11.c Gli operatori in Meccanica Quantistica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "11.c Gli operatori in Meccanica Quantistica"

Transcript

1

2

3 Gl opraor U opraor è u applazo assoa ua fuzo a ua fuzo A La drvaa è u opraor : : L ombazo lar d opraor soo opraor La molplazo pr ua fuzo è u opraor U ( ) : U L applazo rpua d u opraor è u opraor a + b : a + b :

4 L opraor amloao m + U L opraor amloao (o amloaa) è u opraor dfo om: : m + U L quazo d Srödgr può ssr rsra usado l amloaa : Nl formalsmo d Dra:

5 approfodmo Alr opraor dlla Maa Quasa Opraor Quaà d moo : P Applamo P alla fuzo d oda dlla parlla lbra: P ( ) ( o p [ ( ω )] ) L opraor P, applao alla fuzo d oda d parlla lbra, rsus la quaà d moo dlla parlla, molplaa pr la sssa fuzo. Qusa proprà gusfa l om. Opraor rga a : K m Applamo K alla fuzo d oda dlla parlla lbra: K ( ) ( p [ ( ω )] ) m o L opraor K, applao alla fuzo d oda d parlla lbra, rsus l rga a dlla parlla, molplaa pr la sssa fuzo. Qusa proprà gusfa l om. m I bas all dfzo d K, sgu K + U. Qusa quazo ra opraor suggrs l amloaa possa a ssr osdraa om l opraor rga maa dlla parlla.

6 L soluzo dll quazo d Srödgr godoo d alu proprà fodamal, qualuqu sa la forma dll rga pozal U(). Qus proprà soo fssa dal orma spral. Il orma spral è la av pr omprdr l proprà dll soluzo dll quazo d Srödgr. La mamaa d quso orma è a u lvllo molo pù alo d qullo dl orso d Isuzo. Prao l orma è dsro soo prsa alu mplazo, ma o è qu dmosrao.

7 approfodmo L fuzo a quadrao sommabl l Torma Spral Il orma spral è sram valdo lla forma sarà prsaa l sguo solo s U() è ua bua d pozal; alrm asoo alu omplazo formal. Tuava, pr aggrar l problma s può ulzzar l ruo dlla saola fza, è praa ua bua d pozal d alzza fa. Dal puo d vsa fso, ò sgfa osdrar l moo lmao a ua rgo ampa, ma fa. I rm d rga pozal, la saola fza è rapprsaa dalla odzo U dvrga: U() pr L Suazo ral Modllo dlla saola fza Il ruo dlla saola fza orrgg u as u apparm la fuzo d oda o sa a quadrao sommabl.

8 L soluzo dll quazo d Srödgr godoo d alu proprà fodamal, qualuqu sa la forma dll rga pozal U(). Qus proprà soo fssa dal orma spral. I pllol Il orma spral prm d sdr al aso gral du o fodamal pr l parll lbr: a) ss u sm umrabl d soluzo, do bas, fao d sa o rga maa fssaa. Nl aso dll parll lbr, qus fuzo soo l od mooroma; prsza d rga pozal, s raa d fuzo dvrs a soda d as. Nl formalsmo d Dra, l fuzo dlla bas s dao om b) Tu l alr soluzo soo ombazo lar dll fuzo d bas. Nl aso dll parll lbr, qus fuzo soo pa d oda, o sso d lguaggo quso rm può ssr usao l aso gral. Nl formalsmo d Dra, qus fuzo s dao om

9 a) ss u sm umrabl d soluzo, do bas, fao d sa o rga maa fssaa. L fuzo dlla bas soo d auosa dll amloaa Casu auosao è ararzzao da u valor d rga maa b dfo osa I MC, l parll s muovoo prsza d ua forza osrvava ao smpr osa. I MQ osa sgfa du os: 1. È possbl far rpu msur dlla gradzza fsa, sza prurbar la fuzo d oda;. I asua msura s o smpr lo ssso valor d.

10 a) ss u sm umrabl d soluzo, do bas, fao d sa o rga maa fssaa. Gl sa ao u valor d rga maa b dfo osa soo od sazoar ( ) è l rga maa dlla parlla llo sao Oda sazoara: ( ) f ( ) Fasor vrsor roa: ω os ( ω ) s ( ω ) L auofuzo dll amloaa possoo ssr vsualzza om u proflo () ruoa oro all ass o vloà agolar ω Im () R () Il vrso dlla roazo è smpr qullo dao dalla fra rossa

11 a) ss u sm umrabl d soluzo, do bas, fao d sa o rga maa fssaa. Nl formalsmo d Dra, gl auosa soo rapprsa om Il o dpd dal mpo Im () R () La dpdza dal mpo è l fasor ω

12 a) ss u sm umrabl d soluzo, do bas, fao d sa o rga maa fssaa. I soddsfao l quazo d Srödgr dgl sa sazoar: I soo fuzo dlla sola varabl. L quazo pr gl sa sazoar è prò u quazo dffrzal ua sola varabl, qud oualm pù smpl dll quazo d Srödgr ompla. quazo d Srödgr pr gl sa sazoar Nl formalsmo sso l quazo s srv: m ( ) + U ( ) ( )

13 approfodmo ( ) ( ) ( ) ( ) ( ) ( ) U m U m U m Sosuamo l sprsso dll oda sazoara ( ) ll quazo d Srödgr. ( ) ( ) ( ) U m + Oamo osì l quazo d Srödgr pr gl sa sazoar: Nl formalsmo d Dra: Il fasor è u faor omu s ld Vrfa dll quazo sazoara a) ss u sm umrabl d soluzo, do bas, fao d sa o rga maa fssaa.

14 b) Tu l alr soluzo soo ombazo lar dll fuzo d bas. Qualuqu sa la forma d U(), è possbl sglr l sm d modo al soddsf qus odzo: I vor dlla bas soo oroormal: < m δ m < m 1 0 s s m m La bas è ompla, oè u l fuzo () possoo ssr rapprsa om ombazo lar d vor d bas:

15 b) Tu l alr soluzo soo ombazo lar dll fuzo d bas. Bas orogoal ompl I vor dlla bas soo oroormal: < m δ m < m 1 0 s s m m La bas è ompla, oè u l fuzo () possoo ssr rapprsa om ombazo lar d vor d bas: U smpl smpo d bas oroormal ompla è dao dalla sr d Fourr: ( ) ; 1 L ; π L Il orma spral d a og dvrsa amloaa s assoa u dvrso sm d fuzo, ararzza prò smpr da proprà aalog a qull dlla bas d Fourr

16 approfodmo Il orma spral ll algbra Il orma spral sd all opraor amloao ua proprà algbra val pr l Mar Auoaggu, d a Mar rma. I algbra lar, ua Mar Auoaggua è ua mar a valor omplss od o la propra rasposa ougaa (o mar aggua). Pr og mar rmaa A val l orma spral (o orma fodamal): A possd solo auovalor ral; è possbl rovar ua bas oroormal ompla formaa da auovor d A. Sza rar dagl formal, pralro puoso ompla, oamo l problma agl auovalor pr A somgla form al problma dll quazo d Srödgr pr gl sa sazoar: A u λ u A u λ u Pr sso d lguaggo, gl opraor ao l sss proprà d rm d auovalor auovor soo d Opraor Auoaggu, o rma.

