s corrisponde all equazione differenziale: +3s 3ẋ(t)+ẍ(t)+5... x(t) = 3y(t)+ẏ(t)+ÿ(t) 3y(t)+ẏ(t)+5ÿ(t) = 3x(t)+ẋ(t)+ẍ(t) 3ẏ(t)+ÿ(t)+5... y(t) = 3x(t)+ẋ(t)+ẍ(t) nessuna delle precedenti 3. I due poli di un sistema del secondo ordine sono univocamente determinati se vengono assegnate le seguenti specifiche coefficiente di smorzamento δ e tempo di assestamento T a massima sovraelongazione S e picco di risonanza M R tempo di assestamento T a e picco di risonanza M R 4. La derivata iniziale della risposta al gradino unitario del sistema G(s) = s+3 s +9s 1 1/3 5. Dato il sistema G(s) = risulta (s+3) s (s +4s+5) errore a regime nullo per ingresso a gradino errore a regime nullo per ingresso a rampa errore a regime nullo per ingresso a parabola errore a regime limitato ma non nullo per ingresso a rampa è pari a: posto in retroazione unitaria negativa (che si suppone stabile)

2 6. Per ω = 1/a il diagramma reale di Bode delle ampiezze della funzione G(jω) = 1 (1+j aω) (con a > ) vale 1 vale 1 vale 1/ vale 3 db 7. La funzione di risposta armonica F(ω) di un sistema lineare tempo-invariante determina univocamente la funzione di trasferimento G(s) del sistema è determinata univocamente dalla funzione di trasferimento G(s) del sistema non è definibile se il corrispondente sistema G(s) presenta degli zeri a parte reale positiva non è determinabile sperimentalmente se il corrispondente sistema G(s) presenta degli zeri a parte reale positiva 8. Applicando l ingresso u(t) = sin(t) al sistema ẏ(t)+y(t) = 4u(t) si ottiene la seguente uscita a regime: y(t) = 4 sin(t+45 o ) y(t) = 4 sin(t 45 o ) y(t) = sin(t+45 o ) y(t) = sin(t 45 o ) 9. Il metodo della Trasformata di Laplace nella risoluzione di equazioni differenziali lineari a parametri concentrati permette di calcolare la risposta libera del sistema permette di calcolare la risposta forzata del sistema può essere utilizzato solo nel caso di equazioni tempo invarianti può essere utilizzato anche nel caso di equazioni tempo varianti 1. Linearizzando il sistema ẋ 1 = x 1 +(sin (x 1 )+1)x +u ẋ = x y = x 1 +cos(x )u [ intorno al punto di equilibrio x =, ū = si ottiene un sistema Lineare Tempo-Invariante caratte- rizzato dalle matrici [ 1 A = 1 [ 1 A = 1 [ 1 A = 1 [ 1 A = 1, B =, B =, B =, B = [ [ [ [, C = [1, D = 1, C = [1, D =, C = [1 1, D = 1, C = [1 1, D =

3 Cognome: Nome: N. Matr.: Ho seguito il corso con Prof. Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 17 luglio 18 - Esercizi Rispondere in maniera analitica ai seguenti quesiti (gli studenti dovranno rispondere ai quesiti contrassegnati solo con lettere o col nome del docente di cui hanno seguito il corso più una lettera). I problemi e le domande a risposta aperta si ritengono superati se vengono conseguiti almeno metà dei punti totali (11 su ), diversamente il compito verrà ritenuto insufficiente a prescindere dal risultato della prima prova. a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x 1 (t) = ( 5+e 3t) cos(3t), x (t) = ( δ(t)+1+t 3 e t) Giarré - b) Dato il sistema definito nello spazio degli stati come { ẋ(t) = Ax(t)+Bu(t) y(t) = Cx(t)+Du(t) con A = [ [, B =, C = [.5, D = [ 1 b.1) Determinare la corrispondente funzione di trasferimento G(s) = Y(s) U(s) ; b.) Calcolare analiticamente la risposta all impulso di G(s). Biagiotti - b) Calcolare la risposta impulsiva g i (t) delle seguenti funzioni di trasferimento G i (s): PSfrag replacements c) Dato il seguente schema a blocchi: G 1 (s) = 9s +3s+4 s 3 +6s +8s, G (s) = s 1 (s+) (s+1) D X(s) A B C Y(s) G E F utilizzando la formula di Mason calcolare la funzione di trasferimento G(s) che lega l ingresso X(s) all uscita Y(s). 1(s+5)(s+.1) d) Sia data la funzione di trasferimento G(s) = (s +6s+49)(s+1)(1+1s) Disegnare l andamento qualitativo della risposta y(t) a un gradino in ingresso di ampiezza 5, x(t) = 5. Calcolare il valore a regime y dell uscita y(t) del sistema, stimare qualitativamente il tempo di assestamento T a del sistema e il periodo T ω dell eventuale oscillazione smorzata.

