Dispense del Corso di Istituzioni di Analisi Superiore Laurea Magistrale. Prof. Rolando Magnanini

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dispense del Corso di Istituzioni di Analisi Superiore Laurea Magistrale. Prof. Rolando Magnanini"

Transcript

1 Dispense del Corso di Istituzioni di Analisi Superiore Laurea Magistrale Prof. Rolando Magnanini Dipartimento di Matematica U. Dini, Viale Morgagni 67/A, 534 Firenze (ITALIA) address:

2 Sommario. spazio per abstract

3 Indice Capitolo. Cenni di Analisi Funzionale.. Spazi di Hilbert.2. Sistemi ortonormali 4.3. Funzionali ed operatori lineari 8.4. Il teorema di Banach-Steinhaus 3.5. I teoremi di Stampacchia e di Lax-Milgram 5.6. Operatori compatti 9.7. Teorema dell alternativa di Fredholm Spettro di un operatore compatto Decomposizione spettrale di un operatore simmetrico compatto 29.. Sistemi di Sturm-Liouville 3 Esercizi 37 Capitolo 2. Serie di Fourier Generalità Convergenza puntuale Convergenza in media Nuclei di sommabilità Il fenomeno di Gibbs Applicazione: il metodo di separazione delle variabili 5 Esercizi 56 Capitolo 3. Trasformata di Fourier 59 iii

4 iv Indice 3.. Generalità La classe di Schwartz La trasformata di Fourier in L 2 (R N ) Nuclei di sommabilità La formula di addizione di Poisson 69 Esercizi 72 Capitolo 4. Cenni sulle distribuzioni Qualche motivazione Generalità La derivata distribuzionale e gli spazi di Sobolev Operazioni sulle distribuzioni Distribuzioni a supporto compatto Il teorema fondamentale per le distribuzioni Le distribuzioni temperate 9 Esercizi 92 Capitolo 5. Funzioni armoniche Generalità La proprietà della media Il principio di massimo La disuguaglianza di Harnack 5.5. Criteri di compattezza Maggiorazioni a priori delle derivate 5 Esercizi 8 Capitolo 6. Problemi al contorno 6.. La soluzione fondamentale 6.2. I problemi di Dirichlet, Neumann e Robin Teoremi di unicità La funzione di Green Il metodo di Perron Il principio di Dirichlet Riduzione ad un equazione integrale di Fredholm Risoluzione di equazioni per decomposizione spettrale Il principio di Rayleigh Domini nodali e teorema di Courant 49

5 Indice v Esercizi 52 Capitolo 7. Proprietà geometriche delle soluzioni Funzioni armoniche nel piano Potenziale di capacità in un anello Equazioni semilineari e simmetria radiale 6 Esercizi 65 Appendice A. Complementi 67 A.. La formula multinomiale 67 A.2. Formula di Taylor in R N 68 A.3. Lemma di Du Bois-Reymond 68 A.4. Il teorema di Gauss della divergenza 7 Appendice. Bibliografia 73

6 Capitolo Cenni di Analisi Funzionale In questo capitolo riassumiamo i risultati di Analisi Funzionale che si saranno necessari negli altri capitoli... Spazi di Hilbert Sia X uno spazio vettoriale su R (o su C). Un prodotto interno o scalare su X è un applicazione (, ) : X X R (oppure (, ) : X X C) con le seguenti proprietà: (i) (u + v, w) = (u, w) + (v, w) per ogni u, v e w X; (ii) (αu, v) = α(u, v) per ogni u, v X ed α R (oppure α C;) (iii) (v, u) = (u, v) (oppure (v, u) = (u, v)) per ogni u, v X; (iv) (u, u) per ogni u X e (u, u) = se e solo se u =. Il prodotto interno (, ) definisce la norma = (, ) /2. Teorema... Sia X uno spazio vettoriale con prodotto interno (, ) e norma = (, ) /2. Allora risulta: (i) (disuguaglianza di Cauchy-Schwarz) (x, y) x y per ogni x, y X; (ii) (identitàdel parallelogramma) u + v 2 + u v 2 = 2 u v 2 per ogni x, y X.

7 2. Cenni di Analisi Funzionale Dim. Esercizio. Uno spazio vettoriale H dotato di prodotto interno si dice uno spazio di Hilbert se è completo rispetto alla norma indotta dal prodotto interno. Esempio..2. () Lo spazio R N con il prodotto definito da N (x, y) = x n y n, x, y R N, n= è uno spazio di Hilbert su R. Un altro prodotto scalare rispetto al quale R N è uno spazio di Hilbert è il seguente: (x, y) A = (Ax, y), x, y R N, dove A è una matrice N N simmetrica e definta positiva. (2) Lo spazio C N con il prodotto interno definito da N (z, w) = z n w n, x, y C N, è uno spazio di Hilbert su C. n= (3) Sia (X, M, µ) uno spazio di misura. Lo spazio L 2 (X, µ) = {f : X R, f misurabile con f 2 sommabile in X} è uno spazio di Hilbert sui reali rispetto al prodotto: (f, g) = f g dµ. Scegliendo X = N e µ = misura che conta, otteniamo lo spazio l 2 = {x = (x n ) n N : n N (4) In modo analogo si definisce: con X x 2 n < }, (x, y) = n N x n y n. L 2 C (X, µ) = {f : X C, f misurabile con f 2 sommabile in X}, (f, g) = X f g dµ. Teorema..3. (Teorema della proiezione). vuoto, convesso e chiuso in H. Allora, per ogni u H \ C esiste un unico v C tale che u v = min{ u w : w C} = dist (u, C). Inoltre v è caratterizzato dalla proprietà: v C e (u v, w v) pe ogni w C. Sia C un sottoinsieme non

8 .. Spazi di Hilbert 3 Dim. Esercizio. Il Teorema..3 definisce un operatore P C : H C la proiezione di H su C tale che P C u = v per ogni u H. Proposizione..4. Sia C un sottoinsieme non vuoto, convesso e chiuso in H. Allora Dim. P C u P C u 2 u u 2, per ogni u, u 2 H. Siano v = P C u e v 2 = P C u 2 ; si ha: (u v, w v ) e (u 2 v 2, w v 2 ) per ogni w C. In particolare, ponendo w = v 2 nella prima disuguaglianza e w = v nella seconda, si ottiene: da cui segue che (u v, v 2 v ) e (u 2 v 2, v v 2 ), (u v, v 2 v ) + (u 2 v 2, v v 2 ) = (u u 2, v v 2 ) + v v 2 2 e cioè v v 2 2 (u u 2, v v 2 ) u u 2 v v 2, che è quello che basta dimostrare. Sia M un sottospazio vettoriale di H. Il complemento ortogonale di M è l insieme M = {u H : (u, v) =, per ogni v M}. Teorema..5. Sia M un sottospazio vettoriale non vuoto di H. (i) M è un sottospazio vettoriale chiuso in H; (ii) se M è la chiusura di M in H, allora (M ) = M; (iii) H = M M. Dim. (i) È chiaro che M è un sottospazio vettoriale di H. Sia {u n } n N M una successione convergente in H ad un elemento u H. Allora per ogni v M risulta: (u, v) = lim (u n, v) = n e cioè u M. (ii) È evidente che M (M ) e, poiché (M ) è chiuso, M (M ). Sia ora u (M ). Dato che M è un sottospazio vettoriale chiuso, dal Teorema..3 otteniamo che (u P M u, w) =