17 I ss Com s rsolv l quazo d Srödgr? I pllol 1) S rsolv l quazo pr gl sa sazoar: S rovao osì vor d bas l rg ; ) Gl auosa soo da dall sprsso: 3) Tu l soluzo soo ombazo lar d auosa:

18 I ss Com s rsolv l quazo d Srödgr? La par dffl dl problma è rovar u sm umrabl d soluzo dll quazo sazoara formo ua bas oroormal. ; < m δ m Quso è possbl forma saa solo pr alu fuzo U(). Tra I as pù mpora: Parlla lla saola Osllaor armoo Aomo d Idrogo Ngl alr as s possoo adoar var srag pr rar soluzo approssma, a pr va umra.

19 Applar l opraor al pao d oda srzo rprar fsam l rsulao. ( ) ( ) [ ] p, ω P ( ) ( ) [ ] ( ) [ ] ( ) [ ] p p p ω ω ω P Il rsulao è ua ombazo lar u off soo proporzoal alla quaà d moo dll sgol ompo. Nl formalsmo d Dra: ω ω ω P P P Calolamo l prodoo salar o l bra : < ( ) ( ) < δ < < < < ω ω ω ω ω ω ω m,,m * m m, * m m * m m m m m m P P Quso è l valor mdo dlla quaà d moo llo sao. 11. L quazo d Srödgr. srz omplm.

CENNI SULL USO DEL METODO SIMBOLICO PER IL CALCOLO DELLA

CENNI SULL USO DEL METODO SIMBOLICO PER IL CALCOLO DELLA ENN SU USO DE METODO SMBOO PE AOO DEA SPOSTA N EGME PEMANENTE SNUSODAE DE UT osdramo u crcuo composo da ua r d lm lar pass com rssor, codsaor, duor a cu è applcao u graor d forza lromorc l qual forsc ua

Dettagli

Tassi Equivalenti. Benedetto Matarazzo

Tassi Equivalenti. Benedetto Matarazzo Tass Equval Bdo Maarazzo Corso d Maaca Fazara Rg fazar Oprazo fazar Irss Scoo Equvalz fazar Rg dll rss splc Rg dll rss coposo Rg dll rss acpao (scoo corcal Prcpal proprà d u qualsas rg fazaro Cofroo ra

Dettagli

La corrente i(t) che percorre l avvolgimento del trasformatore durante il transitorio è definita dalla seguente equazione: di dt

La corrente i(t) che percorre l avvolgimento del trasformatore durante il transitorio è definita dalla seguente equazione: di dt Cosruzo Elroach Corr d coro crcuo u rasforaor Sovracorr rasforaor Esaao qus au, odo slfcao, l org l cosguz dll sovracorr ch ossoo sollcar l avvolgo d u rasforaor dura u coro crcuo a ors dl scodaro. 1 -

Dettagli

Parametrizzazione del Gruppo Ortogonale Speciale. Di Anselmo Canfora

Parametrizzazione del Gruppo Ortogonale Speciale. Di Anselmo Canfora aramrzzazo dl Gruppo Orogoal Spcal D Aslmo Cafora Iroduzo Scopo d qusa rv raazo è dar ua dscrzo sausva dlla sruura dll roazo mda ua parcolar paramrzzazo d SO ( ) dfa rcorsvam Tal lavoro prmrà d dmosrar

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sstm olog dll Comuzo Complmt : sr trsformt d Fourr Formul d prostfrs L formul d prostfrs sprmoo l vlor d so o d somm d gol prodott d s d gol gol, vvrs: ( α β ) ( α ) ( β ) ( α ) ( β ) ( α β ) ( α ) ( β

Dettagli

17. Le soluzioni dell equazione di Schrödinger approfondimento

17. Le soluzioni dell equazione di Schrödinger approfondimento 7. soluzon dll quazon d Scrödngr approfondmno Gl sa ms Il gao d Scrödngr è l pù famoso sao mso dlla MQ. E una parclla un po spcal, prcé è un oggo macroscopco d cu s dscu l comporamno quansco. E anc una

Dettagli

Problemi di routing di veicoli: 2 Modelli e rilassamenti per il TSP

Problemi di routing di veicoli: 2 Modelli e rilassamenti per il TSP Problm d routg d vcol: Modll rlassamt pr l TP Dal Vgo DEI, Uvrstà d Bologa dvgo@ds.ubo.t Problma dl Commsso Vaggator (TP) caso partcolar: dposto vcolo d capactà llmtata mmzzar l costo pr srvr tutt clt

Dettagli

3) DIFFUSIONE DELLA LUCE E SPETTROSCOPIA RAMAN

3) DIFFUSIONE DELLA LUCE E SPETTROSCOPIA RAMAN DIFFUSION DLLA LU STTROSOIA RAAN La uso lla lu a pa u aomo quval al sgu posso (l aomo è l lvllo : (A Assobmo u oo quza vo oa k passaggo allo sao ao aua (sao al o msso u oo quza vo oa k. Oppu: (B msso u

Dettagli

11.d La misura in Meccanica Quantistica

11.d La misura in Meccanica Quantistica Gli sai isi L obiazioi liari di auosai soo soluzioi dll quazio di Srödigr: i ψ ψ o ψ L fuzioi ψ soigliao pr oli vrsi ai pai d oda soo d sai isi. Gli sai isi o soo sai sazioari Quado ua parilla si rova

Dettagli

TRASFORMATA DI FOURIER. Trasformata di Fourier: definizione

TRASFORMATA DI FOURIER. Trasformata di Fourier: definizione Si può arrivar allo sviluppo i sri di Fourir ach pr sgali apriodici? RASFORMAA DI FOURIER rasormaa di Fourir: diizio Dao u sgal apriodico, sso può ssr scrio mdia la ormula dov d d L du quazioi si chiamao