4 e) Sia dato il seguente sistema retroazionato: d(t) r(t) e(t) K G(s) (s 3) s(s +13s+169) y(t) e.1) Determinare per quali valori del parametro K il sistema retroazionato è asintoticamente stabile. e.) Posto K = 1, calcolare l errore a regime e quando sul sistema retroazionato agiscono contemporaneamente il segnale di riferimento r(t) = 4+t e il disturbo d(t) = sin(t) e.3) Tracciare (nello schema fornito in allegato) i diagrammi asintotici di Bode delle ampiezze e delle fasi della funzione G(s). Biagiotti - e.4) Tracciare qualitativamente il luogo delle radici del sistema retroazionato valori negativi del parametro K. Determinare esattamente gli asintoti, il centro degli asintoti, le intersezioni con l asse immaginario e i corrispondenti valori del guadagno K. Giarré - e.4) Disegnare qualitativamente il diagramma di Nyquist della funzione di risposta armonica G(jω) per valori positivi della pulsazione. Calcolare esattamente la posizione σ di un eventuale asintoto, le eventuali intersezioni con l asse reale e i corrispondenti valori delle pulsazioni. f) Si faccia riferimento al diagrammi di Bode delle ampiezze e delle fasei della funzione G(s) mostrati in figura. 6 4 Modulo M [db PSfrag replacements X(s) Y(s) A B C D E F G Fase φ [gradi Pulsazione ω [rad/s f.1) Si richiede di ricavare l espressione analitica della funzione G(s). f.) La funzione G(s) può rappresentare un sistema fisico? Si chiede di rispondere motivando la risposta.

5 Cognome: Nome: N. Matr.: 4 Diagrammi di Bode Modulo M [db Fase φ [gradi Pulsazione ω [rad/s

6

7 Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 17 luglio 18 - Quiz Per ciascuno dei seguenti quesiti (si considerino solo le domande numerate normalmente o che recano il nome del docente con cui si è seguito il corso), segnare con una crocetta le risposte che si ritengono corrette. Alcuni quesiti possono avere più risposte corrette. I quiz si ritengono superati se vengono individuate almeno metà delle risposte esatte (punti 5.5 su 11), diversamente il compito verrà ritenuto insufficiente a prescindere dal risultato della seconda prova. 1. Quali dei seguenti sistemi sono asintoticamente stabili? s+ s G(s) = G(s) = s(s+3)(s+1) (3s+1)(s+4) s+ s+ G(s) = (s+1) G(s) = (s+3) (3s+1)(s +4). La funzione di trasferimento G(s) = Y(s) X(s) = s +s+3 5s 3 +s corrisponde all equazione differenziale: +3s 3ẋ(t)+ẍ(t)+5... x(t) = 3y(t)+ẏ(t)+ÿ(t) 3y(t)+ẏ(t)+5ÿ(t) = 3x(t)+ẋ(t)+ẍ(t) 3ẏ(t)+ÿ(t)+5... y(t) = 3x(t)+ẋ(t)+ẍ(t) nessuna delle precedenti 3. I due poli di un sistema del secondo ordine sono univocamente determinati se vengono assegnate le seguenti specifiche coefficiente di smorzamento δ e tempo di assestamento Ta massima sovraelongazione S e picco di risonanza M R tempo di assestamento Ta e picco di risonanza M R 4. La derivata iniziale della risposta al gradino unitario del sistema G(s) = s+3 s +9s 1 1/3 è pari a: (s+3) 5. Dato il sistema G(s) = s (s posto in retroazione unitaria negativa (che si suppone stabile) +4s+5) risulta errore a regime nullo per ingresso a gradino errore a regime nullo per ingresso a rampa errore a regime nullo per ingresso a parabola errore a regime limitato ma non nullo per ingresso a rampa

8 6. Per ω = 1/a il diagramma reale di Bode delle ampiezze della funzione G(jω) = 1 (1+j aω) (con a > ) vale 1 vale 1 vale 1/ vale 3 db 7. La funzione di risposta armonica F(ω) di un sistema lineare tempo-invariante determina univocamente la funzione di trasferimento G(s) del sistema è determinata univocamente dalla funzione di trasferimento G(s) del sistema non è definibile se il corrispondente sistema G(s) presenta degli zeri a parte reale positiva non è determinabile sperimentalmente se il corrispondente sistema G(s) presenta degli zeri a parte reale positiva 8. Applicando l ingresso u(t) = sin(t) al sistema ẏ(t)+y(t) = 4u(t) si ottiene la seguente uscita a regime: y(t) = 4 sin(t+45 o ) y(t) = 4 sin(t 45 o ) y(t) = sin(t+45 o ) y(t) = sin(t 45 o ) 9. Il metodo della Trasformata di Laplace nella risoluzione di equazioni differenziali lineari a parametri concentrati permette di calcolare la risposta libera del sistema permette di calcolare la risposta forzata del sistema può essere utilizzato solo nel caso di equazioni tempo invarianti può essere utilizzato anche nel caso di equazioni tempo varianti 1. Linearizzando il sistema ẋ 1 = x 1 +(sin (x 1 )+1)x +u ẋ = x y = x 1 +cos(x )u [ intorno al punto di equilibrio x =, ū = si ottiene un sistema Lineare Tempo-Invariante caratte- rizzato dalle matrici [ [ 1 A =, B = 1 [ [ 1 A =, B = 1 [ [ 1 A =, B = 1 [ [ 1 A =, B = 1, C = [1, D = 1, C = [1, D =, C = [1 1, D = 1, C = [1 1, D =