9 4. Cenni di Analisi Funzionale per ogni w M, cioè u P M u M, e quindi (u, u P M u) =, dato che u (M ). Perciò: ossia u = P M u M. u P M u 2 = (u, u P M u) (P M u, u P M u) =, (iii) Se u H, abbiamo già visto che u = P M u + (u P M u) con P M u M e u P M u M. Poiché M M = {}, allora tale decomposizione è unica..2. Sistemi ortonormali Sia I un insieme di indici, non necessariamente numerabile. Un insieme S = {e i } i I di vettori di H si dice un sistema ortonormale se risulta: (e i, e j ) = δ ij per ogni i, j I, dove δ ij = se i = j e δ ij = se i j. Esempio.2.. () In l 2, l insieme S = {e n } n N con è un sistema ortonormale. e n = (,...,, n,,... ) = (δ nm ) m N. (2) Sia L 2 (T) l insieme delle funzioni f : R C, misurabili e periodiche di periodo T > e tali che f L 2 ([, T ]). L insieme S = {e 2πnt/T } n Z è un sistema ortonormale rispetto al prodotto scalare (f, g) = T T f(t)g(t) dt. Dati e,..., e n S, qual è la migliore approssimazione di un vettore u H con combinazioni lineari dei vettori e,..., e n? In altre parole, vogliamo minimizzare la funzione n f(c,..., c n ) = u c k e k al variare di c,..., c n in R. k= Se poniamo H n = span{e,..., e n }, poichè H n è chiuso, allora min{f(c,..., c n ) : c,..., c n R} = min{ u w : w H n } = u P Hn u, dove P Hn u = n k= c k e k per qualche scelta di numeri c,..., c n, e u P Hn u H n. In particolare, (u P Hn u, e k ) = per ogni k =,..., n e quindi c k = (u, e k ) per ogni k =,..., n.

10 .2. Sistemi ortonormali 5 Dato che risulta che (.) n u c k e k k= 2 = u 2 n (u, e k ) 2, k= n (u, e k ) 2 u 2. k= Teorema.2.2. (Disuguaglianza di Bessel). Sia S = {e i } i I un sistema ortonormale in H. Allora per ogni u H risulta che (u, e i ) 2 u 2, i I dove si è posto { n } (u, e i ) 2 = sup (u, e ik ) 2 : i,..., i n I distinti. i I k= Dim. La tesi segue direttamente dalla (.). Il numero û(i) = (u, e i ) si dice il coefficiente di Fourier di u di indice i I. Osservazione.2.3. Si noti che (u, e i ) 2 = i I dove µ è la misura che conta. Corollario.2.4. Sia S = {e i } i I u H. I (u, e i ) 2 dµ(i), un sistema ortonormale in H e sia Allora l insieme degli indici i I tali che û(i) è al più numerabile. Dim. Infatti {i I : (u, e i ) 2 > } = m N I m, dove { I m = i I : m + u 2 < (u, e i ) } m u, m N per la disuguaglianza di Bessel, ciascun I m è finito o vuoto. Teorema.2.5. Sia H uno spazio di Hilbert separabile. Allora ogni sistema ortonormale in H è al più numerabile.

11 6. Cenni di Analisi Funzionale Dim. Sia D = {u n } n N un sottoinsieme numerabile denso in H ed S un sistema ortonormale in H. Per ogni e i S esiste n i N tale che 2 e i u ni < 3 Se i j, si ha che 2 = ei e j e i u ni + u ni u nj + e j u nj e quindi u ni u nj > 2/3, ossia n i n j. Abbiamo dunque stabilito una corrispondenza biunivoca di I con un sottoinsieme di N. Osserviamo ora che, a partire da una successione qualsiasi {u n } n N di elementi di H, possiamo sempre costruire un sistema ortonormale S = {e k } k N mediante il procedimento di ortonormalizzazione di Gram-Schmidt: si pone infatti e = u u e per ricorrenza si definisce: e k = v k v k, dove v k k = u k (u k, e j ) e j, k = 2, 3,. Se accadesse che v k = per qualche k, allora eliminiamo il vettore u k, perchè è linearmente dipendente con i precedenti. Un sistema ortonormale S in H si dice completo oppure si dice che S è una base (hilbertiana) ortonormale per H, se j= (u, e i ) = per ogni i I implica che u =. Esempio.2.6. Il sistema ortonormale in l 2 definito nell Esempio.2. () è completo, infatti se (x, e n ) = per ogni n N, risulta che x n = per ogni n N e quindi x =. Teorema.2.7. Sia S = {e i } i I un sistema ortonormale in H. Se span(s) = H allora S è completo. Dim. Sia u H tale che (u, e i ) = per ogni i I. Per ogni ε > esiste u ε span(s) tale che u u ε < ε; dato che u ε è una combinazione lineare finita di elementi di S, allora (u, u ε ) =. Perciò ε 2 > u u ε 2 = u 2 + u ε 2 u 2 e cioè u < ε per ogni ε >, ossia u =. Teorema.2.8. Sia S = {e i } i I un sistema ortonormale completo in H. Allora span(s) = H. In particolare, per ogni u e v H risulta: (i) u = i I û(i) e i ;

12 .2. Sistemi ortonormali 7 (ii) u 2 = û(i) 2 ; i I (iii) (u, v) = û(i) v(i). i I La (i) e la (ii) passano sotto il nome di identità di Parseval. Dim. (i) Sia u H; per il Corollario.2.4, si ha che û(i) solo per un infinità numerabile di indici i I : indichiamo questi con û(n), n N. Per la disuguaglianza di Bessel (Teorema.2.2), la serie û(n) 2 n N converge e quindi, per ogni ε >, esiste un ν N tale che n 2 n û(k) e k = û(k) 2 < ε 2, k=m+ k=m+ per ogni n, m > ν. Perciò la successione converge ad un v H ed inoltre v = Ora, per ogni i I risulta che ( (u v, e i ) = lim u n k= û(k) e k = i I n k= n û(k) e k è di Cauchy e cioè k= û(i) e i. û(k) e k, e i ) = lim n [û(i) û(n) δ ni] =. Per la completezza di S, segue che u v = e cioè v = u. (ii) Dalla (i) segue che u 2 = ( u, lim n k= n ) û(k) e k = lim û(k) 2 = û(i) 2. i I k= (iii) Dalla (ii) si ottiene: n k= n û(k) (u, e k ) = (u, v) = { u + v 2 u v 2} = 4 { û(i) + v(i) 2 û(i) v(i) 2} = 4 i I i I û(i) v(i). i I

13 8. Cenni di Analisi Funzionale Osservazione.2.9. Si noti che, se vale la (iii) per ogni u e v H, allora S è un sistema ortonormale completo. Infatti, se esistesse z ortogonale ad ogni e i, scelti u = v = z in (iii) si avrebbe: z 2 = (u, v) = i I û(i) v(i) =. Osservazione.2.. Quanto dimostrato fin qui implica che ogni spazio di Hilbert separabile ammette una base ortonormale. Infatti da un sottoinsieme numerabile denso D possiamo costruire un sistema ortonormale S, mediante il procedimento di Gram-Schmidt. Tale sistema è completo; infatti se u è ortogonale ad ogni e i S, poiché per ogni ε > esiste un u n D tale che u u n < ε ed inoltre ( n ) (u, u n ) = (u, v n ) + u, (u n, e k ) e k = (u, v n e n ) =, k= risulta u 2 u 2 + u ε 2 = u u n 2 < ε 2 e cioè u =..3. Funzionali ed operatori lineari Siano X ed Y due spazi normati. Un applicazione A : X Y si dice (i) un operatore lineare se A(αx + βy) = αax + βay per ogni x, y X e α, β R; (ii) un operatore continuo se, per ogni successione x n n N di X tale che x n x in X, risulta che Ax n Ax; (iii) un operatore limitato se esiste una costante c tale che in questo caso si pone per definizione (.2) Ax Y c x X per ogni x X; A = sup{ Au Y : u X = } = sup{ Au Y : u X } = sup u Au Y u X. È facile verificare che (.2) definisce una norma nello spazio vettoriale L(X, Y ) = {A : X Y : A lineare e limitato}. Poniamo inoltre L(X) = L(X, X). Il seguente risultato è di facile dimostrazione. Teorema.3.. Sia A : X Y un operatore lineare. Allora A è continuo se e solo se A è limitato.