Dettagli

Definizione e proprietà dei numeri complessi

Definizione e proprietà dei numeri complessi umr complss Dfo proprtà d umr complss Rapprstao gomtrca d umr complss Espoal d u umro complsso Cougao d u umro complsso Radc -sm dll utà Dfo proprtà d umr complss U umro complsso é ua coppa ordata d umr

Dettagli

Seminario: Dinamica quantistica inerziale di una particella in una dimensione

Seminario: Dinamica quantistica inerziale di una particella in una dimensione Snaro: Dnaa quansa nrzal d una parlla n una dnson Foralso quanso Funzon d onda: pr d ' ' dnsà d probablà sulla oordnaa al po  Valor d asa al po dll opraor : d A d A A ˆ ˆ * Saro quadrao do dlla proprà:

Dettagli

[ ] [ ] [ ] [ ] lim. x 1 3 R. lim. lim. lim. lim. lim. lim 5 R. lim. Calcola i seguenti limiti risolvendo le eventuali forme di indeterminazione

[ ] [ ] [ ] [ ] lim. x 1 3 R. lim. lim. lim. lim. lim. lim 5 R. lim. Calcola i seguenti limiti risolvendo le eventuali forme di indeterminazione Educnica.i Calcolo di ii Calcola i sguni ii risolvndo l vnuali form di indrminazion Esrcizio no. Esrcizio no. Soluzion a pag.8 Soluzion a pag.8 [ ] Esrcizio no. Esrcizio no. Esrcizio no. lg Esrcizio no.6

Dettagli

Variabili aleatorie una variabile aleatoria ( v.a.)

Variabili aleatorie una variabile aleatoria ( v.a.) Varabl alator ua varabl alatora ( v.a.) ua applcazo ch assoca u umro ral [0,] ad og rsultato dllo spazo dgl vt gral og sprmto alatoro carattrzzabl tramt ua varabl alatora dscrta o cotua Varabl alator dscrt:

Dettagli

CAP. 3 - CAMPIONI CASUALI e DISTRIBUZIONI CAMPIONARIE

CAP. 3 - CAMPIONI CASUALI e DISTRIBUZIONI CAMPIONARIE CORSO DI LAURA IN STATISTICA Sasca pr l dcso No ddach Bruo Chadoo CAP. 3 - CAMPIONI CASUALI DISTRIBUZIONI CAMPIONARI 3. Iroduzo Nl capolo roduvo d qus o s è avuo modo d dsgur la sasca dscrva dalla sasca

Dettagli

MERCATI FINANZIARI IN ECONOMIA APERTA (Modello IS-LM in economia aperta)

MERCATI FINANZIARI IN ECONOMIA APERTA (Modello IS-LM in economia aperta) MRATI FINANZIARI IN ONOMIA APRTA Modllo - n conoma apra Invsmn fnanzar. Scla ra: a. mona nazonal: ransazon b. mona sra: non ha nssun vanaggo dnrla c. ol nazonal: fruano nrss d. ol sr: fruano nrss sono

Dettagli

APPLICAZIONI DELL INTEGRALE DEFINITO

APPLICAZIONI DELL INTEGRALE DEFINITO APPLICAZIONI DELL INTEGRALE DEFINITO Clolo d d dom p om d Ahmd Clolo d volum - volum d gu d ozo Lughzz d u o d uv Clolo dll d sup d voluzo 5 Igl mpop o glzz 6 Applzo dl lolo gl ll s To ll pm p CALCOLO

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 PRIMITIVE E INTEGRALI DEFINITI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 PRIMITIVE E INTEGRALI DEFINITI Univrsià Carlo Caano Inggnria gsional nalisi mamaia aa 7/8 PRIMITIVE E INTEGRLI DEFINITI ESERCIZI CON SOLUZIONE Calolar i sguni ingrali indfinii: ) d ; ) d ; ) d ; ) os sin d ; 6 ) d SOLUZIONI ) La funzion

Dettagli

Edutecnica.it Circuiti a scatto -Esercizi 1

Edutecnica.it Circuiti a scatto -Esercizi 1 duna. Cru a sao -srz srzo no. Soluzon a pag.5 Nl ruo d gura, l nrruor n huso all san ; dopo un mpo 4,8µs, n rapro onmporanamn n huso. roar l andamno dlla nson a ap dl ondnsaor. 4 kω CpF roar l alor dlla

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2007 PIANO NAZIONALE INFORMATICA. Problema 1

ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2007 PIANO NAZIONALE INFORMATICA. Problema 1 ESAME DI STATO DI LICEO SCIENTIFICO Sssio Ordiaria 7 PIANO NAZIONALE INFORMATICA Problma Puo Pr sudiar la moooia dlla fuzio I g( ) g ( ) a la a la l a (a a ). Essdo, pr iposi, a >, occorr disigur i sgui

Dettagli

Lezione 15 (BAG cap. 14) Le aspettative: nozioni di base

Lezione 15 (BAG cap. 14) Le aspettative: nozioni di base Lzion 5 (BAG cap. 4) L aspaiv: nozioni di bas Corso di Macroconomia Prof. Guido Ascari, Univrsià di Pavia Il asso di inrss in rmini di mona è do asso di inrss nominal Il asso di inrss in rmini di bni è

Dettagli

Descrizione quantomeccanica di un insieme di spin: LA MATRICE DENSITÀ

Descrizione quantomeccanica di un insieme di spin: LA MATRICE DENSITÀ Desrzoe quatomeaa d u seme d sp: LA MATRICE DENITÀ Il valore d aspettazoe d ua gradezza fsa rappresetata dall operatore O su u sstema ello stato Ψ è: O Ψ OΨdτ Ψ O Ψ e s a u umero elevato d sstem (u seme

Dettagli

Calcolo delle Probabilità: esercitazione 10

Calcolo delle Probabilità: esercitazione 10 Calcolo dll Probablà: srcazon 0 Argono: Dsrbuzon noral (pag. 47 sgun dl lbro d so). Valor aso, varanza (pag. sgun). Dsrbuzon bvara dscr (pag. 44 sgun) covaranza (pag 45 sgun). NB: asscurars d conoscr l

Dettagli

Soluzione Compito 19/09/2007

Soluzione Compito 19/09/2007 Soluzo omo 9/9/7 Prmo uo: alcolamo la cocrazo d carch rch a 53 K (8 : ( T G ( T ( T ( T, do: T 53 9 9 3 ( T ( 3 ( 53 ( 3,86,8 5, 3 3 T 53 9 9 3 ( T ( 3 ( 53 ( 3,86,,93 3 G (T,53,3 - T S ha rao:,53,3 53