9 Cognome: Nome: N. Matr.: Ho seguito il corso con Prof. Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 17 luglio 18 - Esercizi Rispondere in maniera analitica ai seguenti quesiti (gli studenti dovranno rispondere ai quesiti contrassegnati solo con lettere o col nome del docente di cui hanno seguito il corso più una lettera). I problemi e le domande a risposta aperta si ritengono superati se vengono conseguiti almeno metà dei punti totali (11 su ), diversamente il compito verrà ritenuto insufficiente a prescindere dal risultato della prima prova. a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x 1 (t) = ( 5+e 3t) cos(3t), x (t) = ( δ(t)+1+t 3 e t) X 1 (s) = 5s s +9 + s+3 (s+3) +9, X (s) = + s + 1 (s+1) 4 Giarré - b) Dato il sistema definito nello spazio degli stati come { ẋ(t) = Ax(t)+Bu(t) y(t) = Cx(t)+Du(t) con A = [ [, B =, C = [.5, D = [ 1 b.1) Determinare la corrispondente funzione di trasferimento G(s) = Y(s) U(s) ; Calcolando G(s) = B(sI A) 1 C +D si ottiene G(s) = s +4s+5 s +4s+4 b.) Calcolare analiticamente la risposta all impulso di G(s). La risposta all impulso di G(s) ovvero la sua antitrasformata di Laplace puó essere ottenuta scomponendo G(s) come s G(s) = 1+ (s+) dove la costante 1 dipende dal fatto che la funzione di trasferimento G(s) ha grado relativo nullo. Pertanto, antitrasformando, risulta y(t) = 1δ(t)+e t te t. Biagiotti - b) Calcolare la risposta impulsiva g i (t) delle seguenti funzioni di trasferimento G i (s): G 1 (s) = 9s +3s+4 s 3 +6s +8s, G (s) = s 1 (s+) (s+1) La funzione G 1 (s) può essere riscritta come G 1 (s) = 1 s+ + 5 s s

10 pertanto la sua risposta impulsiva risulta La funzione G (s) può essere riscritta come di conseguenza la sua risposta impulsiva risulta PSfrag replacements c) Dato il seguente schema a blocchi: g 1 (t) = e t +5e 4t +3. G (s) = s+ + 3 (s+) s+1 g (t) = e t +3te t e t D X(s) A B C Y(s) G E F utilizzando la formula di Mason calcolare la funzione di trasferimento G(s) che lega l ingresso X(s) all uscita Y(s). G(s) = Y(s) X(s) = ABC +DC(1+BE) 1+BE +CF +ABC +BECF 1(s+5)(s+.1) d) Sia data la funzione di trasferimento G(s) = (s +6s+49)(s+1)(1+1s) Disegnare l andamento qualitativo della risposta y(t) a un gradino in ingresso di ampiezza 5, x(t) = 5. Calcolare il valore a regime y dell uscita y(t) del sistema, stimare qualitativamente il tempo di assestamento T a del sistema e il periodo T ω dell eventuale oscillazione smorzata. Il sistema ha un polo dominante reale p =.1 pertanto la risposta al gradino sarà di tipo aperiodico, come mostrato in figura.6 PSfrag replacements X(s) Y(s) A B C D E F G y(t) y T a t [s

11 Il valore a regime dell uscita per un gradino in ingresso di ampiezza A = risulta y = AG() = 5.1 =.51 Il tempo di assestamento T a è e il periodo dell oscillazione non esiste. T a = 3 p = 3 = 3 s,.1

12 e) Sia dato il seguente sistema retroazionato: d(t) r(t) e(t) K G(s) (s 3) s(s +13s+169) y(t) e.1) Determinare per quali valori del parametro K il sistema retroazionato è asintoticamente stabile. l equazione caratteristica del sistema retroazionato è (s 3) 1+K s(s +13s+169) = s3 +13s +(169+K)s 3K = La corrispondente tabella di Routh è la seguente K 13 3K K K > K K < Quindi il sistema retroazionato è asintoticamente stabile per: K = < K < La pulsazione ω corrispondente al valore limite K è: ω = 3K rad/s e.) Posto K = 1, calcolare l errore a regime e quando sul sistema retroazionato agiscono contemporaneamente il segnale di riferimento r(t) = 4+t e il disturbo d(t) = sin(t) Dato che il sistema è lineare e soggetto quindi alla sovrapposizione degli effetti, l errore E(s), espresso mediante la trasformata di Laplace, risulterà: E(s) = E r (s)+e d (s) dove E r (s) è l errore dovuto al riferimento mentre E d (s) è l errore dovuto al disturbo. L errore e r ( ) dovuto al riferimento costante sarà nullo, essendo il sistema considerato di tipo 1, mentre è necessario calcolare l errore di inseguimento del riferimento a rampa, che è dato da: e r = R K v = = dove R = è la pendenza della rampa e K v è dato da lim skg(s) = s Per quanto riguarda il calcolo dell errore dovuto al disturbo d(t): E d (s) = F d (s)d(s) dove D(s) è la trasformata di Laplace di d(t) e F d (s) è la funzione di trasferimento tra D(s) e E d (s) che vale F d (s) = G(s) 1+KG(s) = (s 3) s 3 +13s +69s+3. Essendo d(t) sinusoidale è possibile sfruttare il concetto di risposta armonica ottenendo e d (t) = F d (j) sin(t+arg{f d (j)}) con F d (j) =.19 e arg{f d (j)} = o = 5.14 rad. In conclusione, e = e r +e d = sin(t+5.14).