14 .3. Funzionali ed operatori lineari 9 Dim. Esercizio 4. Di interesse particolare è il caso in cui Y = R : si dice che A un è funzionale lineare e per chiarezza in questo case useremo la lettera L al posto di A. Lo spazio vettoriale X = L(X, R) dei funzionali lineari limitati su X si dice lo spazio duale di X. Teorema.3.2. (Teorema di rappresentazione di Riesz). Sia H uno spazio di Hilbert e sia H il suo duale. Allora, per ogni L H, esiste un solo v H tale che Lu = (u, v) per ogni u H e L = v. Dim. Sia L H, non identicamente nullo e sia M il nucleo di L. Poichè L è lineare e continuo, allora M è un sottospazio vettoriale chiuso in H. Sia u / M e sia v = P M u ; allora u = v + (u v ), dove v M e u v M. Se u H, allora possiamo scrivere u = λ (u v ) + P M u, dove Lu = λ L(u v ) = Lu e cioè λ = Lu/Lu ; perciò, scegliendo si ha: dato che v M e P M u M. v = u v u v 2 Lu, (u, v) = λ (u v, v) + (P M u, v) = Lu, Infine, è chiaro che Lu = (u, v)) v u per ogni u H e quindi L v. D altra parte, preso u = v/ v, si ha che Lu = (u, v) = v e quindi v L. Una successione {u n } n N X in uno spazio normato si dice debolmente convergente ad un elemento u X e si scriverà u n u se, per ogni L X, Lu n Lu per n. È chiaro che, se u n u in X, allora anche u n u. Per il Teorema.3.2 appena dimostrato, u n u in uno spazio di Hilbert H se (u n, v) (u, v) per ogni v H. Il risultato che segue ci informa che la norma di uno spazio di Hilbert è una funzione semicontinua inferiormente rispetto alla convergenza debole. Teorema.3.3. Sia H uno spazio di Hilbert. Se u n u in H, allora lim inf n u n u. Se inoltre u n u, allora u n u in H.

15 . Cenni di Analisi Funzionale Dim. Esercizio 5. Il teorema di Bolzano-Weierstrass asserisce che ogni insieme limitato di R N contiene una sottosuccessione convergente è cioè relativamente compatto per successioni. In dimensione infinita ciò non accade, come mostra la proposizione seguente. Proposizione.3.4. Se ogni successione limitata in H contiene una sottosuccessione convergente, allora H ha dimensione finita. Dim. Se H avesse dimensione infinita allora conterrebbe un sistema ortonormale {e n } n N (almeno) numerabile. Dato che e n e m = 2 se n m, allora {e n } n N non potrebbe contenere alcuna sottosuccessione convergente. Il prossimo risultato si può riassumere dicendo che gli insiemi limitati in uno spazio di Hilbert sono per lo meno debolmente compatti. Teorema.3.5. (Teorema di Banach-Alaoglu). Sia H uno spazio di Hilbert separabile e supponiamo che esista una costante c > tale che u n c per ogni n N. Allora la successione {u n } n N contiene una sottosuccessione che converge debolmente ad un elemento di H. Dim. Sia D = {v k } k N un sottoinsieme (numerabile) denso in H. Poiché (u n, v ) u n v c v per ogni n N, esiste una sottosuccessione {u n} n N di {u n } n N tale che (u n, v ) converge ad un numero reale se n. Poiché (u n, v 2 ) u n v 2 c v 2 per ogni n N, esiste una sottosuccessione {u 2 n} n N di {u n} n N tale che (u 2 n, v 2 ) converge ad un numero reale se n. Iterando questo ragionamento, fissato k N esiste {u k n} n N {u k n } n N {u n } n N tale che (u k n, v k ) converge ad un numero reale se n. La successione {u n n} n N sarà allora tale che (u n n, v k ) converge se n per ogni k N fissato. Fissati allora v H e ε >, esiste k N tale che ed inoltre esiste ν N tale che per ogni n, m > ν. v v k < ε 3c, (u n n, v k ) (u m m, v k ) < ε 3,

16 .3. Funzionali ed operatori lineari Perciò, per ogni n, m > ν risulta che (u n n, v) (u m m, v) (u n n, v) (u n n, v k ) + (u n n, v k ) (u m m, v k ) + (u m m, v k ) (u m m, v) < (u n n, v v k ) + ε 3 + (um m, v k v) u n n v v k + ε 3 + um m v v k < ε. Da ciò segue che è ben definito il funzionale L : H H tale che Lv = lim n (un n, v) per ogni v H. È chiaro inoltre che L è lineare e limitato con L c. Per il Teorema.3.2, esiste u H tale che Lv = (u, v) per ogni v H; dunque lim n (un n, v) = (u, v) per ogni v H, ossia u n n u per n. Siano H e H 2 spazi di Hilbert e sia A : H H 2 un operatore lineare. Il rango di A è il sottospazio di H 2 : R(A) = {Au : u H }, mentre il nucleo di A è il sottospazio di H : N(A) = {u H : Au = }. Osservazione.3.6. Si noti che, se A L(H, H 2 ), N(A) è sempre un sottospazio vettoriale chiuso. Invece il sottospazio vettoriale R(A) non è detto che sia chiuso. Per esempio, sia H = H = H 2 = L 2 (R N ) e sia a L 2 (R N ) L (R N ), a / C (R N ). Sia inoltre A : H H definito da Au = a u. Per la disuguaglianza di Young Au = a u a u per ogni u H, e quindi A è limitato e A a. Per la disuguaglianza di Hölder, a u a 2 u. Sia {a n } n N C (RN ) una successione convergente ad a in L 2 (R N ); allora a n u C (R N ) e, dato che a n u a u a n a 2 u, a n u converge uniformemente ad a u e quindi Au = a u C (R N ). Questo significa che R(A) C (R N ). Prendiamo ora u n (x) = n N j(nx) con j C (RN ) e R N j dx = ; è chiaro che Au n = a u n converge ad a in H. Abbiamo quindi dimostrato che a R(A), dimostrando quindi che R(A) non può coincidere con la sua chiusura, dato che a / R(A).