Dettagli

Lezione 10 Equazioni di un plasma fluido

Lezione 10 Equazioni di un plasma fluido Lzo 0 Eqazo d plasma fldo G. Bosa Uvrsa d Toro Lgg d cosrvazo dll rga cca La lgg d cosrvazo dll rga s o dal scodo momo dlla dsrbzo, molplcado l qazo cca pr / mv d grado llo spazo dll vlocà. Ach qso caso

Dettagli

FACOLTA DI INGEGNERIA. Corso di Fisica Tecnica Ambientale ESERCIZI SVOLTI CONDUZIONE

FACOLTA DI INGEGNERIA. Corso di Fisica Tecnica Ambientale ESERCIZI SVOLTI CONDUZIONE FO DI INGEGNERI orso d Fsa a tal ESERIZI SVOI ONDUZIONE Esrzo Esrzo Dtrar l flusso tro pr utà d suprf attravrsa rg prat ua lastra paa ooga dllo spssor d 8 o l du fa atut all tpratur d 9 =.9 /..9 9 85.8

Dettagli

Bisogna innanzitutto calcolare le variazioni annue: loro o per riassumere distribuzioni che hanno andamento

Bisogna innanzitutto calcolare le variazioni annue: loro o per riassumere distribuzioni che hanno andamento La mda omtrca Pr ua dstrbuzo utara d u carattr quattatvo d trm, la mda omtrca è dfta com: K usata pr sttzzar dat ch ha sso moltplcar fra loro o pr rassumr dstrbuzo ch hao adamto omtrco S applca pr dtrmar

Dettagli

Sistemi trifase. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 30-10-2012) Sistemi trifase

Sistemi trifase. www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 30-10-2012) Sistemi trifase Ssm rfas www.d.ng.unbo./prs/masr/ddaca.hm vrson dl 0-0-0 Ssm rfas l rasporo la dsrbuzon d nrga lrca avvngono n prvalnza pr mzzo d ln rfas Un ssma rfas è almnao mdan gnraor a r rmnal rapprsnabl mdan rn

Dettagli

Autovalori complessi e coniugati

Autovalori complessi e coniugati Auovalori complssi coniugai Noazioni A A α ω ω α λ λ λ α + jω, λ α jω, maric ad lmni rali α + jω, maric diagonal ad lmni complssi α jω L du marici A A hanno gli sssi auovalori λ, λ. aa una gnrica maric

Dettagli

1 - Numeri complessi. 1.0 Breve cronologia dei simboli Definizione e proprietà dei numeri complessi

1 - Numeri complessi. 1.0 Breve cronologia dei simboli Definizione e proprietà dei numeri complessi - um complss - Dfo poptà d um complss - Rappstao gomtca d um complss - Espoal d u umo complsso - Cougao d u umo complsso - Radc -sm dll utà I matmatca l voluo o s fao dstuggdo mod pcdt ch matao smp la

Dettagli

PERCHE LA VELOCITA DELLA LUCE VIENE RIDOTTA DI UN FATTORE n QUANDO VIAGGIA IN UN MEZZO TRASPARENTE

PERCHE LA VELOCITA DELLA LUCE VIENE RIDOTTA DI UN FATTORE n QUANDO VIAGGIA IN UN MEZZO TRASPARENTE A.A. 7/8 C.d.L. Sa d Maal: Coso d oduo alla lavà sa d alla adao PRCH LA VLOCITA DLLA LUC VIN RIDOTTA DI UN FATTOR QUANDO VIAGGIA IN UN MZZO TRASPARNT Ioduo Dall oa goma s sa b h la vloà dlla lu u mo aspa

Dettagli

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale.

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale. Aspaiv In qusa lzion: Discuiamo di prvisioni sull variabili fuur, di aspaiv. Dfiniamo assi di inrss nominal ral. Ridfiniamo lo schma IS-LM con inflazion. 198 Imporanza dll Aspaiv L dcisioni rlaiv a consumo

Dettagli

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lzion 21 (BAG cap. 19) Rgimi di cambio Corso di Macroconomia Prof. Guido Ascari, Univrsià di Pavia Il capiolo si occupa Aggiusamno nl mdio priodo d ffi di una svaluazion Crisi dl asso di cambio Tasso di

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

Lezione 11 Equazioni Magneto-idrodinamiche

Lezione 11 Equazioni Magneto-idrodinamiche Lzo Eqazo Mago-drodach G. Bosa Uvrsa d Toro G. Bosa - Fsca dl plasa cofao Lzo Dscrzo dlla daca dl plasa a pù fld Nll lzo prcd abbao drvao l qazo cch d plasa ch dscrvoo co volv la fzo d dsrbzo dll parcll

Dettagli

4 -Trasformata di Fourier discreta 2D (DFT-2D)

4 -Trasformata di Fourier discreta 2D (DFT-2D) Prssa 4 -Trasorata d ourr dscrta D DT-D Sa u ag capoata rapprstata da ua taba x: - - - Dzo proprtà da DT-D - Oprazo su ag oro trasorat - orua d vrso da DT-D - Eguagaza d Parsva - - - - -- S cosdra a taba

Dettagli

Il processo inverso della derivazione si chiama integrazione.

Il processo inverso della derivazione si chiama integrazione. Ingral Indinio l Anidrivaa Il prosso invrso dlla drivazion si hiama ingrazion. Noa la variazion isanana di una grandzza p.s. la vloià è nssario sapr om si ompora al grandzza isan pr isan p.s. la posizion.