13 e.3) Tracciare (nello schema fornito in allegato) i diagrammi asintotici di Bode delle ampiezze e delle fasi della funzione G(s). Vedi figura in fondo. Biagiotti - e.4) Tracciare qualitativamente il luogo delle radici del sistema retroazionato valori negativi del parametro K. Determinare esattamente gli asintoti, il centro degli asintoti, le intersezioni con l asse immaginario e i corrispondenti valori del guadagno K. Essendo il grado relativo del sistema, esistono asintoti che formano una stella con centro nel punto sull asse reale di ascissa σ a = 1 ( 13 3) = 8 e che in questo caso appartengono all asse reale. Il luogo delle radici finale è riportato nella seguente figura. Root Locus 15 PSfrag replacements X(s) Y(s) A B C D E F G Imaginary Axis (seconds -1 ) σ a Real Axis (seconds -1 ) Dall analisi svolta mediante il criterio di Routh, risulta che il luogo delle radici attraversa l asse immaginario in corrispondenza di ±jω = ±j5.63 per K = K = Giarré - e.4) Disegnare qualitativamente il diagramma di Nyquist della funzione di risposta armonica G(jω) per valori positivi della pulsazione. Calcolare esattamente la posizione σ di un eventuale asintoto, le eventuali intersezioni con l asse reale e i corrispondenti valori delle pulsazioni. Il diagramma di Nyquist della funzione G(s) è riportato in figura.

14 .5.4 PSfrag replacements X(s) Y(s).3. A.1 B C D E F -.1 G -. σ Le funzioni approssimanti G (s) e G (s) per ω ed ω sono le seguenti: G (s) =.178, G (s) = 1 s s. Le corrispondenti fasi ϕ e ϕ hanno il seguente valore: ϕ = 3π = π, ϕ = π. Il diagramma parte all infinito con fase iniziale ϕ = π e giunge nell origine con fase finale ϕ = π. Il parametro τ vale τ = =.413< pertanto il diagramma parte in ritardo rispetto alla fase iniziale ϕ. Il sistema è di tipo 1 pertanto esiste un asintoto verticale la cui ascissa è Il parametro p vale σ =.178 τ =.73. p = 3+13 = 16 > pertanto il diagramma arriva in anticipo rispetto alla fase finale ϕ. Lo sfasamento complessivo è ϕ = 3 π. Dal diagramma risulta inoltre esistere un intersezione con l asse reale negativo, che in virtù dell analisi svolta con Routh al primo punto risulta essere pari a σ = 1 K = 1 ( 137.3) =.73. f) Si faccia riferimento al diagrammi di Bode delle ampiezze e delle fasei della funzione G(s) mostrati in figura.

15 6 4 Modulo M [db PSfrag replacements X(s) Y(s) Fase φ [gradi A B C D E F G Pulsazione ω [rad/s f.1) Si richiede di ricavare l espressione analitica della funzione G(s). G(s) = 5.65(1 9 s s+1)( 1 s+1) ( 1.64 s s+1) =.1(s +1.s+9)(s ) (s +.8s+.64) dove il valore µ 5.65 si determina direttamente leggendo dal diagramma di Bode il valore del modulo in bassa frequenza della G(s) G() 15 db 5.6 Il segno sarà positivo poichè il sistema ha fase iniziale nulla. In corrispondenza di ω =.8 rad/s è presente una coppia di poli complessi coniugati stabili (essendo lo sfasamento 18 o ) caratterizzati da δ =.5 (come si evince dal fatto che diagramma asintotico e diagramma reale si intersecano proprio in corrispondenza del punto di rottura in.8). In corrispondenza di ω = 3 rad/s è presente una coppia di zeri complessi coniugati stabili (sfasamento +18 o ) con ζ =.. Infatti ζ = M α n.4 =.. La distanza M αn 8 db.4 si legge dal diagramma di Bode dei moduli. In corrispondenza di ω = rad/s è presente una coppia di zeri reali coincidenti, infatti il diagramma reale si trova tutto al di sopra della sua approssimazione asintotica. Il loro segno è positivo (quindi sono instabili) essendo lo sfasamento prodotto pari a 18 o. f.) La funzione G(s) può rappresentare un sistema fisico? Si chiede di rispondere motivando la risposta. Avendo più zeri che poli il sistema G(s) non è fisicamente realizzabile e quindi non può rappresentare alcun sistema fisico.

