Astronave, atomo, etc..

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Astronave, atomo, etc.."

Transcript

1 Cinematica del punt materiale Punt materiale: ggett di dimensini lineari trascurabili rispett alla precisine cn cui se ne vule determinare la psizine z x Astrnave, atm, etc..

2 z r Crdinate nell spazi Lntan da grandi masse vale sperimentalmente la gemetria Euclidea x O y z x Le linee rette sn definite dai raggi di luce Einstein et al. y θ 4 r = x + y + z Gauss et al., ca 1 Sle

3 z θ Crdinate Sferiche ( ) ( ) x = rsin θ Cs φ ( ) ( ) y = rsin θ Sin φ r z=rcsθ ( ) O φ y x

4 Lngitudine = φ Latitudine = 90 -θ r =R

5 Crdinate cilindriche z x y ( ) = ρ Cs φ ( ) = ρ Sin φ z = z z φ y x ρ ο

6 Descrizine del mt di un punt materiale Il mt è interamente nt nell intervall di temp t 1 < t < t 2 se sn nte x (t), y (t) e z (t) nell stess intervall ( r (t), φ (t) e z (t) etc.) La legge raria

7 Al passare del temp il punt descrive una curva nell spazi: la traiettria t t xt () = rcs () () 2 π ; y t = rsin 2 π ; z t = vt; t t r = 1 m t = 50 s v m = 0.01 s

8

9 Stessa Traiettria, diversa legge raria t t xt () = rcs () () 2 π ; y t = rsin 2 π ; z t = vt; t t r = 1 m t = 50 s v m = 0.01 s

10

11 y y B y A r B Nuv cncett: l spstament Punt che va da A a B D Le due grandezze φ A { x = x B -x A, y = y B -y A } C Definiscn un nuv ggett matematic x A x B r x Nta: l spstament A B è uguale a CD 2 2 ( ) ( ) r= x x + y y B A B A B A B A ( ) ( ) x x = r Cs φ ; y y = r Sin φ

12 y y D y B y A A Smma D B r di spstamenti 2 r r r x x,y y 1 r 1 3 r 2 { } 3 D A D A = x x + x x, {( ) ( ) D B B A ( y y ) ( y y )} + = D B B A x A x B x D def r r + r x = x + x, y + y { } Nta: la smma è cmmutativa r + r = r + r

13 y y r 1 y y r 1 r 1 r Σ a vlte un spstament r = Σ r + r + r x Σ y = Σ r Σ = def 3 x 3 y r 1 x x x x def r = a r x = a x, y = a y Σ 1 Σ 1 Σ 1

14 Qualche sservazine x = a x ; y = a y Σ 1 Σ 1 r = a Σ x + a y = a r r 1 B A r 1 Es: α= - 1

15 Queste sn le prprietà di un camp vettriale Gli spstamenti sn dunque vettri e gdn di tutte le lr prprietà I numeri cme a, che nn dipendn dalla scelta delle crdinate si chiaman scalari (Es: misure di temp, misure di temperatura, misure di massa etc.) La lunghezza di un spstament è un scalare (verificare che nn dipende dalla scelta delle crdinate)

16 ϕ y y Trasfrmand le crdinate P ( ) ysinφ ' P y P y P x P x ϕ x P ' P x P ( ) xcsφ ' P x ( ) ' φ ysin( ) = xcs φ P

17 ϕ y y P ( ) y Cs φ ' P y P y P x P x ϕ ' P ( ) xsinφ x P x y P ' P ( ) ' φ y Cs( ) = xsin + φ P

18 π Cs π Sin = 0.5 6

19 La legge di trasfrmazine e la sua inversa: x e y sn rutate di ϕ rispett a x e y x e y sn rutate di -ϕ rispett a x e y ( ) ' ( ) x = x Cs φ y Sin φ ' P P P ( ) ' ( ) y = xsinφ + y Cs φ ' P P P ( ) ( ) x = x Cs φ + y Sin φ ' P P P ( ) ( ) y = xsinφ + y Cs φ ' P P P φ φ Cambiand segn a ϕ il sen cambia segn ed il csen n

20 La trasfrmazine degli spstamenti ( ) ( ) ( ) ( ) = x Cs φ y Sin φ & x = x Cs φ y Sin φ ' ' ' ' P P P Q Q Q ( ) ( ) ( ) ( ) = x Sin φ + y Cs φ & y = x Sin φ + y Cs φ ' ' ' ' P P P Q Q Q ( ' ' ) ( ) ( ' ' ) ( ) x x = x x Cs φ y y Sin φ P Q P Q P Q x x' y' ( ' ' ) ( ) ( ' ' ) ( ) Q P Q y y = x x Sin φ + y y Cs φ P Q P Q P Q y x' y' Le cmpnenti dell spstament si trasfrman cme le crdinate dei punti

21 Il mdul di un spstament x= x'cs φ y'sin φ ( ) ( ) ( ) ( ) y = x'sin φ + y'cs φ ( ) ( ) ( ) ( ) = φ + φ φ φ x x' Cs y' Sin 2 x' y'cs Sin ( ) ( ) ( ) ( ) y = x' Sin φ + y' Cs φ + 2x' y'sin φ Cs φ r x y x' Cs ( ) Sin ( ) = + = φ + φ ( ) 2 Cs ( ) 2 + y' Sin φ + Cs φ = r' E un scalare = 1 = 1

22 Trasfrmazine di un spstament quand si rutan gli assi di un angl ϕ x ϕ y y ( ) ( ) x= x'cs φ y'sin φ ( ) ( ) y = x'sin φ + y'cs φ x ϕ

23 Nte: Le tre crdinate cartesiane di un punt sn le cmpnenti dell spstament che prta dall rigine a quel punt: Il raggi vettre r Le tre cmpnenti di un spstament nn dipendn dalla scelta dell rigine ma sl dall rientazine degli assi yb Se si cambia rigine le ya crdinate cartesiane cambian ed r cambia O y B y A O ya xa A O B xb r A xa yb-ya= y B-y A xb-xa= x B-x A