17 2. Cenni di Analisi Funzionale Sia ora A L(H, H 2 ); fissato u H 2, il funzionale lineare f u : H R definito da f u (v) = (u, Av) 2 per ogni v H è limitato su H e quindi, per il Teorema.3.2, esiste un solo elemento A u H tale che (A u, v) = (u, Av) 2 per ogni v H. L applicazione A : H 2 H è lineare e limitata: si dice che A è l operatore aggiunto di A. Proposizione.3.7. Sia A L(H, H 2 ). Allora inoltre R(A) = N(A ) e R(A ) = N(A) ; H 2 = R(A) N(A ) e H = R(A ) N(A). Dim. Poiché R(A) è un sottospazio vettoriale di H 2, risulta che H 2 = R(A) R(A), per la Proposizione..5. D altra parte, dato che (Au, v) 2 = (u, A v) per ogni u H e v H 2, si ha che v R(A) se e solo se v N(A ) e quindi R(A) = N(A ), da cui H 2 = R(A) N(A ). Inoltre R(A) = (R(A) ) = N(A ) In modo analogo, si dimostrano le altre due asserzioni. Proposizione.3.8. Se A L(H) allora anche A L(H) e A = A = AA = A A. Dim. Per ogni u H si ha che (.3) A u 2 = (A u, A u) = (A A u, u) A A u u A A u u, e quindi A u A u, da cui A A, cioè anche A è limitato. Inoltre, dall ultima disuguaglianza in (.3), si ottiene che AA A A, mentre dalla prima disuguaglianza in (.3), si ha che A u 2 AA u u AA u 2, e quindi A 2 AA A A. Scambiando A con A, si ottiene che A 2 A A A A. Perciò A = A = AA = A A. Si dice che A è simmetrico o autoaggiunto se A = A. Proposizione.3.9. Sia A L(H) simmetrico. Allora A = sup{(au, u) : u = }. Dim. Sia M il secondo membro della precedente uguaglianza e sia u H con u =. Dato che (Au, u) A, allora M A. D altra parte, è facile mostrare che 4(Au, v) = (A[u + v], u + v) (A[u v], u v).

18 .4. Il teorema di Banach-Steinhaus 3 Presi u e v unitari, abbiamo allora 4(Au, v) M{ u + v 2 + u v 2 } = 2M { u 2 + v 2 } = 4M, per la definizione di M, e dunque (Au, v) M. Scegliendo v = Au/ Au, si ha che Au M e quindi A M. Esempio.3.. Siano H = R N, H 2 = R M e A : R N R M la matrice M N di elementi a ij, i =,..., M, j =,..., N. Allora A : R M R N non è altro che la matrice trasposta N M di elementi a ji, i =,..., M, j =,..., N. Esempio.3.. Sia H = H = H 2 = l 2 (C) e sia A : H H definito da dove a : N C e Allora Au = n N a(n) û(n) e n, sup a(n) <. n N A = sup a(n) e A u = a(n) û(n) e n. n N n N.4. Il teorema di Banach-Steinhaus Utilizzeremo il seguente risultato di topologia (per una dimostrazione, si veda [Ru]). Teorema.4.. (Baire). In uno spazio metrico completo X l intersezione numerabile di sottoinsiemi densi aperti di X è densa in X o, equivalentemente, l unione numerabile di chiusi con interno vuoto ha interno vuoto. Teorema.4.2. (Banach-Steinhaus). Siano X uno spazio di Banach ed Y uno spazio vettoriale normato. Sia inoltre {T α } α A una famiglia di operatori lineari e limitati di X in Y. Allora o risulta che o esiste x X tale che sup T α <, α A sup T α x Y =. α A Dim. Sia φ(x) = sup T α x, x X, α A e sia V n = {x X : φ(x) > n}, n =,, 2,. Ogni funzione x T α x è continua e quindi φ è semicontinua inferiormente; dunque ogni V n è aperto.

19 4. Cenni di Analisi Funzionale Se ogni V n è denso in X, allora per il Teorema.4. anche in X e quindi φ(x) = per ogni x n= V n. n= V n è denso Altrimenti, se esiste ν N tale che V ν non è denso in X, esisterà x X ed r > tale che B X (x, r) V ν = ; ciò implica che φ(x + y) ν per ogni y tale che y r e quindi T α (x + y) ν, per ogni α A ed ogni y r. Perciò, posto y = rx/ x, si ha: T α x = r x T α y r x { T α x + T α (x + y) } 2ν r x, per ogni α A e quindi sup T α 2ν α A r. Teorema.4.3. (Teorema dell applicazione aperta). Siano X ed Y due spazi di Banach e sia T : X Y un operatore lineare, limitato e suriettivo. Allora esiste una costante c > tale che T (B X (, )) B Y (, c). Y. In particolare, l immagine di un aperto di X secondo T è un aperto di Dim. Dimostriamo dapprima che esiste c > tale che (.4) T (B X (, )) B Y (, 2c). Siano X n = nt (B X (, )); poiché Y = n N X n, per il Teorema.4., esiste ν N tale che l interno di X ν è non vuoto. Ne segue che anche l interno di T (B X (, )) è non vuoto. Siano c > e y Y tali che B Y (y, 4c) T (B X (, )); in particolare T (B X (, )) contiene y e, per simmetria, y. Perciò B Y (, 4c) = y + B Y (y, 4c) T (B X (, )) + T (B X (, )) = 2T (B X (, )), dove l ultima uguaglianza segue dal fatto che T (B X (, )) è convesso. Dunque vale la (.4). Dimostriamo ora l asserzione del teorema. Fissiamo y Y con y < c. Dalla (.4) segue che y T (B X (, /2)), cioè, per ogni ε >, esiste z X con z < /2 tale che y T z < ε. Scegliendo successivamente ε = c/2 n, n =, 2,, esiste una successione {z n } n N X tale che z n < 2 n e y T (z + + z n )) < c 2 n,

20 .5. I teoremi di Stampacchia e di Lax-Milgram 5 per ogni n N. La successione x n = z + + z n è pertanto di Cauchy. Sia x il limite di x n ; risulta che y = T x, dato che T è continuo. Si noti infine che x n z + n z k z + 2, k=2 e quindi x z + 2 <, cioè y T (B X(, )). Se ora A è un aperto di X e y T (A), esiste x A tale che y = T x. Poiché A è aperto, esiste B X (x, r) A; perciò, per quanto finora dimostrato, esiste c > tale che B Y (y, rc) = y + r B Y (, c) y + r T (B X (, r)) = T (x + B X (, )) = cioè T (A) è aperto. T (B X (x, r)) T (A), Corollario.4.4. Siano X ed Y due spazi di Banach e sia T : X Y un operatore lineare, limitato e biunivoco. Allora T : Y X è limitato. Dim. Per ogni x X con x, si ha che u = x/( x ε) / B X (, ) per ogni < ε < x. Perciò T u / T (B X (, )) e quindi T u / B(, c), per il Teorema.4.3. Perciò T x = T u c x ε e, facendo tendere ε a zero si ottiene che per ogni x. Ciò implica che T è limitato. x c T x,.5. I teoremi di Stampacchia e di Lax-Milgram Richiamiamo il teorema di Picard. Teorema.5.. (Teorema di Picard della contrazione). Sia (X, d) uno spazio metrico completo e sia F : X X una contrazione e cioè tale che esiste α (, ) tale che per ogni x, y X. d(f (x), F (y)) α d(x, y) Allora esiste un solo x X tale che F (x) = x.