16 Cognome: Nome: N. Matr.: 4 Diagrammi di Bode Modulo M [db Fase φ [gradi Pulsazione ω [rad/s

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Prof. Matteo Corno

FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Prof. Matteo Corno POLITECNICO DI MILANO FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Anno Accademico 2014/15 Seconda Prova in Itinere 12/02/2015 COGNOME... NOME... MATRICOLA... FIRMA.... Verificare che il fascicolo

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

Per un corretto funzionamento dei sistema si progetta un controllo a retroazione secondo lo schema di figura.

Per un corretto funzionamento dei sistema si progetta un controllo a retroazione secondo lo schema di figura. Tema di: SISTEMI ELETTRONICI AUTOMATICI Testo valevole per i corsi di ordinamento e per i corsi di progetto "SIRIO" - Indirizzo Elettronica e Telecomunicazioni 2001 Il candidato scelga e sviluppi una tra

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 2011 2012 10 Settembre 2012 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare

Dettagli

Prestazioni dei sistemi in retroazione

Prestazioni dei sistemi in retroazione Prestazioni dei sistemi in retroazione (ver..2). Sensitività e sensitività complementare Sia dato il sistema in retroazione riportato in Fig... Vogliamo determinare quanto è sensibile il sistema in anello

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

CONTROLLO NEL DOMINIO DELLA FREQUENZA

CONTROLLO NEL DOMINIO DELLA FREQUENZA SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html CONTROLLO NEL DOMINIO DELLA FREQUENZA Ing. Luigi Biagiotti e-mail: luigi.biagiotti@unimore.it

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI

Fondamenti di Automatica. Unità 2 Calcolo del movimento di sistemi dinamici LTI Fondamenti di Automatica Unità 2 Calcolo del movimento di sistemi dinamici LTI Calcolo del movimento di sistemi dinamici LTI Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO

Dettagli

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI Guida alla soluzione degli esercizi d esame Dott. Ing. Marcello Bonfè Esercizi sulla scomposizione di modelli nello spazio degli stati: Gli esercizi nei

Dettagli

Diagrammi di Bode. delle

Diagrammi di Bode. delle .. 3.2 delle Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols.

Dettagli

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it]

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it] Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3 Danilo Caporale [caporale@elet.polimi.it] Outline 2 Funzione di trasferimento e risposta in frequenza Diagrammi di Bode e teorema

Dettagli

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/

Catene di Misura. Corso di Misure Elettriche http://sms.unipv.it/misure/ Catene di Misura Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Controllo di velocità angolare di un motore in CC

Controllo di velocità angolare di un motore in CC Controllo di velocità angolare di un motore in CC Descrizione generale Il processo è composto da un motore in corrente continua, un sistema di riduzione, una dinamo tachimetrica ed un sistema di visualizzazione.

Dettagli

Fondamenti di Automatica - I Parte Il progetto del controllore

Fondamenti di Automatica - I Parte Il progetto del controllore Fondamenti di Automatica - I Parte Il progetto del controllore Antonio Bicchi, Giordano Greco Università di Pisa 1 INDICE 2 Indice 1 Introduzione 3 2 Approssimazioni della f.d.t. in anello chiuso 5 3 Metodi

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO

SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica SPECIFICHE DI PROGETTO DI SISTEMI DI CONTROLLO Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

Esercizi proposti di Fondamenti di Automatica - Parte 4

Esercizi proposti di Fondamenti di Automatica - Parte 4 Esercizi proposti di Fondamenti di Automatica - Parte 4 2 Aprile 26 Sia dato il sistema di controllo a controreazione di Fig. 1, in cui il processo ha funzione di trasferimento P (s) = 1 (1 +.1s)(1 +.1s).

Dettagli

6. Trasformate e Funzioni di Trasferimento

6. Trasformate e Funzioni di Trasferimento 6. Trasformate e Funzioni di Trasferimento 6.3 Richiami sulla Trasformata di Laplace Definizione La trasformata di Laplace di f(t) è la funzione di variabile complessa s C, (s = σ + jω), F (s) = e st f(t)dt

Dettagli

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva.

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva. 2. Stabilità Uno dei requisiti più importanti richiesti ad un sistema di controllo è la stabilità, ossia la capacita del. sistema di raggiungere un stato di equilibrio dopo la fase di regolazione. Per

Dettagli

Criteri di stabilità (ver. 1.2)

Criteri di stabilità (ver. 1.2) Criteri di stabilità (ver. 1.2) 1 1.1 Il concetto di stabilità Il concetto di stabilità è piuttosto generale e può essere definito in diversi contesti. Per i problemi di interesse nell area dei controlli

Dettagli

Funzioni di trasferimento. Lezione 14 2

Funzioni di trasferimento. Lezione 14 2 Lezione 14 1 Funzioni di trasferimento Lezione 14 2 Introduzione Lezione 14 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: Introduzione Uso dei decibel e delle scale logaritmiche Diagrammi