24 Una cppia di grandezze fisiche che si trasfrman cme le cmpnenti cartesiane di un spstament quand si cambia il sistema di crdianate frman un vettre In particlare: La smma (differenza) di due vettri è un vettre Il prdtt di un vettre per un scalare è un vettre Tutt vale anche in 3 dimensini

25 A r A r 1 r B B Un spstament è la differenza fra il raggi vettre del punt di arriv e quell del punt di partenza

26 Un utile esercizi: la legge raria della Terra 1 AU=distanza media Sle-Terra= m

27 Cnversine in crdinate cartesiane [ ] [ ] x = Distanza Cs Hlng Cs Hlat [ ] [ ] [ ] y = Distanza Sin Hlng Cs Hlat ;z = Distanza Sin Hlat

28

29 30 girni

30 Crdinate cartesiane

31 La relazine fra spstament e temp trascrs: il cncett di velcità

32 L spstament va a 0 Il rapprt tende ad un limite finit

33

34

35 Il mdul xt ( + t ) xt ( ) yt ( + t ) yt ( ) zt ( + t ) z ( t ) + + t t t

36

37

38 Alcune cnclusini Dividend le tre cmpnenti del vettre spstament per l scalare temp si ttiene ancra un vettre: la velcità media v xt xt y t, y t z t, z t ( ) ( ) ( ) ( ) ( ) ( ) = t2 t1 t2 t1 t2 t1 v t,t ( ) 1 2 r t ( ) r( t ) 2 1 t t 2 1

39 ( ) xt ( ) xt e t t allra v t indip da t ( ) x 1 2 t2 t1 Vettre velcità istantanea v( t ) xt+t xt y t+ t y t z t+ t z t Lim, Lim, Lim t 0 t t 0 t t 0 t ( ) ( ) ( ) ( ) ( ) ( ) { v ( ) ( ) ( )} x t,vy t,vz t

40 Direzine e vers Tangente alla traiettria. Vers di percrrenza

41 φ Mdul: lunghezza dell arc di traiettria nell unità di temp

42 Lim r( t + t) r( t) = 0 t Lim t r t t r t t ( + ) ( ) = v t () lunghezza di traiettria Mdul: temp impiegat Direzine: tangente alla traiettria Vers: stess vers di percrrenza della traiettria

43 Mt rettiline unifrme = + y( t) = vyt+ y ( ) z t = vzt+ z () x xt v t x r() t = { v } xt+ x,vyt+ y,vzt + z def dr() t v() t dt d( v ) ( ) ( ) xt+ x d v yt+ y d vzt+ z =,, dt dt dt Un vettre cstante = v,v,v { } x y z () 2() 2( ) 2 v t = v ( ) x t + vy t + vz t = v x + vy + vz

44 y r t () Si può rappresentare in un pian v() t r () t O x

45 y Cmpnenti della velcità v() t vx = v Cs φ vy ( ) = v Sin φ ( ) O v() t φ x

46

47 Unità di misura nel SI m/s Valri tipici Sun (in aria STP) 340 m/s Luce m/s Autmbile 35 m/s Aere (Jet cmmerciale) 250 m/s Crsta terrestre m/s

48 Mt circlare unifrme () = ( ω ) y ( t) = rsin( ω t) ( ) x t rcs t [ ] [ ] 1 r = l ω = t z t = 0

49 Ancra sulle leggi fisiche: la prprzinalità fra ptenze di grandezze misurate h vut P atm A = α γ β KB C D P SI : h( m) = ρ Es: legge di Tricelli ρ= densità ( ) atm ( Pa) kg 3 m M L P atm =pressine atmsferica ρ = ( ) ( ) M( kg) Patm Pa L m SI : h m = M 3 L 3

50 Grandezza Pressine Lunghezza Cambiament di unità: Patm ( Pa) L( m) ( ) = M( kg) SI : h m Unità di partenza Unità di Arriv 3 Fattre di Cnversine Pascal Trr 1 Pascal = Trr Metr Centimetr 1 Metr = 100 Centimetri Massa Kilgramm Gramm 1 Kilgramm = 1000 Grammi Cambia la cstante h( cm) atm ( ) ( ) ( ) = = 100 M ( gr) Patm ( Trr) L( cm) h( cm) = ( 100) M( gr) 3 Patm ( Trr) L( cm) h( cm) = 1.36 M( gr) P Trr L cm 100 h m Legge di prprzinalità è salva

51 Cambiament di unità: A=k A A, B=k B B, C=k C C, D=k D D k A' = Kk B' k C' k D' = α α γ γ β β A B C D α γ β Kk BkCk D = B' C' D' k A α γ β A' = α γ β K'B' C' D' Ok: la prprzinalità è sservata da entrambi gli sservatri ( B ) k A ( ) A= Sin ' Sin k B' N: sl un dei due sservatri trva la legge bbedita A B

52 Il rapprt di due numeri che si misuran nelle stesse unità nn dipende dalla scelta dell unità di misura (numer pur) B B' kb B' = = B B' k B' B Una funzine trascendente di un numer pur può cmparire in una legge fisica A A Sin B = B A' B A' = kaasin B' kb ASin B' k B = ka B' kb B' k B' A' Sin B'

53 Mt circlare unifrme () = ( ω ) y ( t) = rsin( ω t) ( ) x t rcs t [ ] [ ] 1 r = l ω = t z t = 0 r() t = () ( ) ( ) x t y t z t + + = rcs ω t + rsin ω t = r ( ) ( )

54 v x v () t y () t Velcità dx() t dr ( ) Cs ωt = = = r ω Sin( ω t) dt dt dy () t drsin( ) ωt = = = r ω Cs( ω t) dt dt dz ( t) v () z t = = 0 dt v t r Sin t,cs t { } () = ω ( ω ) ( ω ) v t = r ω Sin ω t + Cs ω t = rω () 2( ) 2( )

55 π θ= φ 2 y O r( t) v( t) ( ) = ( ) ω ( ) = ( ω ) x t rcs t y t rsin t φ =ω t x ( ) = ω ( ω ) v t rcs t y ( ) = ω ( ω ) v t rsin t x