21 6. Cenni di Analisi Funzionale Dim. Sia x X e sia x n+ = F (x n ), n =,, 2,. Risulta: d(x n+, x n ) = d(f (x n ), F (x n )) αd(x n, x n ) = e perciò d(x n+p, x n ) αd(f (x n ), F (x n 2 )) α 2 d(x n, x n 2 ) α n d(x, x ), p d(x n+k, x n+k ) d(x, x ) k= p α n+k = d(x, x ) αp α αn. Dunque {x n } n N è una successione di Cauchy e quindi esiste x X tale che x n x se n. Poiché F è continua, si ha che x = lim n x n = lim n F (x n ) = F (x). Se x fosse un altro punto fisso, allora e quindi x = x dato che α <. d(x, x ) = d(f (x), F (x )) α d(x, x ), Sia H uno spazio di Hilbert. Una forma bilineare a : H H R si dice continua se esiste una costante C > tale che k= a(u, v) C u v per ogni u, v H; essa si dice inoltre coercitiva se esiste α > tale che a(u, u) α u 2 per ogni u H. Teorema.5.2. (Stampacchia). Sia H uno spazio di Hilbert e sia H il suo duale. Sia a : H H R una forma bilineare continua e coercitiva e sia K un sottoinsieme convesso, chiuso e non vuoto di H. Allora, per ogni L H esiste un unico u K tale che (.5) a(u, v u) L(v u) per ogni v K. Inoltre se a è simmetrica, allora u è caratterizzata dalle proprietà { } u K e 2 a(u, u) Lu = min a(v, v) Lv : v K. 2 Dim. Per il Teorema.3.2, esiste f H tale che Lu = (f, u) per ogni u H. Inoltre, fissato u H, l applicazione v a(u, v) è lineare e continua su H e quindi esiste un solo elemento Au H tale che a(u, v) = (Au, v) per ogni v H. È chiaro che A : H H è un operatore lineare ed inoltre (Au, v) = a(u, v) C u v

22 .5. I teoremi di Stampacchia e di Lax-Milgram 7 per ogni u, v H, da cui segue che Au C u, cioè A è limitato. Risulta anche che (Au, u) α u 2 per ogni u H, dato che a è coercitiva. Bisogna dunque trovare u K tale che (Au, v u) (f, v u) per ogni v K; questo equivale a dire che per qualche β > risulta: (βf βau + u u, v u) per ogni v K. Quest ultima disuguaglianza caratterizza u come la proiezione di βf βau + u su K, cioè (vedi Teorema..3). u = P K (βf βau + u) Ci siamo dunque ricondotti a dimostrare l esistenza di un β > tale che l applicazione F : K K definita da F (v) = P K (βf βav + v) abbia un punto fisso. Per la Proposizione..4, risulta: F (v ) F (v 2 ) = P K (βf βav + v ) P K (βf βav 2 + v 2 ) per ogni v i, v 2 K. Perciò: F (v ) F (v 2 ) 2 = v βav (v 2 βav 2 ) v v 2 2 2β(A[v v 2 ], v v 2 ) + β 2 A(v v 2 ) 2 v v 2 2 2αβ v v β 2 C 2 v v 2 2 = ( 2αβ + β 2 C 2 ) v v 2 2, per ogni v i, v 2 K, per la coercività e la continuità di A. Scegliendo β < 2α/C 2, abbiamo che 2αβ + β 2 C 2 < e quindi F è una contrazione (sullo spazio metrico completo K) e perciò esiste un solo u K tale che u = F (u) = P K (βf βau + u). L elemento u K è unico. Infatti, se u, u 2 K fossero due elementi soddisfacenti la (.5) per ogni v K, scegliendo successivamente in (.5) u = u e v = u 2, u = u 2 e v = u, si avrebbe rispettivamente: a(u, u 2 u ) L(u 2 u ) e a(u 2, u u 2 ) L(u u 2 ).

23 8. Cenni di Analisi Funzionale Perciò si otterrebbe: α u 2 u 2 a(u 2 u, u 2 u ) = a(u 2, u 2 u ) a(u, u 2 u ) = ossia u = u 2. a(u 2, u u 2 ) a(u, u 2 u ) L(u u 2 ) L(u 2 u ) =, Nel caso in cui a è simmetrica, allora [u, v] = a(u, v) è un (altro) prodotto scalare su H, che induce la norma [u, u] /2, che risulta equivalente alla norma, dato che a è continua e coercitiva. Applicando il Teorema.3.2 allo spazio di Hilbert (H, [, ]), esiste g H tale che [g, v] = Lv, per ogni v H. Perciò, per ogni v K risulta che L(v u) a(u, v u) = [g, v u] [u, v u], cioè u non è altro che la proiezione P K g nel senso del prodotto scalare [, ]. In altre parole, per il Teorema..3, u minimizza il funzionale v [g v, g v] /2 = a(g v, g v) /2 su K, oppure il funzionale v a(g v, g v), o ancora v 2 a(v, v) a(g, v) = 2 a(v, v) Lv. Teorema.5.3. (Lax-Milgram). Sia H uno spazio di Hilbert e sia H il suo duale. Sia a : H H R una forma bilineare continua e coercitiva. Allora, per ogni L H esiste un unico u H tale che a(u, v) = Lv per ogni v H. Inoltre se a è simmetrica, allora u è caratterizzato dalla proprietà { } a(u, u) Lu = min a(v, v) Lv : v H. 2 2 Dim. Per il Teorema.5.2 (con K = H), esiste u H tale che a(u, v u) L(v u) per ogni v H. Poiché anche u v H, allora a(u, v u) L(v u) per ogni v H e quindi a(u, w) = Lw per ogni w = v u H.

24 .6. Operatori compatti 9.6. Operatori compatti Un operatore lineare K : H H 2 si dice compatto se, per ogni successione limitata {u n } n N H, esiste una sottosuccessione {u nj } j N {u n } n N tale che {Ku nj } j N converge in H 2. Esempio.6.. Sia H come nell Esempio.3. e sia K L(H) definito da n K n u = a(j) û(j) e j, u H. j= Si ha che R(K n ) = span{e j } j=,...,n, che è uno spazio lineare di dimensione finita. L immagine di ogni limitato è quindi un sottoinsieme limitato di uno spazio di dimensione finita e quindi è relativamente compatta. Perciò, K n è compatto. Un operatore il cui rango abbia dimensione finita si dice di rango finito. Proposizione.6.2. Se K : H H 2 è compatto, allora è limitato. Dim. Se K non fosse limitato, per ogni n N esisterebbe u n H tale che Ku n 2 > n u n. Dato che u n, posto v n = u n / u n, avremmo che v n =, ma Kv n 2 > n, cioè nessuna sottosuccessione di {Kv n } n N potrebbe convergere. Questo contreddice il fatto che K è compatto. Teorema.6.3. Si verificano le seguenti affermazioni. (i) Se A : H H 2 è limitato e K : H 2 H 3 è compatto, allora KA è compatto. (ii) Siano K n : H H 2 compatti e supponiamo che K n K se n ; allora anche K è compatto. Dim. (i) Se u n c, allora Au n 2 A u n A c e quindi {KAu n } n N è relativamente compatta, dato che K è compatto. (ii) Basterà dimostrare che, se B è la pallina unitaria di H, allora K(B) ha chiusura compatta. Useremo il fatto che in uno spazio metrico completo i sottoinsiemi con chiusura compatta sono esattamente quelli totalmente limitati. Dobbiamo dimostrare quindi che K(B) si può ricoprire con un numero finito di palline di raggio arbitrariamente prefissato. Per ogni ε > esiste ν N tale che K K ν < ε/2. Dato che K ν (B) è totalmente limitato, c è un numero finito di punti v,..., v k H 2 tali che l unione delle palline di raggio ε/2 centrate nei punti v k ricopre K ν (B). Perciò, l unione delle palline di raggio ε centrate nei v k ricopre K(B); infatti, preso u B, esiste v j tale che K ν u v j 2 < ε/2 e quindi Ku v j 2 Ku K ν u 2 + K n uu v j 2 K K ν + ε/2 < ε.