Dettagli

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO Sono stati trattati gli elementi base per l'analisi e il dimensionamento dei sistemi di controllo nei processi continui. E' quindi importante:

Dettagli

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo:

2.5 Stabilità dei sistemi dinamici 20. - funzioni di trasferimento, nella variabile di Laplace s, razionali fratte del tipo: .5 Stabilità dei sistemi dinamici 9 Risulta: 3 ( s(s + 4).5 Stabilità dei sistemi dinamici Si è visto come un sistema fisico può essere descritto tramite equazioni differenziali o attraverso una funzione

Dettagli

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0 LUOGO DELLE RADICI Il progetto accurato di un sistema di controllo richiede la conoscenza dei poli del sistema in anello chiuso e dell influenza che su di essi hanno le variazioni dei più importanti parametri

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi FONDAMENTI DI AUTOMATICA Michele Basso, Luigi Chisci e Paola Falugi 22 novembre 26 2 Indice 1 Analisi in frequenza di sistemi LTI 5 1.1 Introduzione............................. 5 1.2 Analisi armonica..........................

Dettagli

Orlando Allocca Regolatori standard

Orlando Allocca Regolatori standard A09 159 Orlando Allocca Regolatori standard Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN 978-88-548-4882-7

Dettagli

Progetto di un sistema di controllo nel dominio della frequenza

Progetto di un sistema di controllo nel dominio della frequenza Contents Progetto di un sistema di controllo nel dominio della frequenza 3. Le specifiche del progetto nel dominio della frequenza......... 3.2 Sintesi del controllore........................... 6.3 Determinazione

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: robustezza e prestazioni Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it

Dettagli

FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE

FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE Nello studio dei sistemi di controllo in retroazione spesso si richiede che l uscita segua

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C

Capitolo. La funzione di trasferimento. 2.1 Funzione di trasferimento di un sistema. 2.2 L-trasformazione dei componenti R - L - C Capitolo La funzione di trasferimento. Funzione di trasferimento di un sistema.. L-trasformazione dei componenti R - L - C. Determinazione delle f.d.t. di circuiti elettrici..3 Risposta al gradino . Funzione

Dettagli

Diagrammi polari, di Nyquist e di Nichols

Diagrammi polari, di Nyquist e di Nichols Diagrammi polari, di Nyquist e di Nichols Definizione (1/2) Il diagramma di Nichols (DdNic) di una fdt consiste nella rappresentazione grafica di G(s) s= jω = G(jω) = M( ω)e jϕ( ω), per ω (, ) sul piano

Dettagli

REGOLATORI STANDARD O PID

REGOLATORI STANDARD O PID REGOLATORI STANDARD O ID Consideriamo il classico esempio di compensazione in cascata riportato in figura, comprendente il plant o sistema controllato con funzione di trasferimento G (s), il regolatore

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale CONTROLLO IN RETROAZIONE Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A Scopo centrale, sia della teoria statistica che della economica, è proprio quello di esprimere ed analizzare le relazioni, esistenti tra le variabili statistiche ed economiche, che, in linguaggio matematico,

Dettagli

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso

PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso PROGRAMMA SVOLTO fino al 22-06-2015 Fine del corso Prof. Bruno Picasso LEZIONI: Introduzione al corso. Introduzione ai sistemi dinamici. I sistemi dinamici come sistemi di equazioni differenziali; variabili

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

Politecnico di Milano. Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 SOLUZIONE

Politecnico di Milano. Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 SOLUZIONE Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.014-15 Prof. Silvia Strada Prima prova intermedia 8 Novembre 014 SOLUZIONE ESERCIZIO 1 punti: 8 su 3 Si consideri il sistema dinamico

Dettagli

Proprieta` dei sistemi in retroazione

Proprieta` dei sistemi in retroazione Proprieta` dei sistemi in retroazione Specifiche di controllo: errore a regime in risposta a disturbi costanti errore di inseguimento a regime quando il segnale di riferimento e` di tipo polinomiale sensibilita`

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 9- p. /3 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID ONTROLLORI STANDARD PID Guido Vagliasindi ontrolli Automatici A.A. 6/7 ontrollori Standard PID MODELLO DEI REGOLATORI PID Tra le ragioni del vastissimo utilizzo dei regolatori PID nella pratica dell automazione

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Cenni su Matlab (e toolbox Control Systems + Symbolic) Dott. Ingg. Marcello Bonfè e Silvio Simani Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 / 974844

Dettagli

Principi di Automazione e Controllo

Principi di Automazione e Controllo Principi di Automazione e Controllo Ing. Fabio Piedimonte Corso IFTS per Tecnico Superiore di Produzione Ver 1.0 Indice 1 Introduzione al problema dell automazione 4 1.1 I processi..................................