56

57 r t () v() t r t ( ) v( t) ( ) ( ) + ( ) ( ) + ( ) ( ) x t v t y t v t z t v t x y z = rcs ω t ωrsin ωt ( ) ( ) ( ) ( ) + rsin ω t ω rcs ω t = 0 Ma anche r() t v() t r() t v() t Cs r = () t v() t () v() t r t =± π 2

58 r t t r t ( + ) ( ) π δ 2 2 r t ( + t) δ r( t) Al tendere di t 0, δ 0 e π/2-δ/2 π/2 r t+ t r t r t ( ) ( ) () La derivata di un vettre di mdul cstante è rtgnale al vettre derivat

riepilogo: Equazione d onda Proprietà delle onde elettromagnetiche 1 c 2

riepilogo: Equazione d onda Proprietà delle onde elettromagnetiche 1 c 2 riepilg: Equazine d nda Prprietà delle nde elettrmagnetiche E = µ ε E t E e B sn in fase. E e B nn sn indipendenti: E e B sn rtgnali tra lr: (e alla direzine di prpagazine) E x B dà direzine e vers di

Dettagli

Cinematica. Spiegazione riarrangiata e semplificata rispetto ai libri di testo. Cinematica (unidimensionale) 1

Cinematica. Spiegazione riarrangiata e semplificata rispetto ai libri di testo. Cinematica (unidimensionale) 1 Cinematica Spiegazine riarrangiata e semplificata rispett ai libri di test Cinematica (unidimensinale) 1 Intrduzine Csa serve Mdelli e lr utilizz Definizine di cinematica Valri medi Valri istantanei Cinematica

Dettagli

TRE SISTEMI DI RIFERIMENTO O O' O'' IN MOTO RELATIVO TRA LORO Z'' Z'' Z Z ' O' Z Z ' O' O'' O (SISTEMA RIFERIMENTO DEL LABORATORIO) O''

TRE SISTEMI DI RIFERIMENTO O O' O'' IN MOTO RELATIVO TRA LORO Z'' Z'' Z Z ' O' Z Z ' O' O'' O (SISTEMA RIFERIMENTO DEL LABORATORIO) O'' Z Z Z Z ' ' ' ' v v V Z'' Z'' '' '' X' X' x'' x'' TRE SISTEMI DI RIFERIMENT ' '' IN MT RELATIV TRA LR (SISTEMA RIFERIMENT DEL LABRATRI) ' SI MUVE CN VELCITA' UNIFRME v (DIREZINE IDENTIFICATA CN L'ASSE

Dettagli

( ) ( ) d x = ω. dsenθ dθ. d 2 senθ dθ 2. = d dθ. = sen θ. = d cosθ dθ. d 2 cosθ dθ. dcosθ dθ. = cosθ dθ. = d( senθ) = d sen θ dθ

( ) ( ) d x = ω. dsenθ dθ. d 2 senθ dθ 2. = d dθ. = sen θ. = d cosθ dθ. d 2 cosθ dθ. dcosθ dθ. = cosθ dθ. = d( senθ) = d sen θ dθ Mt armnic Cnsideriam ra il cas in cui l'accelerazine dipenda dalla psizine del punt materiale, in particlare esaminerem il cas in cui l'accelerazine è prprzinale all'ppst della psizine attravers la cstante

Dettagli

LEGGI ORARIE DI ALCUNI MOTI PARTICOLARI

LEGGI ORARIE DI ALCUNI MOTI PARTICOLARI LEGGI RARIE DI ALCUNI MTI PARTICLARI MT RETTILINE UNIFRME (1) v = costante; a = 0 Legge oraria: P(t) v x 0 è la posizione di P all istante t=0 (posizione iniziale) x 0 x(t) P(t=0) v x(t) = v t + x 0 Nel

Dettagli

Componenti circuitali primarie

Componenti circuitali primarie mpnenti circuitali primarie Un circuit, qualsiasi ess sia, può essere scmpst in un insieme (anche estremamente cmpless) di cmpnenti semplici: Generatri apacità Resistenze R Induttanze L iascun di questi

Dettagli

INTRODUZIONE AI SEGNALI

INTRODUZIONE AI SEGNALI INRODUZIONE AI SEGNALI INRODUZIONE AI SEGNALI Segnale insieme di quantità fisiche che varian rispett ad una variabile ad un insieme di variabili indipendenti. [s, s, s 3... s M ] f(x, x, x 3... x N ) M-canali

Dettagli

Soluzione Es.1- In generale, le equazioni orarie del moto lungo l'asse orizzontale x e quello verticale y si possono scrivere come: (1a) (1b) (1c)

Soluzione Es.1- In generale, le equazioni orarie del moto lungo l'asse orizzontale x e quello verticale y si possono scrivere come: (1a) (1b) (1c) Sluzine Es.1- In generale, le equazini rarie del mt lung l'asse rizzntale x e quell verticale si pssn scrivere cme: ( t) h + v (csα) t gt / h + v t / gt / (1a) v ( t) v csα gt v / gt (1b) x( t) v (sinα

Dettagli

[ ] ( ) ( ) ( ) Accelerazione. dv t d r t. dt dt. t d y t. dt dt. dt dt. Dimensioni fisiche. v l m. t = = dv t d z t. dt dt. x 2.

[ ] ( ) ( ) ( ) Accelerazione. dv t d r t. dt dt. t d y t. dt dt. dt dt. Dimensioni fisiche. v l m. t = = dv t d z t. dt dt. x 2. a Accelerazine dv d r a = = dv ( ) x d x = = ( ) dv y d y ay = = x Dimensini fisiche ( ) ( ) a ( ) ( ) dv d z = = z z [ ] [ ] [] [] v l m a = = S.I. s [] S. Viale A.A. 003-004 1 Valri ipici Accelerazine

Dettagli

DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE

DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE U N I V E R S I T À D E G L I S T U D I D I P I S A DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE Cmunicazini numeriche Esercizi su sistemi di variabili aleatrie-e sui prcessi stcastici Sistemi di variabili

Dettagli

EQUAZIONI DI MAXWELL

EQUAZIONI DI MAXWELL QUAZIONI DI MAXWLL quazini di Maxwell utti i fenmeni elettrmagnetici pssn essere interpretati a partire da queste equazini (Maxwell, 873): erema di Gauss per il camp elettric Il fluss del camp elettric

Dettagli

Esercizio 1 In figura è riportato il circuito equivalente del sistema di superfici sferiche concentriche.