25 2. Cenni di Analisi Funzionale Corollario.6.4. Se K n : H H 2 ha rango finito per ogni n N e K n K per n, allora anche K è compatto. Esempio.6.5. Sia K l operatore A definito nell Esempio.3. e sia K n quello definito nell Esempio.6.. Supponiamo inoltre che a(n) se n. Dato che abbiamo che (K K n )u = j=n+ a(j) 2 û(j) 2 sup a(j) 2 u 2, j n+ K K n sup a(j), j n+ che converge a zero per n ; K è dunque compatto. Teorema.6.6. Se K : H H 2 è compatto, anche K : H 2 H è compatto. Dim. Sia u n 2 c per ogni n N, allora K u n K c per ogni n N. Poichè K è compatto, esiste {u nj } j N {u n } n N tale che {K(K u nj )} j N converge, cioè, per ogni ε > esiste m N tale che K(K u nj ) K(K u nl ) 2 < ε/2c per ogni j, l > m. Per ogni j, l > m allora si ha: K u nj K u nl 2 = ( K u nj K u nl, K [u nj u nl ] ) = ( K(K u nj ) K(K νu nl ), u nj u nl ) 2 K(K u nj ) K(K u nl ) 2 u nj u nl 2 ε. Perciò {K u nj } j N è di Cauchy e quindi converge. Esempio.6.7. Siano (X, M, µ) uno spazio di misura, H = L 2 (X, M, µ) e k = k(x, y) una funzione nello spazio L 2 (X X, M M, µ µ). Allora l operatore K L(H) definito da (Kf)(x) = k(x, y) f(y) dµ(y), x X, f H, è compatto e K k 2. X Infatti, si osservi preliminarmente che, se {e i } i I è una base per H, allora, posto ϕ ij (x, y) = e i (x)e j (y), i, j I, x, y X,

26 .6. Operatori compatti 2 l insieme {ϕ ij } i,j I forma un sistema ortonormale in L 2 (X X, M M, µ µ) e risulta: (k, ϕ ij ) = k(x, y) e i (x)e j (y) d(µ µ)(x, y) = X X [ ] e i (x) k(x, y) e j (y) dµ(y) dµ(x) = (Ke j, e i ), per i, j I. X Inoltre, la disuguaglianza di Hölder implica che [ 2 Kf 2 = k(x, y) f(y) dµ(y)] dµ(x) e quindi K k 2. X X X X f(y) 2 dµ(y) f 2 k 2 2, X [ X k(x, y) 2 dµ(y) Per la disuguaglianza di Bessel, (.6) k 2 2 (k, ϕ ij ) 2 = (Ke j, e i ) 2 ; i,j I i,j I ] dµ(x) = questa stessa disequazione ci dice che i vettori ϕ ij tali che (k, ϕ ij ) sono al più un infinità numerabile: siano essi {ψ km } k,m N. Vogliamo ora approssimare K nella norma degli operatori con una successione di operatori K n di rango finito. Se poniamo K n = K K n, risulta che K nf 2 = (K nf, e i ) 2 = ( 2 ˆf(j)(K ne j, e i )) = i I i I j I ( 2 ˆf(m)(K ne m, e k )) e quindi k N m N m N ˆf(m) 2 k,m N K n 2 k,m N (K ne m, e k ) 2, (K ne m, e k ) 2. Sia ora P n la proiezione sul sottoapazio span(e,..., e n ); si noti che P n = P n e, preso K n = P n KP n, si ha che (K n e m, e k ) = (KP n e m, P n e k ) = (P n e m, K P n e k )

27 22. Cenni di Analisi Funzionale e quindi Perciò: (K n e m, e k ) = K K n 2 { se n + k, m, (Ke m, e k ) se k, m n. k,m=n+ che tende a zero quando n per la (.6). (Ke m, e k ) 2, Osservando che R(P n ) span(e,..., e n ), per il Corollario.6.4 concludiamo che K è compatto. Esempio.6.8. Sia H come nell esempio precedente e sia K definito come nell esempio precedente, ma con la funzione k che soddisfa l ipotesi seguente: esiste una successione di funzioni k n L 2 (X X, M M, µ µ) tale che la successione S n = sup k(x, y) k n (x, y) dµ(y) se n x X X e, per qualche costante C >, k(x, y) k n (x, y) dµ(x) C, per ogni y X ed ogni n N. X Allora K è compatto. Infatti gli operatori definiti da (K n f)(x) = k n (x, y) f(y) dµ(y), x X, f H, X sono tutti compatti per l esempio precedente. Inoltre, posto K n = K K n, si ha che K nf(x) 2 k(x, y) k n (x, y) dµ(y) k(x, y) k n (x, y) f(y) 2 dµ(y) X e quindi, per il teorema di Fubini, otteniamo [ ] K δ f 2 2 S n f(y) 2 k(x, y) k n (x, y) dµ(x) dµ(y) C S n f 2 2. X X Da ciò otteniamo che K n C S n e cioè che K K n per n, ossia che anche K è compatto. Applicando il criterio appena dimostrato è facile verificare che se X = M R N è una varietà differenziabile compatta di dimensione m e µ è la misura di Hausdorff m-dimensionale definita su M, allora le funzioni k(x, y) = X κ(x, y) x y l, k n(x, y) = k(x, y) [ X B(x,/n) (y)] soddisfano le ipotesi sopra riportate se κ è limitata su M e l [, m).

28 .6. Operatori compatti 23 Proposizione.6.9. Sia H uno spazio di Hilbert. Allora: (i) se H ha dimensione infinita, l identità I : H H non è un operatore compatto; (ii) se H ha dimensione infinita, l inverso di un operatore compatto K : H H non è limitato. Dim. (i) Segue facilmente dalla Proposizione.3.4. (ii) Se K fosse limitato, allora I = KK sarebbe compatto per il Teorema.6.3. Esempio.6.. Prendendo spunto dalla proposizione precedente consideriamo la situazione seguente. Sia H = L 2 (R N ) e sia K : H H tale che (Kf)(x) = k f(x). Siano α e α due costanti positive tali che α k(ξ) α per ogni ξ R N, allora K non è compatto. Infatti, se {f n } n N è un sistema ortonormale (e quindi limitato) in H, abbiamo: Kf n Kf m 2 = Kf n Kf m 2 = k(ξ) 2 ˆf n (ξ) ˆf m (ξ) 2 dξ R N α 2 ˆf n ˆf m 2 = α f 2 n f m 2 = 2 α 2 >. Perciò, {Kf n } n N non può contenere alcuna sottosuccessione convergente. (Per esempio, la trasformata di Hilbert ha un nucleo k tale che k(ξ) = iξ/ ξ e perciò non è un operatore compatto). Esempio.6.. Sia H = L 2 [, ] e sia K : H H definito da (Kf)(x) = x f(y) dy, x [, ], per f H; allora, posto k(x, y) = X [,x] (y), K soddisfa le ipotesi enunciate nell Esempio.6.7 e quindi è compatto. Si noti che R(K) {f assolutamente continua in [, ] : f() = }. Questa inclusione è diretta conseguenza dell assoluta continuità dell integrale di Lebesgue, dato che f L 2 [, ] L [, ]. Una funzione g : [a, b] R si dice assolutamente continua se, per ogni ε > esiste δ > tale che, per ogni scelta di intervalli disgiunti (a, b ),..., (a n, b n ) in [a, b] e tali che n (b i a i ) < δ, i= risulta che n f(b i ) f(a i ) < ε. i=