Dettagli

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO Consideriamo il classico esempio di compensazione in cascata riportato in figura, comprendente il plant o sistema controllato con funzione di trasferimento G P

Dettagli

NUMERI COMPLESSI. Test di autovalutazione

NUMERI COMPLESSI. Test di autovalutazione NUMERI COMPLESSI Test di autovalutazione 1. Se due numeri complessi z 1 e z 2 sono rappresentati nel piano di Gauss da due punti simmetrici rispetto all origine: (a) sono le radici quadrate di uno stesso

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Funzioni di trasferimento

Dettagli

Stabilità dei sistemi

Stabilità dei sistemi Stabilità dei sistemi + G(s) G(s) - H(s) Retroazionati Sistemi - Stabilità - Rielaborazione di Piero Scotto 1 Sommario In questa lezione si tratteranno: La funzione di trasferimento dei sistemi retroazionati

Dettagli

Differenziazione sistemi dinamici

Differenziazione sistemi dinamici Il controllo di sistemi ad avanzamento temporale si basa sulle tecniche di controllo in retroazione, ovvero, elabora le informazione sullo stato del processo (provenienti dai sensori) in modo sa inviare

Dettagli

Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni

Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni Docente:Alessandra Cutrì Richiamo:Zeri di Funzioni olomorfe (o analitiche) Sia f : A C C A aperto connesso,

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Dalle misure eseguite con un segnale sinusoidale su di un impianto si è verificato che esso:

Dalle misure eseguite con un segnale sinusoidale su di un impianto si è verificato che esso: Tema di: SISTEMI ELETTRONICI AUTOMATICI Testo valevole per i corsi di ordinamento e per i corsi di progetto "SIRIO" - Indirizzo Elettronica e Telecomunicazioni Il candidato scelga e sviluppi una tra le

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html Regolatore Proporzionale, Integrale, Derivativo - PID Tre azioni di combinate

Dettagli

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale

13-1 SISTEMI A DATI CAMPIONATI: INTRODUZIONE. y(t) TMP. y k. Trasduttore. Schema di base di un sistema di controllo digitale SISTEMI A DATI CAMPIONATI: INTRODUZIONE + e k u k u(t) r k C D/A P y k TMP A/D Trasduttore y(t) Schema di base di un sistema di controllo digitale A/D: convertitore analogico digitale C: controllore digitale

Dettagli

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO

LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO LEZIONI DEL CORSO DI SISTEMI DEL QUINTO ANNO MOD. 1 Sistemi di controllo e di regolazione. Si tratta di un ripasso di una parte di argomenti effettuati l anno scorso. Introduzione. Schemi a blocchi di

Dettagli

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE

Brevi appunti di Fondamenti di Automatica 1. prof. Stefano Panzieri Dipartimento di Informatica e Automazione Universitá degli Studi ROMA TRE Brevi appunti di Fondamenti di Automatica prof. Dipartimento di Informatica e Automazione Universitá degli Studi ROMA RE ROMA RE UNIVERSIÀ DEGLI SUDI 4 marzo 05 Rev. 0. INDICE Indice La rasfomata di Laplace.0.

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

Esercizi di Fondamenti di Automatica

Esercizi di Fondamenti di Automatica Esercizi di Fondamenti di Automatica Bruno Picasso Riferimento bibliografico In questi esercizi useremo la scrittura [FdA per riferirci al libro di testo adottato nel corso, ossia: P. Bolzern, R. Scattolini

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Progetto di controllo e reti correttrici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Syllabus: argomenti di Matematica delle prove di valutazione

Syllabus: argomenti di Matematica delle prove di valutazione Syllabus: argomenti di Matematica delle prove di valutazione abcdef... ABC (senza calcolatrici, senza palmari, senza telefonini... ) Gli Argomenti A. Numeri frazioni e numeri decimali massimo comun divisore,

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stabilità dei sistemi di controllo in retroazione Margini di stabilità Indicatori di robustezza della stabilità Margine di guadagno Margine di fase Stabilità regolare e marginale ed estensioni delle definizioni

Dettagli

MATLAB Analisi di Sistemi LTI

MATLAB Analisi di Sistemi LTI Esercitazione 1/30 MATLAB Analisi di Sistemi LTI Vincenzo LIPPIELLO PRISMA Lab Dipartimento di Informatica e Sistemistica Università di Napoli Federico II vincenzo.lippiello@unina.it www.prisma.unina.it

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccatronica STRUMENTI MATEMATICI PER L ANALISI DEI SISTEMI DISCRETI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Richiami: funzione di trasferimento e risposta al gradino

Richiami: funzione di trasferimento e risposta al gradino Richiami: funzione di trasferimento e risposta al gradino 1 Funzione di trasferimento La funzione di trasferimento di un sistema lineare è il rapporto di due polinomi della variabile complessa s. Essa

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: professionale

Protocollo dei saperi imprescindibili Ordine di scuola: professionale Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima servizi commerciali Utilizzare le tecniche e le procedure

Dettagli

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace

Elettronica e Telecomunicazioni Classe Quinta. La trasformata di Laplace Elettronica e Telecomunicazioni Classe Quinta La trasformata di Laplace ELETTRONICA E TELECOMUNICAZIONI CLASSE QUINTA A INFORMATICA INDICE Segnali canonici Trasformata di Laplace Teoremi sulla trasformata