Dettagli

Parte 4 - Pag.1. Vision 2000 - obiettivi della revisione. Oltre la ISO 9000: Vision 2000. Vision 2000 - elementi innovativi

Parte 4 - Pag.1. Vision 2000 - obiettivi della revisione. Oltre la ISO 9000: Vision 2000. Vision 2000 - elementi innovativi Olr la ISO 9000: Vso 2000 G.Rass - 11 maggo 2001 1 Vso 2000 - obv dlla rvso Obv dlla rvso dlla ISO 9000: passar dalla culura dlla coformà dll vdz a qulla dl couo mgloramo, ral msurabl dal cl Il progo d

Dettagli

Risultati simulazione test di accesso per l ammissione al corso di Laurea in Professioni Sanitarie

Risultati simulazione test di accesso per l ammissione al corso di Laurea in Professioni Sanitarie 81032GV 42,00 80207OG 39,75 82663RA 39,25 81026IF 38,75 80173GN 38,50 82400LS 38,50 83014FG 38,50 82402TR 38,25 81024CF 37,75 80329DG 37,50 82335GA 37,50 83099LG 37,50 82462GM 37,50 80360BS 37,25 82626DP

Dettagli

APPUNTI DI SISMICITÀ E ANALISI DINAMICA DELLE STRUTTURE

APPUNTI DI SISMICITÀ E ANALISI DINAMICA DELLE STRUTTURE LAUREA QUINQUENNALE IN ARCHIEURA INGEGNERIA a.a. 9- CORO DI ECNICA DELLE CORUIONI Prof. Robro Capozucca APPUNI DI IICIÀ E ANALII DINAICA DELLE RUURE. Gralà Lo scopo us appu è ullo aalzzar l comporamo amco

Dettagli

Ciò infine permette di classificare le unità secondo una graduatoria di rango della distribuzione mediante la matrice R di uguale dimensione.

Ciò infine permette di classificare le unità secondo una graduatoria di rango della distribuzione mediante la matrice R di uguale dimensione. I mtod d sts Data ua matrc d dat comosta d rgh colo, dov rarsta l umro d utà trrtoral da classfcar (ad smo l 03 rovc rarsta l umro d dcator trrtoral. Il rocsso d lavorazo uò ssr così rarstato forma matrcal:

Dettagli

Esercizi sulla CONVOLUZIONE

Esercizi sulla CONVOLUZIONE Esrcizi sulla CONVOLUZIONE 1 INTRODUZIONE Si ricorda ch la convoluzion ra du sgnali x(), rali o complssi, indicaa simbolicamn com: C xy () = x() * è daa indiffrnmn dall du sprssioni: C xy () = C xy ()

Dettagli

Esercizi sulla CONVOLUZIONE INTRODUZIONE. x(t)y( τ - t)dt. x(τ - t)y(t)dt

Esercizi sulla CONVOLUZIONE INTRODUZIONE. x(t)y( τ - t)dt. x(τ - t)y(t)dt INTRODUZIONE Si ricorda ch la convoluzion ra du sgnali x() y(), rali o complssi, indicaa simbolicamn com: C xy () = x() * y() è daa indiffrnmn dall du sprssioni: Esrcizi sulla CONVOLUZIONE C xy () = C

Dettagli

Campionamento. = n. cos

Campionamento. = n. cos L fgaa sua W ua fuz cua, a capaa su u s d pu a psz dll spcch bl, spaa da Qud s pu calcla sl ua asfaa d Fu dsca. ss u s d fquz all qual la asfaa dsca d Fu dll fgaa capa saa ugual alla asfaa d Fu dll fgaa,

Dettagli

Lezione 3. Movimento ed Equilibrio. F. Previdi - Fondamenti di Automatica - Lez. 3 1

Lezione 3. Movimento ed Equilibrio. F. Previdi - Fondamenti di Automatica - Lez. 3 1 Lio 3. Movimo d Eqilibrio F. Prvidi - Fodami di Aomaica - L. 3 Schma dlla lio. Movimo dllo sao dll scia (gral). (Movimo di) Eqilibrio (gral) 3. Sismi LTI 4. Eqilibrio di sismi LTI 5. Movimo di sismi LTI

Dettagli

Richiami su numeri complessi

Richiami su numeri complessi Richiami su numri complssi Insim C di numri complssi E' l'insim dll coppi ordina di numri rali = Z R j Z I ; Z R, Z I R Z = Z R, Z I j Δ = (0,1) unià immaginaria Si noi ch C conin R; in paricolar linsim

Dettagli

Segnali e sistemi tempo discreto

Segnali e sistemi tempo discreto Trasformata di ourir Sgali sistmi tmpo discrto TEORIA DEI SEGALI LAUREA I IGEGERIA DELL IORAZIOE Sommario Sgali tmpo discrto priodici Sri di ourir Sgali tmpo discrto apriodici Trasformata di ourir Proprità

Dettagli

A.A Ingegneria Gestionale 2 appello del 11 Luglio 2016 Soluzioni - Esame completo

A.A Ingegneria Gestionale 2 appello del 11 Luglio 2016 Soluzioni - Esame completo FISI.. 5-6 Igg Gsl ppll dl Lugl 6 Sluz - s pl. U h d s p l d u D su d du l plll DL gu d u sz d gg 5 l sgu sg: l h, l ll vlà ss vk/h, l pù d pssl dlz d dul 9/s p ps l uv u vlà s d h s l d L v dll g l sl

Dettagli

( x) n x. 0 altrove = 1. f n. g n

( x) n x. 0 altrove = 1. f n. g n co : L sm d Co l o d Vl. Ism d Co: Cosdo [ ] sddvdo l sm l cossco C [ /] U [/ ] o d ovo l oo oo C [ /9] U [/9 /] U [/ 7/9] U [8/9 ] Io l ocdmo s h ch: C C C */ C 4*/9 C / L sm d Co: I o d Vl: C C chso

Dettagli

Esercizi & Domande per il Compito di Elettrotecnica del 15 giugno 2004

Esercizi & Domande per il Compito di Elettrotecnica del 15 giugno 2004 Esrcz & Dmand pr l mp d Elrcnca dl 5 un Esrcz cs() Ω Ω F H () Drmnar la crrn () a rm -/ l crcu a mn dl nrar pla può ssr rasfrma cn rn: -/ (),9 cs 5 5 5 9,9,9 Esrcz Un mr asncrn mnfas funznan a rm prmann

Dettagli

Teoria delle opzioni e Prodotti strutturati

Teoria delle opzioni e Prodotti strutturati L FIME a.a. 8-9 9 oa ll ozon Poo suua Gogo Consgl gogo.onsgl@unbg. Uff 58 vmno m:.-3. Pogamma. Mao ll ozon ona va. oa ll ozon 3. nh valuazon 4. Hgng 5. Inggna fnanzaa 6. Pou numh 7. Dvavs sass Ozon Pou

Dettagli

Esercizi riguardanti l integrazione

Esercizi riguardanti l integrazione Esrizi riguardanti l intgrazion. Trovar una primitiva dlla funzion f. Calolar il sgunt intgral indfinito d. Trovar una primitiva dlla funzion f. Tra tutt l primitiv dlla funzion f os sn, dtrminar qulla

Dettagli

PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA

PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA 1 2 RIEPILOGO GENERALE RESIDUI ATTIVI CONSERVATI 3 4 Pgm. CPA0099R ***-----------------------------------------------------------***

Dettagli

Rappresentatione di anima, et di corpo. j œ œ. œ œ œ œ œ. œ œ.