Esercizio 1 In figura è riportato il circuito equivalente del sistema di superfici sferiche concentriche. Esame scritt di Elettrmagnetism del 10 Lugli 2014 - a.a. 2013-2014 prff. F. Lacava, F. Ricci, D. Trevese Elettrmagnetism 10 12 crediti: esercizi 1,2,3 temp 3 h e 30 min; Recuper di un esner: esercizi crrispndenti

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO RELTÀ E MODELLI SCHED DI LVORO La rampa di access Per accedere a un edifici pubblic ci sn 6 gradini alti 6 cm e prfndi 0 cm; è necessari cstruire una rampa di access per carrzzine. La nrmativa prevede

Dettagli

Sistemi di coordinate

Sistemi di coordinate Sistemi di coordinate Servono a descrivere la posizione di una punto nello spazio. Un sistema di coordinate consiste in Un punto fisso di riferimento chiamato origine Degli assi specifici con scale ed

Dettagli

Analisi Matematica 2. Curve e integrali curvilinei. Curve e integrali curvilinei 1 / 29

Analisi Matematica 2. Curve e integrali curvilinei. Curve e integrali curvilinei 1 / 29 Analisi Matematica 2 Curve e integrali curvilinei Curve e integrali curvilinei 1 / 29 Curve in R 2 e R 3 Intuitivamente: una curva é un insieme di punti nello spazio in cui una particella puó muoversi

Dettagli

Fisica Applicata (FIS/07) Architettura

Fisica Applicata (FIS/07) Architettura Fisica Applicata (FIS/07) 9CFU Facltà di Ingegneria, Architettura e delle Scienze Mtrie 8-marz-01 Architettura (crs magistrale a cicl unic quinquennale) Prf. Lanzalne Gaetan Cambiament di SR Cambiament

Dettagli

Integrale curvilinei (o di densità) 19 Novembre 2018

Integrale curvilinei (o di densità) 19 Novembre 2018 Integrale curvilinei (o di densità) 19 Novembre 2018 Indice: urve parametrizzate nello spazio. Lunghezza di una curva. Integrali curvilinei. Applicazioni geometriche e fisiche. Federico Lastaria. Analisi

Dettagli

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Secondo Parziale, , Versione A Cognome e nome:...matricola:...

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Secondo Parziale, , Versione A Cognome e nome:...matricola:... es.1 es. es.3 es. es.5 somma 6 6 6 6 6 3 Analisi Matematica : Secondo Parziale, 3.5.16, Versione A Cognome e nome:....................................matricola:......... 1. Dimostrare che la forma differenziale

Dettagli

Riassunto di formule interessanti

Riassunto di formule interessanti iassunt di frmule interessanti Cnsiderata la relazine tra la cstante K nel vut della legge di Culmb e la cstante dielettrica del vut: K 1 4πε a) La legge di Culmb si può scrivere nel md seguente: F 1 4πε

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Analisi Matematica II, Anno Accademico Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI ESERCIZI n.

Analisi Matematica II, Anno Accademico Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI ESERCIZI n. Analisi Matematica II, Anno Accademico 17-18. Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI ESERCIZI n. CAMMINI ESERCIZIO 1 Un cammino soddisfa le relazioni y = x z, z = y + x 3, essendo

Dettagli

Le due fenditure dell interferometro si comportano come piccole sorgenti, di intensità rispettivamente pari a I 1 = α 2 I o ; I 2 = β 2 I o.

Le due fenditure dell interferometro si comportano come piccole sorgenti, di intensità rispettivamente pari a I 1 = α 2 I o ; I 2 = β 2 I o. Prva i stituzini i Fisica ella Materia 7.06.06 sercizi Un na M piana ce prcee nel vut, in irezine ẑ, è escritta al camp elettric (figura ): r z,t r r ep i kz t cn ˆ ( ) [ ( )] a) Determinare la lungezza

Dettagli

Trasformazione della metrica per cambiamenti di coordinate

Trasformazione della metrica per cambiamenti di coordinate TERZA ESERCITAZIONE Trasformazione della metrica per cambiamenti di coordinate Consideriamo lo spazio di Minkowski in coordinate cartesiane {x µ } (x, x, x, x 3. La sua metrica è ds (dx + (dx + (dx + (dx

Dettagli

La retta è il luogo geometrico dei punti che soddisfano la seguente relazione

La retta è il luogo geometrico dei punti che soddisfano la seguente relazione RETTE Definizine intuitiva La retta linea retta è un dei tre enti gemetrici fndamentali della gemetria euclidea. Viene definita da Euclide nei sui Elementi cme un cncett primitiv. Un fil di ctne di spag

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento angolare e delle forze Leggi

Dettagli

Lavoro ed Energia. r A. < 0 --> lavoro resistente

Lavoro ed Energia. r A. < 0 --> lavoro resistente Lavoro ed Energia Lavoro di una forza 1) forza f indipendente dal punto di applicazione e dal tempo. Se il suo punto di applicazione effettua uno spostamento AB, si definisce lavoro della forza f = f AB

Dettagli

fenomeni di trasporto MECCANICA fenomeni di trasporto MECCANICA Elio GIROLETTI - Università di Pavia, Dip. Fisica nucleare e teorica

fenomeni di trasporto MECCANICA fenomeni di trasporto MECCANICA Elio GIROLETTI - Università di Pavia, Dip. Fisica nucleare e teorica enmeni di trasprt MECCANICA FISICA MEICA E RAIOPROTEZIONE eli girletti, 5 1 Classe Lauree di INFERMIERISTICA e OSTETRICIA crs integrat FISICA, STATISTICA e INFORMATICA disciplina: FISICA MEICA e RAIOPROTEZIONE

Dettagli

Sulla teoria della propagazione della luce nei mezzi dispersivi. A. Einstein

Sulla teoria della propagazione della luce nei mezzi dispersivi. A. Einstein 1 Sulla teria della prpagazine della luce nei mezzi dispersivi A. Einstein In una Nta apparsa recentemente in questi Rendicnti h prpst un esperiment ttic, per il quale secnd il mi raginament la teria ndulatria