Dettagli

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO

MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO PIANO DI LAVORO CLASSE 5 ES A.S. 2014-2015 MATERIA : SISTEMI ELETTRICI AUTOMATICI INS. TEORICO: PROF. CIVITAREALE ALBERTO INS. TECNICO-PRATICO: PROF. BARONI MAURIZIO MODULO 1: ALGEBRA DEGLI SCHEMI A BLOCCHI

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale REGOLATORI STANDARD PID Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Sistemi e modelli matematici

Sistemi e modelli matematici 0.0.. Sistemi e modelli matematici L automazione è un complesso di tecniche volte a sostituire l intervento umano, o a migliorarne l efficienza, nell esercizio di dispositivi e impianti. Un importante

Dettagli

Dispensa sulle funzioni trigonometriche

Dispensa sulle funzioni trigonometriche Sapienza Universita di Roma Dipartimento di Scienze di Base e Applicate per l Ingegneria Sezione di Matematica Dispensa sulle funzioni trigonometriche Paola Loreti e Cristina Pocci A. A. 00-0 Dispensa

Dettagli

Modello fisico. Capitolo 1. 1.1 Descrizione del sistema

Modello fisico. Capitolo 1. 1.1 Descrizione del sistema Introduzione Lo scopo di questa trattazione è quello di analizzare un sistema fisico (veicolo a trazione elettrica) e progettare un adeguato sistema di controllo. Per cercare di ottenere risultati simili

Dettagli

OUT. Domande per Terza prova di Sistemi. Disegnare la struttura generale di un sistema di controllo. retroazionato. (schema a blocchi)

OUT. Domande per Terza prova di Sistemi. Disegnare la struttura generale di un sistema di controllo. retroazionato. (schema a blocchi) Domande per Terza prova di Sistemi Disegnare la struttura generale di un sistema di controllo retroazionato. (schema a blocchi) IN Amp. di Potenza Organo di Regolazione OUT ( ) Regolatore Attuatore Sistema

Dettagli

Revisione dei concetti fondamentali dell analisi in frequenza

Revisione dei concetti fondamentali dell analisi in frequenza Revisione dei concetti fondamentali dell analisi in frequenza rgomenti: trasformazione in frequenza: significato e funzionamento; schemi di rappresentazione; trasformata discreta. 1 Rappresentazione dei

Dettagli

Un sistema di controllo può essere progettato fissando le specifiche:

Un sistema di controllo può essere progettato fissando le specifiche: 3. Specifiche dei Sistemi Un sistema di controllo può essere progettato fissando le specifiche: nel dominio del tempo (tempo di salita, tempo di assestamento, sovraelongazione, ecc.); nel dominio della

Dettagli

REGOLATORI STANDARD PID

REGOLATORI STANDARD PID CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm REGOLATORI STANDARD PID Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

La funzione di trasferimento

La funzione di trasferimento Sommario La funzione di trasferimento La funzione di trasferimento Poli e zeri della funzione di trasferimento I sistemi del primo ordine Esempi La risposta a sollecitazioni La funzione di trasferimento

Dettagli

La trasformata Zeta. Marco Marcon

La trasformata Zeta. Marco Marcon La trasformata Zeta Marco Marcon ENS Trasformata zeta E l estensione nel caso discreto della trasformata di Laplace. Applicata all analisi dei sistemi LTI permette di scrivere in modo diretto la relazione

Dettagli

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2 Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013

Dettagli

TECNICHE DI CONTROLLO

TECNICHE DI CONTROLLO TECNICHE DI CONTROLLO Richiami di Teoria dei Sistemi Dott. Ing. SIMANI SILVIO con supporto del Dott. Ing. BONFE MARCELLO Sistemi e Modelli Concetto di Sistema Sistema: insieme, artificialmente isolato

Dettagli

Analisi di risposte di sistemi dinamici in MATLAB

Analisi di risposte di sistemi dinamici in MATLAB Laboratorio di Fondamenti di Automatica Seconda esercitazione Analisi di risposte di sistemi dinamici in MATLAB 2005 Alberto Leva, Marco Lovera, Maria Prandini Premessa Scopo di quest'esercitazione di

Dettagli

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando i

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Introduzione. Classificazione delle non linearità

Introduzione. Classificazione delle non linearità Introduzione Accade spesso di dover studiare un sistema di controllo in cui sono presenti sottosistemi non lineari. Alcuni di tali sottosistemi sono descritti da equazioni differenziali non lineari, ad

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli

Trasformate di Laplace

Trasformate di Laplace TdL 1 TdL 2 Trasformate di Laplace La trasformata di Laplace e un OPERATORE funzionale Importanza dei modelli dinamici Risolvere equazioni differenziali (lineari a coefficienti costanti) Tempo t Dominio

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Versione 1.0 Ing. Alessandro Pisano SOMMARIO Introduzione 3 1. Stabilità a ciclo chiuso e teorema del valore

Dettagli

SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO

SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO SINTESI DEI SISTEMI DI CONTROLLO A TEMPO CONTINUO Requisiti e specifiche Approcci alla sintesi Esempi di progetto Principali reti stabilizzatrici Illustrazioni dal Testo di Riferimento per gentile concessione

Dettagli