Rappresentatione di anima, et di corpo. j œ œ. œ œ œ œ œ. œ œ. ATTO I - Sa Prima 1. Il Tmpo Il tm - po, il tm - po fug - g, la vi - ta si di - strug - Rapprstatio di aima, t di orpo Nuovamt posta i Musia dal Sig. Emilio dl Cavallir, pr ritar Catado. Data i lu da Allssadro

Dettagli

L equazione del reticolo cristallino

L equazione del reticolo cristallino Chmc sc supror Modulo L quzo dl rtcolo crstllo Srgo Brutt Rchmo d mtmtc: l sr d ourr U quluqu uzo () può ssr rpprstt spso d Tylor purchè l uzo () s drzbl - volt : ( )!... Nl cso cu ()=g() s u uzo prodc

Dettagli

Trasformatore. Parte 2 Trasformatori trifase (versione del ) Trasformatore trifase (1)

Trasformatore. Parte 2 Trasformatori trifase  (versione del ) Trasformatore trifase (1) Trasformator Part 2 Trasformator trfas www.d.g.ubo.t/prs/mastr/ddattca.htm (vrso dl 0-11-2010) Trasformator trfas Pr trasfrr rga lttrca tra du rt trfas s possoo utlzzar tr trasformator moofas, ugual tra

Dettagli

Esercizio 1. La matrice di controllabilità è: Studiare la controllabilità del sistema in figura le cui matrici A, b e c sono qui riportate.

Esercizio 1. La matrice di controllabilità è: Studiare la controllabilità del sistema in figura le cui matrici A, b e c sono qui riportate. Gstvo Blfort Esr d otrollltà Ossrvltà Esro tdr l otrollltà dl sst fgr l tr, soo q rportt. (t) (t) Gstvo Blfort Esr d otrollltà Ossrvltà tr d otrollltà è: d, posto = +, s h dt l sst è dq opltt otrolll Gstvo

Dettagli

Le soluzioni della prova scritta del 17 Dicembre 2014

Le soluzioni della prova scritta del 17 Dicembre 2014 L soluzo dlla prova scrtta dl 7 Dcmbr 04 Sa data la fuzo f a Trova l domo d f b Scrv, splctamt pr stso (o soo suffct dsg, qual soo gl trvall cu f è postva qull cu è gatva c Dtrma l vtual trszo co gl ass

Dettagli

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 )

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 ) Sri di Fourir a mpo coninuo La rapprsnazion di sgnali nl dominio dlla frqunza Jan Bapis Josph Fourir (768 83 ) Fourir sviluppò la oria mamaica dl calor uilizzando funzioni rigonomrich (sni cosni), ch noi

Dettagli

STATI COERENTI IN MECCANICA QUANTISTICA

STATI COERENTI IN MECCANICA QUANTISTICA UNIVERSITÀ DEGLI STUDI DI BARI FACOLTÀ DI SCIENZE MM. FF. NN. CORSO DI LAUREA IN FISICA TESI DI LAUREA IN FISICA TEORICA STATI COERENTI IN MECCANICA QUANTISTICA Rlao: Ca.mo Pof. Loado ANGELINI Lauado:

Dettagli

Campionamento. = n. cos

Campionamento. = n. cos L fgaa sua W ua fuz cua, a capaa su u s d pu a psz dll spcch bl, spaa da Qud s pu calcla sl ua asfaa d Fu dsca. ss u s d fquz all qual la asfaa dsca d Fu dll fgaa capa saa ugual alla asfaa d Fu dll fgaa,

Dettagli

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 22. Rimini, 19 novembre 2014

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 22. Rimini, 19 novembre 2014 Macroconomia Laura Vici laura.vici@unibo.i www.lauravici.com/macroconomia LEZIONE 22 Rimini, 19 novmbr 2014 Macroconomia 362 I mrcai finanziari in conomia apra Dao ch l acquiso o la vndia di aivià finanziari

Dettagli

Lampada ad arco ad alta pressione di xeno

Lampada ad arco ad alta pressione di xeno Sorg Lampada ad arco ad ala prssio di xo L lvaa sio applicaa agli lrodi provoca ua corr. Il flusso di lroi, urado gli aomi dl gas, li ioizza o li ccia. Il dcadimo o la ricombiazio io-lro grao l missio

Dettagli

( ) mentre: Se si fa l ipotesi SVEA cioè di inviluppo del campo lentamente variabile lungo z:

( ) mentre: Se si fa l ipotesi SVEA cioè di inviluppo del campo lentamente variabile lungo z: I B PROPGTION THOD (BP) ssga il cap i pr sudiar l vlui è cssari calclar il valr i quidi:. Si suppga ch il cap sia craic uidirial si prpaghi lla diri psiiva dll ass. Si par dall quai scalar dll d di Hlhl

Dettagli

Corso di Macroeconomia

Corso di Macroeconomia Corso di Macroconomia LE ASPETTATIVE: NOZIONI DI BASE. Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao

Dettagli

Facoltà di Economia. Equazioni differenziali Lineari ed Applicazioni Economiche

Facoltà di Economia. Equazioni differenziali Lineari ed Applicazioni Economiche Facolà di Economia Equazioni diffrnziali Linari d Applicazioni Economich prof. EQUAZIONI DIFFERENZIALI LINEARI APPLICAZIONI ECONOMICHE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE LINEARI Quso ipo di quazioni

Dettagli

Modelli equivalenti del BJT

Modelli equivalenti del BJT Modll ulnt dl JT Pr lo studo dll pplczon crcutl dl JT, s è rso opportuno formulr d modll ulnt dl dsposto ch srssro rpprsntr n modo connnt l suo comportmnto ll ntrno d crcut. A scond dl tpo d pplczon (mplfczon

Dettagli

Esperienza n 8:Determinazione del calore specifico di un corpo

Esperienza n 8:Determinazione del calore specifico di un corpo Espz 8:Dzo dl lo spfo d u opo Spo: o Eul (N ol 4549 v.o.) v Noo (N ol 458656 v.o.) Sopo dll spz Qus spz h lo sopo d d l lo spfo d u opo vso l uso dl loo dll solz. Su ulzz P l'spz soo s ulzz sgu su: -U