29 24. Cenni di Analisi Funzionale Per le proprietà delle funzioni assolutamente continue, abbiamo che, se g R(K), allora g è derivabile q.o. in [, ] e x g (y) dy = g(x) g() = g(x), x [, ], cioè (Kg )(x) = g(x) e dunque g = K g. Ne segue che l operazione di derivazione non è continua, essendo l inverso di un operatore compatto..7. Teorema dell alternativa di Fredholm Lemma.7.. Sia H uno spazio di Hilbert e sia K : H H un operatore lineare e compatto. Sia inoltre I : H H l identità. Allora esiste una costante a > tale che (.7) u Ku a u per ogni u N(I K). Dim. Per assurdo supponiamo che per ogni n N esista u n N(I K) con u n = e u n Ku n < n, e cioè tale che u n Ku n se n. Poichè {u n } n N è limitata e K è compatto, esistono {u nj } j N {u n } n N e u H tali che Ku nj u. Dato che u nj = u nj Ku nj + Ku nj, u nj converge a u e quindi Ku nj converge anche a Ku, essendo K continuo. Perciò u = Ku e cioè u N(I K). D altra parte u N(I K), perché questo sottospazio è chiuso ed ogni u n vi appartiene. Dunque u =, che contraddice il fatto che u =. Teorema.7.2. (Alternativa di Fredholm). Sia H uno spazio di Hilbert e sia K : H H un operatore lineare e compatto. Sia inoltre I : H H l identità. Allora (i) N(I K) ha dimensione finita; (ii) R(I K) è chiuso; (iii) R(I K) = N(I K ) ; (iv) N(I K) = {} se e solo se R(I K) = H; (v) N(I K) e N(I K ) hanno la stessa dimensione. Dim. (i) Si ha che ogni successione limitata {u n } n N N(I K) contiene una sottosuccessione convergente: infatti u n = Ku n ; e K è compatto. Per la Proposizione.6.9, N(I K) ha dimensione finita. (ii) Sia {v n } n N R(I K) e supponiamo che v n v per n. Allora esiste u n H tale che u n Ku n = v n (è chiaro inoltre che u n N(I K),

30 .7. Teorema dell alternativa di Fredholm 25 altrimenti v n = ). Per il Lemma.7. abbiamo che v n v m = (u n u m ) K(u n u m ) a u n u m ; quindi {u n } n N è di Cauchy e cioè converge ad un u H tale che u Ku = v, dato che I K è continuo. Dunque v R(I K). (iii) Segue dalla Proposizione.3.7. (iv) Supponiamo che N(I K) = {}, ma che H = R(I K) sia un sottospazio proprio di H; (ii) implica che H è chiuso. Risulta che il sottospazio chiuso H 2 = (I K)(H ) è contenuto strettamente in H, dato che I K è iniettivo, essendo N(I K) = {}. Iterando otteniamo una successione strettamente decrescente H H 2 H n H n+. Sia allora u n H n con u n H n+ e u n =. Osserviamo che Ku n Ku m = u n u m +u m Ku m (u n Ku n ) e che H n+ H n H m+ H m se n > m. Perciò u n Ku n, u m Ku m e u n appartengono ad H m+, mentre u m H m+ e quindi Ku n Ku m 2 = u m + (vettore in H m+ ) 2 = u m 2 + (vettore in H m+ ) 2. Ciò è assurdo perché K è compatto; dunque R(I K) = H. Se ora supponiamo che R(I K) = H, possiamo subito concludere che N(I K ) = {} utilizzando la (iii). Inoltre, dato che anche K è compatto, per quanto appena dimostrato abbiamo che R(I K ) = H e quindi N(I K) = R(I K ) = {}. (v) Dimostriamo prima che dim N(I K) dim R(I K). Per assurdo, supponiamo che esista un operatore lineare limitato A : N(I K) R(I K) iniettivo, ma non suriettivo. Possiamo estendere A a tutto H definendolo nullo su N(I K) (cioè, se u = u + u 2 con u N(I K) e u 2 N(I K), poniamo Au = Au ). Perciò A ha rango finito e quindi sia A che K + A sono compatti. Inoltre, se u N(I [K +A]) allora u = Ku+Au e quindi u Ku = Au appartiene sia a R(I K) che a R(A) e dunque a R(I K). Ne segue che u Ku = Au = e cioè u N(I K); dato che Au = e A è iniettiva su N(I K), possiamo allora concludere che u =. In definitiva, abbiamo dimostrato che N(I [K + A]) = {}. Applichiamo ora la (iv) all operatore K + A : otteniamo che R(I [K + A]) = H e cioè che l equazione u (Ku + Au) = v

31 26. Cenni di Analisi Funzionale ha soluzione per ogni v H. Questo è però impossibile se scegliamo v R(I K) ma v / R(A), dato che si avrebbe che u Ku = v + Au R(I K) R(I K), cioè u Ku = e quindi v = Au una contraddizione. A deve quindi essere suriettivo e cioè dim N(I K) dim R(I K). Finalmente, dato che N(I K ) = R(I K), da quanto appena dimostrato otteniamo dim N(I K) dim R(I K) = dim N(I K ). La disuguaglianza opposta si ottiene scambiando i ruoli di K e K. Osservazione.7.3. Il Teorema.7.2 asserisce che una delle seguenti possibilità si verifica ed esclude l altra: (a) per ogni f H, l equazione u Ku = f ha un unica soluzione e risulta; u a f (cioè u dipende con continuità dal dato); (b) l equazione omogenea u Ku = ha soluzioni non nulle. Questa dicotomia è l Alternativa di Fredholm e segue dall asserzione (iv) e e dalla (.7). Inoltre, se (b) si verifica, la (i) garantisce che lo spazio delle soluzioni dell equazione omogenea ha dimensione finita ed, inoltre, l equazione non omogenea u Ku = f ha soluzione se e solo se f è ortogonale a N(I K ) (per la (iii)). Tutto ciò era già noto nel caso in cui H avesse dimensione finita. Esempio.7.4. Sia K l operatore definito nell Esempio.6.5. Verifichiamo su tale operatore il teorema dell alternativa. Consideriamo quindi l equazione u Ku = f; essa sarà soddisfatta se e solo se [ a(n)] û(n) = ˆf(n), n N. Se a(n) per ogni n N, l equazione omogenea u Ku = ha la sola soluzione nulla. L equazione u Ku = f ha allora una sola soluzione, u = n N che dipende con continuità da f, infatti: u max n N ˆf(n) a(n) e n, a(n) f.