Dettagli

Esercizi sull integrazione II

Esercizi sull integrazione II ANALISI MATEMATICA T-2 (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.28-29 - Prof. G.Cupini Esercizi sull integrazione II (Grazie agli studenti

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #. Sia P l insieme di tutti i parallelepipedi che giacciono nel primo ottante con tre facce sui piani coordinati e un

Dettagli

Fisica per Medicina. Lezione 2 - Matematica e Cinematica. Dr. Cristiano Fontana

Fisica per Medicina. Lezione 2 - Matematica e Cinematica. Dr. Cristiano Fontana Fisica per Medicina Lezione - Matematica e Cinematica Dr. Cristiano Fontana Dipartimento di Fisica ed Astronomia Galileo Galilei Università degli Studi di Padova 17 ottobre 17 Indice Richiami di matematica

Dettagli

INDIRIZZO SCIENTIFICO CLASSE PRIMA MATEMATICA

INDIRIZZO SCIENTIFICO CLASSE PRIMA MATEMATICA INDIRIZZO SCIENTIFICO CLASSE PRIMA MATEMATICA I numeri naturali I numeri interi I numeri razinali caratteristiche degli insiemi prprietà delle perazini rappresentazine su una retta rientata ptenze cn espnente

Dettagli

Analisi Matematica 2. Forme differenziali lineari. Forme differenziali lineari 1 / 26

Analisi Matematica 2. Forme differenziali lineari. Forme differenziali lineari 1 / 26 Analisi Matematica 2 Forme differenziali lineari Forme differenziali lineari 1 / 26 Forme differenziali lineari Sia F(x, y, z) = F 1 (x, y, z)i + F 2 (x, y, z)j + F 3 (x, y, z)k un campo vettoriale di

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

Termodinamica Pressione e Temperatura

Termodinamica Pressione e Temperatura UNIVERSITÀ DEGLI STUDI DI SALERNO Definizine di pressine Pressine = frza / area FACOLTÀ DI FARMACIA Termdinamica Pressine e Temperatura Interpretazine mleclare Le mlecle di un gas esercitan una frza sulle

Dettagli

FISICA. CdS Scienze Biologiche. Stefania Spagnolo. Dip. di Matematica e Fisica Ennio De Giorgi

FISICA. CdS Scienze Biologiche. Stefania Spagnolo. Dip. di Matematica e Fisica Ennio De Giorgi FISICA CdS Scienze Biologiche Stefania Spagnolo Dip. di Matematica e Fisica Ennio De Giorgi http://www.dmf.unisalento.it/~spagnolo stefania.spagnolo@le.infn.it (please, usate oggetto/subject: CdSBiologia)

Dettagli

FAM. Determina la velocità e l accelerazione e confronta con quanto fatto nel primo biennio.

FAM. Determina la velocità e l accelerazione e confronta con quanto fatto nel primo biennio. Serie 8: Meccanica I FAM C. Ferrari Esercizio 1 Moto accelerato 1. Per un MRUA (problema 1D) generale l evoluzione temporale è data da x(t) = x(t 0 )+v(t 0 )(t t 0 )+ 1 2 a 0(t t 0 ) 2. Determina la velocità

Dettagli

Omeomorfismi. Definizione

Omeomorfismi. Definizione Curve Definizione Si definisce curva di classe C k in R n l applicazione continua γ: I R R n, dove I è un intervallo della retta reale. Le curve possono essere classificate in curve chiuse e curve aperte.

Dettagli

Caratteristiche fondamentali dei materiali

Caratteristiche fondamentali dei materiali Cmprtament meccanic dei materiali Caratteristiche fndamentali dei materiali 2 2006 Plitecnic di Trin 1 Caratteristiche fndamentali dei materiali Prvini di trazine Definizine elementare di tensine Cndizini

Dettagli

Flusso, divergenza e rotore. Mauro Saita. Versione provvisoria. Giugno

Flusso, divergenza e rotore. Mauro Saita. Versione provvisoria. Giugno Flusso, divergenza e rotore. Esercizi maurosaita@tiscalinet.it ersione provvisoria. Giugno 216. 1 Indice 1 Teorema della divergenza (di Gauss). 2 1.1 Flusso di un campo di forze attraverso un cubo di dimensioni

Dettagli

Cinematica: considerazioni generali

Cinematica: considerazioni generali Cinematica: considerazioni generali La cinematica studia la descrizione del moto dei corpi (cioè la posizione di un oggetto nello spazio e nel tempo) senza considerare le cause che hanno prodotto il moto.

Dettagli

Lavori e Forze Fisica Natali Mattia. della forza rispetto al tempo nell intervallo considerato: I t 1. I ( t 1. ( ) Q ( t 1 ).

Lavori e Forze Fisica Natali Mattia. della forza rispetto al tempo nell intervallo considerato: I t 1. I ( t 1. ( ) Q ( t 1 ). Impulso e quantità di moto: Lavori e Forze Impulso: l impulso di una forza variabile in un certo intervallo di tempo è definito come l integrale della forza rispetto al tempo nell intervallo considerato:

Dettagli

Giustificare adeguatamente tutti i passaggi. + EX. 1 Si studi la convergenza (semplice, assoluta, totale) della serie 6 2

Giustificare adeguatamente tutti i passaggi. + EX. 1 Si studi la convergenza (semplice, assoluta, totale) della serie 6 2 Prva scritta di Analisi Matematica II - 4 giugn 013 Cmpit A COGNOME...... NOME. Matr... Crs di Laurea Ambiente Territri e Risrse Infrmazine Meccanica firma Giustificare adeguatamente tutti i passaggi +

Dettagli

x(t) = R 0 + R(t) dx(t) dt v(t) = = dr(t) dt Moto circolare uniforme Principi della dinamica

x(t) = R 0 + R(t) dx(t) dt v(t) = = dr(t) dt Moto circolare uniforme Principi della dinamica Il moto con velocità scalare costante si dice moto. La traiettoria è una circonferenza, caratterizzata dunque da un punto centrale e da un raggio, e giacente su un piano. Si tratta quindi di un moto bidimensionale.