Dettagli

Limiti di successioni - svolgimenti

Limiti di successioni - svolgimenti Limiti di succssioi - svolgimti Scrivrmo a b quado a b =. Calcoliamo qusto it, raccoglido il fattor al umrator al domiator. Si ha 2 + 2 4 = + 2 2 3! 4 3!. Iazitutto, ricordiamo ch Ioltr, si ha utilizzado

Dettagli

) il limite al primo membro, si ottiene l'equazione della retta t:

) il limite al primo membro, si ottiene l'equazione della retta t: DER DERIVATE Il problma dll agi Vdiamo u problma di gomria i cui irvi il coco di limi Sia f ua fuzio ral di domiio A IR sia u puo iro ad A Fissao l piao u rifrimo carsiao orogoal OXY (fig, cosidriamo sul

Dettagli

Effetto Doppler = ± = 1

Effetto Doppler = ± = 1 RELATIVITÀ RELATIVITÀ Effo Dolr L ffo Dolr r la radazon oa è n ffo rlavso. Consdrao na sorgn d radazon n ovno rso ad n ossrvaor ad na vloà. L nrvallo d o srao fra d dall ossrvaor rsla: s o λ Dao sorgn

Dettagli

RUMORE TERMICO - SOLUZIONI

RUMORE TERMICO - SOLUZIONI UMOE EMICO - SOLUZIONI Nl circuio in i. è una rsisnza rumorosa alla mpraura assolua L è un induanza. Si uol drminar il alor quadraico mdio dlla corrn i ch scorr all inrno dll induor. Da un puno di isa

Dettagli

Lezione 3. F. Previdi - Automatica - Lez. 3 1

Lezione 3. F. Previdi - Automatica - Lez. 3 1 Lzon 3. Movmno Equlbro F. Prv - Auomaca - Lz. 3 1 Schma lla lzon 1. Movmno ll usca un ssma LTI SISO. Movmno lbro movmno forzao 3. Equlbro un ssma LTI SISO 4. Guaagno saco un ssma LTI SISO F. Prv - Auomaca

Dettagli

Prova scritta di Analisi Matematica I - 1 febbraio 2011 Proff. B. CIFRA F. ILARI. Compito A

Prova scritta di Analisi Matematica I - 1 febbraio 2011 Proff. B. CIFRA F. ILARI. Compito A SEDE DISTACCATA DI LATINA a.a. / Prova sritta di Aalisi Matmatia I - fbbraio Proff. B. CIFRA F. ILARI Compito A COGNOME...... NOME. Matr... Corso di Laura o o o Ambit Trritorio Risors Iformazio Maia firma

Dettagli

L elevata tensione applicata agli elettrodi provoca una corrente. Il flusso di elettroni, urtando gli atomi del gas, li ionizza o li eccita.

L elevata tensione applicata agli elettrodi provoca una corrente. Il flusso di elettroni, urtando gli atomi del gas, li ionizza o li eccita. Sorg Lampada ad arco ad ala prssio di xo L lvaa sio applicaa agli lrodi provoca ua corr. Il flusso di lroi, urado gli aomi dl gas, li ioizza o li ccia. Il dcadimo o la ricombiazio io-lro grao l missio

Dettagli

Distribuzione di probabilità di di Poisson

Distribuzione di probabilità di di Poisson Diizio Disribuzio di probabilià di di oisso La disribuzio di oisso dscriv procssi casuali rari co dia diia. Si cosidri u vo casual ch si rip u cro uro di vol, o issao a priori, co ua rquza assolua dia

Dettagli

Distribuzione di probabilità di di Poisson

Distribuzione di probabilità di di Poisson Disribuzio di probabilià di di oisso Diizio i i La disribuzio di oisso dscriv procssi casuali rari co mdia diia. Si cosidri u vo casual ch si rip u cro umro di vol, o issao a priori, co ua rquza assolua

Dettagli

Bilancio di energia in reattori ADIABATICI

Bilancio di energia in reattori ADIABATICI REORI DIII laco d rga rattor DIII Q ~ W s Rx Qusta è l quazo d blaco rgtco allo stato stazoaro Rattor adabatco sza lavoro W s Rx ~ trm

Dettagli

La tecnica lagrangiana applicata al problema del Commesso Viaggiatore (TSP) Paolo Detti Università di Siena

La tecnica lagrangiana applicata al problema del Commesso Viaggiatore (TSP) Paolo Detti Università di Siena La cnca lagrangana applcaa al problma dl Commo Vaggaor TSP Paolo D Unvrà d Sna Un lowr bound lagrangano pr l problma dl TSP Dao un grafo GV,A con p ugl arch, una formulazon pr l TSP mmrco è la gun: mn

Dettagli

Si possono distuguere due casi: a) molecole distinguibili: il numero di modi è dato da

Si possono distuguere due casi: a) molecole distinguibili: il numero di modi è dato da ESISTE UA OTEOLE DIFFEEA TA LE SOLUIOI DEI POLIEI E QUELLE DELLE OLECOLE PICCOLE DOUTA ALLA DIFFEEA DI DIESIOI TA LE OLECOLE POLIEICHE E QUELLE DEL SOLETE. Pr qusto motvo trattrmo l soluzon polmrch attravrso

Dettagli

Integrale di sin t/t e varianti

Integrale di sin t/t e varianti Ingral di sin / variani Annalisa Massaccsi dicmbr Ingral di sin / In rifrimno all s. 7 dl VII gruppo di srcizi, com già viso ad srciazion, vogliamo dimosrar ch sin / d R. Ossrvazion. Ossrviamo innanziuo

Dettagli

Risultati simulazione test di accesso per l ammissione ai corsi di Laurea Triennale in Ingegneria

Risultati simulazione test di accesso per l ammissione ai corsi di Laurea Triennale in Ingegneria per Area del Sapere I 80262EG 50,50 8,75 3,75 18,75 15,50 3,75 80275LM 39,75 8,50 6,25 1 1 4,00 83803RF 34,25 8,00 13,25 9,50 3,50 82832VA 30,25 80264LN 25,75 80259ZA 25,00 9,25 7,75 1 3,25 8,50 1 5,25

Dettagli

La valutazione finanziaria

La valutazione finanziaria STUDIO BERETTA DOTTTARELLI TTARELLI DOTTORI COMMERCIALISTI ASSOCIATI Srgio Bra La valuazion finanziaria Prmssa Il valor dl capial conomico vin simao considrando i flussi di cassa prodoi in fuuro dall imprsa

Dettagli

Trasformata di Fourier 1D

Trasformata di Fourier 1D rasormaa di Fourir D M Brro DISI Uivrsià di Gova - Dalla sri all igral di Fourir - Formula di ivrsio dlla rasormaa di Fourir - Proprià dlla rasormaa di Fourir - Esmpi di rasorma di Fourir - Prodoo di covoluzio

Dettagli

Capitolo 3 - Trasformata di Fourier (II)

Capitolo 3 - Trasformata di Fourier (II) Appui di oria di Sgali Capiolo 3 - rasformaa di Fourir (II Cararisich proprià dll impulso di Dirac... Dfiizio... proprià: ara uiaria...3 proprià: proprià di saccio...4 3 proprià: prodoo di covoluzio...4

Dettagli

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} =

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} = Laura Trial i Matmatica, Uivrsità La Sapiza Corso di Probabilità 2, A.A. 26/27 Prova scritta dl 26 Giugo 27 Soluzioi dgli srcizi proposti Esrcizio. Gli arrivi di mssaggi -mail ad u dato idirizzo di posta

Dettagli

MERCATI FINANZIARI IN ECONOMIA APERTA (Modello IS-LM in economia aperta)

MERCATI FINANZIARI IN ECONOMIA APERTA (Modello IS-LM in economia aperta) MRTI FINNZIRI IN ONOMI PRT (Modllo - n conoma apra) Invmn fnanzar. Scla ra: a. mona nazonal: ranazon b. (mona ra): non ha nun vanaggo dnrla c. ol nazonal: fruano nr d. ol r: fruano nr ono ogg a rcho d

Dettagli

Diodo: V D > 0. n p = N. p n0. x n. -x p 0. Figura 1

Diodo: V D > 0. n p = N. p n0. x n. -x p 0. Figura 1 CORREI E IOO Pr l calcolo dlla corrt l dodo rsza d ua tso d olarzzazo stra faccamo l sgut ots smlfcatv: 1. cotatt mtallo-smcoduttor co l zo d soo d to ohmco, ovvrosa ad ss è assocata ua caduta d tso roorzoal

Dettagli

Teoria dei Sistemi - A.A. 2003/2004

Teoria dei Sistemi - A.A. 2003/2004 ANAISI ODAE DEI SISTEI INEARI A TEPO CONTINUO Dr. Crisian Scchi ARSconrol ab Univrsià di odna Rggio Emilia Il movimno di un sisma TI & ( A( + Bu( y( C( + Du( Formula di agrang ( A A( τ + Bu( τ dτ A I +

Dettagli

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche Appun d Esrz d Fsa Tna Mahn Trmh Cap.. Sambaor d alor Nola Forgon Paolo D Maro Vrson 0.03 0.05.0. La prsn dspnsa è rdaa ad slusvo uso ddao dgl allv d Dplom Unvrsar dl sor ndusral dll Unvrsà dgl Sud d Psa.

Dettagli

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017 I PPELLO (& II ESONERO) DI SEGNLI E SISTEMI 05 giugno 017 Esrcizio 1. [+ punti] SOLO PER CHI SOSTIENE L PROV COMPLET Si considri il modllo ingrsso/uscita LTI causal dscritto dalla sgunt quazion diffrnzial:

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 FUNZIONI INTEGRALI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 FUNZIONI INTEGRALI Univrsià Carlo Caano Inggnria gsional Analisi mamaica aa 6/7 FUNZIONI INTEGRALI ESERCIZI CON SOLUZIONE 6 ) Daa la funzion F d a) calcolar F, F ', '' F ; b) scrivr l quazion dlla ra angn nl puno ; c) scrivr

Dettagli

AUTORITÀ PORT UA L E D I VEN E Z I A

AUTORITÀ PORT UA L E D I VEN E Z I A AUTORITÀ PORTUALE D I EN E Z l A A P PA LTO D E I LAO R I P E R LA COST R U Z I O N E D E L LA DA R S E N A N O R D E D E L M A R G I N AM E N TO S U D - T E R M I N A L A U TOST RA D E D E L MAR E E P

Dettagli

ALGORITMO FFT (Fast Fourier Transform)

ALGORITMO FFT (Fast Fourier Transform) AGORITO FFT (Fast Fourr Transor) Rha sulla DFT Sa un sgnal rodo d rodo rarsntato dal vttor -dnsonal d oonnt [], [],.., [-] S dns Trasorata d Fourr Dsrta (DFT) dl sgnal la susson F: F[ ] Forula d nvrson:

Dettagli

La Trasformata di Laplace. Pierre-Simon Laplace

La Trasformata di Laplace. Pierre-Simon Laplace a Traformaa di aplac Pirr-Simon aplac 749-827 a Traformaa di Eulro onhard Eulr Eulro 707-783 Dfinizion Si dfinic raformaa di aplac dlla funzion f la funzion F coì dfinia: Dov σjωσj2πf. 0 F { f } f d Dfinizion

Dettagli

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica srcitaion Francsca pollonio Dipartimnto Inggnria lttronica -mail: () t cos( ω t ϕ) ampia pulsaion Vttori complssi Data una granda scalar (t) variabil cosinusoidalmnt nl tmpo fas i può sprimr (t) com sgu:

Dettagli

Calcolo della funzione d uscita per un generico segnale d'ingresso

Calcolo della funzione d uscita per un generico segnale d'ingresso Drar nrn Il crcu drar nrn è un dsps ch dà n usca un sgnal prprznal alla draa dl sgnal d ngrss; ssa la rma d nda d'usca è la draa dlla rma d nda d ngrss. Un crcu drar è qull rpra n gura. alcl dlla unzn

Dettagli

Appunti sulle Equazioni Differenziali. Appunti sulle equazioni differenziali

Appunti sulle Equazioni Differenziali. Appunti sulle equazioni differenziali Apput sull Equazo Dffrzal Apput sull quazo dffrzal S chama quazo dffrzal u tpo partcolar d quazo fuzoal, lla qual la fuzo cogta compar sm ad alcu su drvat, ossa u quazo lla qual oltr all ormal oprazo algbrch

Dettagli

Serie di Fourier. 1 - Funzioni periodiche. t T. t T. 2 F(t) =

Serie di Fourier. 1 - Funzioni periodiche. t T. t T. 2 F(t) = Sri di Fourir M Brro ISI Uivrsià di Gova Fuzioi priodih iizio di uzio priodia Si di h ua uzio ( ha priodo o h è priodia o priodo s pr ogi ( ( dov è ua osa posiiva Il valor piu piolo di > è do il priodo

Dettagli