Dettagli

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare Moto di rotazione Rotazione dei corpi rigidi ϑ(t) ω z R asse di rotazione v m

Dettagli

Omeomorfismi. Definizione

Omeomorfismi. Definizione Curve Definizione Si definisce curva di classe C k in R n l applicazione continua γ: I R R n, dove I è un intervallo della retta reale. Le curve possono essere classificate in curve chiuse e curve aperte.

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #8. Sia f : R 2 R la funzione definita da 2 y 2 per (, y) (, ) f(, y) 2 + y 2 per (, y) (, ). (a) Stabilire se f è continua

Dettagli

Analisi Matematica 2: Scritto Generale, , Versione A. Cognome e nome:...matricola:...

Analisi Matematica 2: Scritto Generale, , Versione A. Cognome e nome:...matricola:... Analisi Matematica : Scritto Generale, 7.9.16, Versione A Cognome e nome:....................................matricola:......... es.1 es. es.3 es.4 es.5 es.6/7 somma 5cr. 6 6 6 6 6 3 9cr. 5 5 5 5 5 /3

Dettagli

Curve e integrali curvilinei

Curve e integrali curvilinei 6 Curve e integrali curvilinei 6.1. Esempi ed esercizi svolti e/o proposti Esempio 6.1.1. Si consideri la curva parametrica ϕ: t [0,2π] ϕ(t) = (acos(t),asin(t),bt) R 3 dove a e b sono due costanti positive.

Dettagli

Es. 1 Es. 2 Es. 3 Totale Teoria. Punteggi degli esercizi: Es.1: 12= punti; Es.2: 12=5+5+2 punti; Es.3: 8 punti.

Es. 1 Es. 2 Es. 3 Totale Teoria. Punteggi degli esercizi: Es.1: 12= punti; Es.2: 12=5+5+2 punti; Es.3: 8 punti. Es. 1 Es. Es. 3 Totale Teoria Analisi e Geometria 1 Seconda prova in itinere Febbraio 15 Compito A Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli esercizi:

Dettagli

1 Sistemi di riferimento

1 Sistemi di riferimento Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del c.1.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del c.1. Prova scritta di Analisi Matematica II del 14-07-1999 - c.1 1) Sia (d n ) una successione di numeri reali tali che inf d n > 0. Studiare il carattere della serie + n=1 al variare del parametro reale positivo

Dettagli

FISICA. CdS Scienze Biologiche. Stefania Spagnolo. Dip. di Matematica e Fisica Ennio De Giorgi

FISICA. CdS Scienze Biologiche. Stefania Spagnolo. Dip. di Matematica e Fisica Ennio De Giorgi FISICA CdS Scienze Biologiche Stefania Spagnolo Dip. di Matematica e Fisica Ennio De Giorgi http://www.dmf.unisalento.it/~spagnolo stefania.spagnolo@le.infn.it (please, usate oggetto/subject: CdSBiologia)

Dettagli

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Esercizi di Elementi di Matematica Corso di laurea in Farmacia Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando

Dettagli

Testo della prova d'esame (A) con gli assi, eventuali asintoti, monotonia ed eventuali estremi. Dopo aver verificato che

Testo della prova d'esame (A) con gli assi, eventuali asintoti, monotonia ed eventuali estremi. Dopo aver verificato che PPELLO ORDINRIO: quesiti n. / / 5 / 6 / 7 / 0 COMPITINO : quesiti n. / / / / 5 COMPITINO B: quesiti n. 6 / 7 / 8 / 9 / 0 / / QUESITO ( /7) Studiare la funzine f Test della prva d'esame () determinand esplicitamente

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo)

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo) Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze vettoriali: oltre al valore numerico necessitano della definizione di una direzione

Dettagli

Fisica dell atmosfera. Gaetano Festa

Fisica dell atmosfera. Gaetano Festa Fisica dell atmosfera Lezione III Gaetano Festa Riferimento sferico ( r, θ, ϕ) Radiale Meridionale (N) Zonale (E) Sistema di riferimento locale : x (E), (N), z (U); dx = r cos φdλ; d = rdφ; dz = dr φ λ

Dettagli

Ingegneria Elettronica Prova scritta di Analisi Matematica II del giorno ( 3) n x n n + 1

Ingegneria Elettronica Prova scritta di Analisi Matematica II del giorno ( 3) n x n n + 1 Prova scritta di Analisi Matematica II del giorno 31-01-2007 1) Studiare la serie di potenze ( 3) n x n n + 1 2) Determinare i punti di estremo relativo ed assoluto della funzione seguente f(x, y) = x

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Analisi Matematica 2 Differenziabilità per funzioni di due variabili Differenziabilità per funzioni di due variabili CCS Ingegneria Meccanica e Ingegneria Chimica 1 / 26 Differenziabilitá Data la funzione

Dettagli

SCUOLE ITALIANE ALL ESTERO (EUROPA) SESSIONE ORDINARIA 2013 QUESITO 1

SCUOLE ITALIANE ALL ESTERO (EUROPA) SESSIONE ORDINARIA 2013 QUESITO 1 www.matefilia.it SCUOLE ITALIANE ALL ESTERO (EUROPA) SESSIONE ORDINARIA 2013 QUESITO 1 Dat un triangl ABC, si indichi cn M il punt medi del lat BC. Si dimstri che la mediana AM è il lug gemetric dei punti

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #5. Sia f : R R la funzione definita da f(x, y) x + x + y + x + y (x, y) R. (a) Determinare il segno di f. (b) Calcolare

Dettagli

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello

Fondamenti di Analisi Matematica 2 - a.a. 2016/2017 Primo appello Fondamenti di Analisi Matematica 2 - a.a. 216/217 Primo appello Esercizi senza svolgimento - Tema 1 Ω = { x, y, z) R 3 : 4x 2 + y 2 + z 2 1, z }. x = ρ/2) sen ϕ cos ϑ, 1. y = ρ sen ϕ sen ϑ, ρ [, 1], ϕ

Dettagli

Analisi Matematica III

Analisi Matematica III Università di Pisa - Corso di Laurea in Ingegneria Civile dell ambiente e territorio Analisi Matematica III Pisa, 1 giugno 4 (Cognome (Nome (Numero di matricola Esercizio 1 Si consideri la successione

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria. Matematica II Ingegneria Edile. Appello del 10 settembre 2007 AC = (2, 2, 2),

Università degli Studi di Bergamo Facoltà di Ingegneria. Matematica II Ingegneria Edile. Appello del 10 settembre 2007 AC = (2, 2, 2), Università degli Studi di Bergamo Facoltà di Ingegneria Matematica II Ingegneria Edile Appello del 1 settembre 7 Cognome e Nome Matr. 1.1. Si considerino nello spaio tridimensionale R 3 i tre punti A (3,

Dettagli

Curve parametrizzate. Esercizi. 1 Curve parametrizzate con parametri arbitrari. Curvatura. Torsione

Curve parametrizzate. Esercizi. 1 Curve parametrizzate con parametri arbitrari. Curvatura. Torsione Curve parametrizzate. Esercizi Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, gennaio 014. 1 1 Curve parametrizzate con parametri arbitrari. Curvatura. Torsione Qui di seguito si riporta

Dettagli

Soluzione della Prova Scritta di Analisi Matematica III - 28/02/02. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R.

Soluzione della Prova Scritta di Analisi Matematica III - 28/02/02. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R. Soluzione della Prova Scritta di Analisi Matematica III - 28/2/2 C.L. in Matematica e Matematica per le Applicazioni Prof. Kevin R. Payne Esercizio 1. 1a. Teorema: (di ini) Sia Φ : A R n R R dove A è aperto.

Dettagli

DISCIPLINA: Matematica Ordinamento CLASSE: 3^ SEZ.: Alunno/a:. Voto proposto dal Consiglio di Classe:..

DISCIPLINA: Matematica Ordinamento CLASSE: 3^ SEZ.: Alunno/a:. Voto proposto dal Consiglio di Classe:.. DISCIPLINA: Matematica Ordinament CLASSE: 3^ SEZ.: in termini di cnscenze relative ai cntenuti minimi: Disequazini: Abilità di calcl Gemetria Analitica: Analisi e cmprensine del test di un prblema Impstazine

Dettagli

Equazioni del moto in 1 dimensione:

Equazioni del moto in 1 dimensione: Equazioni del moto in 1 dimensione: O Velocità media come rapporto incrementale tra spazio percorso e tempo In generale la velocità varia istante per istante 1 Velocità istantanea: limite del rapporto

Dettagli

Cinematica in due o più dimensioni

Cinematica in due o più dimensioni Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In

Dettagli

FISICA 1 M-Z Stefano Vitale Francesco Pederiva. A. A S. Vitale

FISICA 1 M-Z Stefano Vitale Francesco Pederiva. A. A S. Vitale FISICA 1 M-Z Stefan Vitale Francesc Pederiva 1 Fisica I Struttura del Crs: 1. Meccanica del punt materiale 1.1 Cinematica 1.2 Leggi della Dinamica 1.3 Applicazini delle Leggi della Dinamica 2. Meccanica

Dettagli

4 C. Prati. Il teorema del campionamento

4 C. Prati. Il teorema del campionamento 4 C. Prati Il terema del campinament Esercizi di verifica degli argmenti svlti nel quart capitl del test Segnali e Sistemi per le Telecmunicazini McGraw-Hill. ESERCIZIO Sia dat il seguente segnale temp

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:...

Analisi Matematica 2: Secondo Parziale, , Versione A. Cognome e nome:...matricola:... Analisi Matematica : Secondo Parziale, 1.6.17, Versione A Cognome e nome:....................................matricola:......... es.1 es. es.3 es. es.5 es.6 es.7 somma 5cr. 6 6 6 6 6 - - 3 9cr. 5 5 5 5

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012 Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica del 9 settembre A) Data la funzione f(x, y) = { xy x se (x, y) (, ) se (x, y) = (, ), i) stabilire se risulta continua

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Esercizio 1 Sia f : [a, b] IR 2 una funzione di classe C 1 su [a, b]. consideri

Dettagli

Fisica Generale 1 per Chimica Formulario di Meccanica

Fisica Generale 1 per Chimica Formulario di Meccanica Fisica Generale 1 per Chimica Formulario di Meccanica Vettori : operazioni elementari: Nota: un vettore verra' qui rappresentato in grassetto es: A = ( A x, A y, A z ) Prodotto scalare A. B = A B cos θ,

Dettagli

Università degli Studi di Roma Tre Corso di Laurea in Ingegneria civile a.a. 2015/2016 Complementi di Matematica (A-K) Secondo Appello 5 Luglio 2016.

Università degli Studi di Roma Tre Corso di Laurea in Ingegneria civile a.a. 2015/2016 Complementi di Matematica (A-K) Secondo Appello 5 Luglio 2016. Università degli Studi di Roma Tre Corso di Laurea in Ingegneria civile a.a. 5/6 Complementi di Matematica (A-K) Secondo Appello 5 Luglio 6. Cognome e nome Matricola Specificare quale esame si deve sostenere:

Dettagli

sen n x( tan xn n n=1

sen n x( tan xn n n=1 8 Gennaio 2016 Nome (in stampatello): 1) (8 punti) Discutere la convergenza della serie di funzioni al variare di x in [ 1, 1]. n x( tan xn n ) xn sen n 2) (7 punti) Provare che la forma differenziale

Dettagli

Il sostegno di una curva C è l immagine Im C della funzione C, cioè l insieme di tutti i punti C(t), al variare di t in [a, b]: R 2

Il sostegno di una curva C è l immagine Im C della funzione C, cioè l insieme di tutti i punti C(t), al variare di t in [a, b]: R 2 urve parametrizzate Definizione Una curva parametrizzata nello spazio R 3 è una funzione [a, b] R 3 t (t) = (x(t), (t), z(t)) t [a, b] Il sostegno di una curva è l immagine Im della funzione, cioè l insieme

Dettagli

La descrizione del moto

La descrizione del moto Professoressa Corona Paola Classe 1 B anno scolastico 2016-2017 La descrizione del moto Il moto di un punto materiale La traiettoria Sistemi di riferimento Distanza percorsa Lo spostamento La legge oraria

Dettagli

Fisica 2C. 3 Novembre Domande

Fisica 2C. 3 Novembre Domande Fisica 2C 3 Novembre 2006 Domande ˆ i) Si consideri un oscillatore armonico smorzato e forzato da una sollecitazione sinusoidale esterna, la cui equazione é tipicamente s + 2γṡ + ω0s 2 = F cos ωt m 1)

Dettagli

Esercizi di Cinematica

Esercizi di Cinematica Esercizio 1 Esercizi di Cinematica Esercitazioni di Fisica LA per ingegneri - A.A. 2009-2010 Data la legge oraria: s(t) = a t 3 b t + c (con a = 3 ms 3, b = 2 ms 1, c = 1 m) calcolare la posizione e la

Dettagli

Cinematica del punto. Moto nel piano. Dott.ssa Elisabetta Bissaldi

Cinematica del punto. Moto nel piano. Dott.ssa Elisabetta Bissaldi Cinematica del punto Moto nel piano Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 Si consideri un punto materiale che si muove nello spazio descrivendo nel caso

Dettagli

Si occupa di dare un descrizione quantitativa degli aspetti geometrici e temporali del moto indipendentemente dalle cause che lo producono.

Si occupa di dare un descrizione quantitativa degli aspetti geometrici e temporali del moto indipendentemente dalle cause che lo producono. CINEMATICA DEL PUNTO MATERIALE I Si occupa di dare un descrizione quantitativa degli aspetti geometrici e temporali del moto indipendentemente dalle cause che lo producono. Il moto di un punto risulta

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del

Analisi Matematica II Corso di Ingegneria Gestionale Compito del Analisi Matematica II Corso di Ingegneria Gestionale Compito del -09-08 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 016/017. Prof. M. Bramanti 1 Tema n 1 4 5 6 Tot. Cognome e nome in stampatello) codice persona

Dettagli

Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo

Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo Esercizi di acustica Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo Esercizio 1 La velocità del suono nell aria dipende dalla sua temperatura. Calcolare la velocità di propagazione

Dettagli

Terzo esonero. 21 marzo Esercizio

Terzo esonero. 21 marzo Esercizio Terzo esonero 2 marzo 27. Esercizio Disegnare l insieme D : x, y) : x y 2 x, 2x 2 y 2x} e calcolarne l area. Determinare una trasformazione lineare che mandi D in un rettangolo. Calcolare l integale doppio

Dettagli

ASINTOTI di una funzione

ASINTOTI di una funzione LEZIONI ASINTOTI di una funzine Definizine Sia il grafic di una funzine di equazine y f ( ) avente un ram che si estende all'infinit e sia P un su punt. Una retta r si dice asintt per tale funzine se la

Dettagli

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Primo Parziale, , Versione A Cognome e nome:...matricola:...

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Primo Parziale, , Versione A Cognome e nome:...matricola:... es. es. es. es.4 es.5 somma 5 4 8 8 5 Analisi Matematica : Primo Parziale,.4.7, Versione A Cognome e nome:....................................matricola:.......... Calcolare la lunghezza della curva di

Dettagli

Esercizi di riepilogo sulle curve. 1. Si fornisca una parametrizzazione per le seguenti curve:

Esercizi di riepilogo sulle curve. 1. Si fornisca una parametrizzazione per le seguenti curve: Esercizi di riepilogo sulle curve. Si fornisca una parametrizzazione per le seguenti curve: (a) l ellisse = {(x, y) R x + y = } α(t) = (3 cost, sin t), t [, π]. (b) = {(x, y) R x + y =, x } α(t) = (3 cost,

Dettagli

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I):

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni Parte I: 06-07-06 Problema. Un punto si muove nel piano xy con equazioni xt = t 4t, yt = t 3t +. si calcolino le leggi orarie per le

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

GRANDEZZA FISICA. EQUAZIONI DIMENSIONALI controllo omogeneità relazioni COSTANTI FONDAMENTALI

GRANDEZZA FISICA. EQUAZIONI DIMENSIONALI controllo omogeneità relazioni COSTANTI FONDAMENTALI MECCANICA parte I a - GRANDEZZE FISICHE E DIMENSIONI - SISTEMI DI UNITA DI MISURA - SCALARI E VETTORI - SPOSTAMENTO, VELOCITA, ACCELERAZIONE - PRINCIPI DELLA DINAMICA - FORZA GRAVITAZIONALE - MASSA, PESO,

Dettagli

FAM. Un PM si muove nel piano xy e la sua traiettoria è un arco di cerchio di raggio R.

FAM. Un PM si muove nel piano xy e la sua traiettoria è un arco di cerchio di raggio R. Serie 9: Meccanica II FAM C. Ferrari Esercizio 1 Moto circolare uniforme (bis) Un PM si muove nel piano xy e la sua traiettoria è un arco di cerchio di raggio R. 1. Parametrizza la traiettoria con l ascissa

Dettagli

n=1 c n <. Data la seguente serie di trigonometrica + sin cn 1 cos 2 c2 n sin 2nx, n 2a + 3

n=1 c n <. Data la seguente serie di trigonometrica + sin cn 1 cos 2 c2 n sin 2nx, n 2a + 3 Facoltà di Scienze MM. FF. e NN. A.A. 013/014 I Esercitazione 30 Aprile 014 Esercizio 1. Dato il problema di Cauchy x = 3 + cos 3 x, x(0) = 0, studiare esistenza e unicità locale e globale. Provare che

Dettagli

Fase. P = 1 liquidi completamente miscibili 1 < P n liquidi parzialmente miscibili. P = n 1 < P n solidi parzialmente miscibili (soluzioni solide)

Fase. P = 1 liquidi completamente miscibili 1 < P n liquidi parzialmente miscibili. P = n 1 < P n solidi parzialmente miscibili (soluzioni solide) 1 Equilibri di fase 1. Definizine del cncett di Fase 2. Definizine del cncett di Numer di Cmpnenti Indipendenti 3. Definizine del cncett di Gradi di Libertà (Varianza) 4. Cndizini generali dell equilibri

Dettagli