32 .8. Spettro di un operatore compatto 27 Altrimenti, dato che a(n) se n, ci sono al più m interi n,..., n m tali che a(n j ) =, j =,..., n m. In questo caso, l equazione omogenea ha soluzioni non banali, come pure l equazione u K u =. Infatti N(I K) = N(I K ) = span{e n,..., e nm } e quindi l equazione non omogenea sarà risolvibile solo se (f, e nj ) = ˆf(n j ) =, j =,..., n m.. In questo caso si avrà: u = n n,...,n m ˆf(n) a(n) e n e u max n n,...,n m a(n) f..8. Spettro di un operatore compatto L insieme risolvente di un operatore A L(H) è l insieme Lo spettro di A è l insieme ρ(a) = {λ R : A λi è iniettivo e suriettivo}. σ(a) = R \ ρ(a). Il Corollario.4.4 implica che (A λi) L(H) se λ ρ(a). Si dice che λ σ(a) è un autovalore di A se N(I λa) {}; lo spettro puntuale di A è l insieme σ p (A) di tutti i suoi autovalori. Se λ σ p (A), la sua molteplicità è la dimensione di N(A λi); ogni elemento non nullo di N(A λi) si dice un autovettore associato a λ. Esempio.8.. Sia A : l 2 l 2 definito così: Au = (, u, u 2,... ) se u = (u, u 2,... ). È chiaro che / σ p(a), dato che Au = se e solo se u =. D altra parte σ(a), perché A non è suriettivo. Teorema.8.2. Sia A L(H). Allora σ(a) è chiuso e σ(a) [ A, A ]. Dim. Sia λ R con λ > A. Allora l operatore λ A è una contrazione, dato che λ Au λ Av = λ Au Av λ A u v per ogni u, v H, e λ A <. Per ogni f H allora l equazione (λ A I)u = f (anche u λ Au f è una contrazione) ammette un unica soluzione e quindi A λi è biunivoco, cioè λ ρ(a). Dimostriamo ora che σ(a) è chiuso. Sia λ ρ(a) e sia λ R tale che λ λ < r; vogliamo far vedere che λ ρ(a) se r è abbastanza piccolo. L equazione Au λu = f si può riscrivere come Au λ u = f + (λ λ )u o, dato che λ ρ(a), come u = (A λ I) [f +(λ λ )u], che, per il Teorema della Contrazione, ha un unica soluzione quando λ λ (A λ I) <. Basta quindi scegliere r = (A λ I).

33 28. Cenni di Analisi Funzionale Teorema.8.3. (Spettro di un operatore compatto). Sia H uno spazio di Hilbert di dimensione infinita e sia K : H H un operatore lineare e compatto. Allora (i) σ(k); (ii) σ(k) \ {} = σ p (K) \ {}; (iii) σ(k) \ {} è finito oppure consiste di una successione infinitesima; (iv) ogni λ σ(k) \ {} ha molteplicità finita. Dim. (i) Se / σ(k), allora K è biunivoco e K è limitato per il Corollario.4.4; quindi I = K K è compatto, essendo la composizione di un operatore limitato con uno compatto. Per la Proposizione.6.9, H avrebbe dimensione finita, contro l ipotesi. (ii) È chiaro che σ(k) \ {} σ p(k) \ {}. Sia ora λ σ(k) \ {}; se fosse N(K λi) = {}, l asserzione (iv) del Teorema.7.2 implicherebbe R(K λi) = H e quindi che λ ρ(k), il che è assurdo. (iii) Supponiamo che σ(k) \ {} sia infinito e, per r >, poniamo Λ r = {λ σ(k) : λ > r}. Facciamo vedere che Λ r è finito, dimostrando così contemporaneamente che σ(k) \ {} è numerabile e che l unico suo punto di accumulazione è lo zero. Sia {λ n } n N Λ r una successione di elementi distinti; se u n è un autovettore corrispondente a λ n, allora {u n } n N sono linearmente indipendenti. Dimostriamolo per induzione: u è sicuramente linearmente indipendente; supponiamo che u,..., u n siano linearmente indipendenti e consideriamo l equazione c u + + c n u n =. Applicando ad entrambi i membri di questa equazione l operatore K λ n I, otteniamo che c (λ λ n )u + + c n (λ n λ n )u n =. Per l ipotesi di induzione e dato che gli autovalori sono tra loro distinti, abbiamo che c = = c n = e quindi c n u n = e cioè anche c n =. Poniamo ora H n = span{u,..., u n }; si ha che H n H n+ per ogni n N. Osserviamo che (K λ n I)(H n ) H n per ogni n = 2, 3,. Per n = 2, 3,, scegliamo un elemento v n H n tale che v n H n e v n =.

34 .9. Decomposizione spettrale di un operatore simmetrico compatto 29 Se n > m, H m H m H n H n e quindi λ n λ n Kv n λ m Kv m 2 = (Kv n λ n v n ) λ m (Kv m λ m v m ) + v n v m 2 = v n + (vettore in H n ) 2 v n 2 =, dato che Kv n λ n v n, Kv m λ n v m e v m appartengono ad H n. Perciò {K(λ n v n )} n N non contiene sottosuccessioni convergenti, anche se λ n v n = λ n < r ; questo è in contraddizione con il fatto che K è compatto. (iv) Sia λ un autovalore di K; per l asserzione (i) del Teorema.7.2, N(K λi) ha dimensione finita. Esempio.8.4. Sia K l operatore compatto definito nell Esempio.6.5. Allora Ku = λ u se e solo se a(n) û(n) = λ û(n), n N. Se λ a(n) per ogni n N, allora λ ρ(k). Se λ = a(n) per qualche n N tale che a(n), dato che a(n) per n, allora a(n) = a(n) solo per un numero finito di n e quindi la dimensione di N(K λi) è finita. Infine, osserviamo che λ = può avere molteplicità infinita, cioè la dimensione di N(K) è infinita; ciò si verifica per esempio se a(n) = per infiniti n..9. Decomposizione spettrale di un operatore simmetrico compatto Abbiamo già osservato che se A è un operatore lineare limitato e simmetrico, allora A uguaglia il numero poniamo ora M = sup{(au, u) : u H, u = }; m = inf{(au, u) : u H, u = } Lemma.9.. Sia A L(H) simmetrico. Allora (i) σ(a) [m, M]; (ii) m, M σ(a). Dim. (i) Sia a : H H R la forma bilineare definita da a(u, v) = (λu Au, v) per u, v H. È chiaro che a è continua. Se λ > M, allora la disuguaglianza (λu Au, u) = λ u 2 (Au, u) (λ M) u 2

35 3. Cenni di Analisi Funzionale implica che a è coercitiva. Per il Teorema.5.3, per ogni f H esiste un unico u H tale che (λu Au, v) = (f, v) per ogni v H, cioè λu Au = f, ossia R(λI A) = H. D altra parte la coercività di a implica che N(λI A)) = {}; perciò λi A è biunivoco e quindi λ ρ(a) assurdo. In modo analogo, si dimostra che λ m. (ii) Supponiamo per esempio che m / σ(a); allora è ben definito e continuo l inverso (A mi). La forma bilineare [u, v] = (Au mu, v) è simmetrica e non negativa (per la definizione di m); vale allora la disuguaglianza di Schwarz e quindi [u, v] 2 [u, u] [v, v] = (Au mu, u) (Av mv, v) (Au mu, u) A mi v 2 per ogni u, v H. In particolare, preso v = Au mu, si ha che e cioè Au mu 4 (Au mu, u) A mi Au mu 2 (.8) Au mu 2 A mi (Au mu, u), per ogni u H. Sia ora {u n } n N H con u n = per ogni n N e tale che (Au n, u n ) m per n ; allora (.8) implica che Au n mu n per n. Poiché abbiamo supposto che m / σ(a), si ha allora che u n = (A mi) (Au n mu n ) se n, dato che (A mi) è limitato. Ciò è assurdo perché u n = per ogni n N. Teorema.9.2. (Decomposizione spettrale di un operatore simmetrico compatto). Sia H uno spazio di Hilbert separabile e sia K : H H un operatore simmetrico e compatto. Allora esiste una base ortonormale numerabile di H fatta di autovettori di K. Dim. Sia {λ n } n N la successione degli autovalori distinti di K, eccettuato ; poniamo λ =. Se definiamo H = N(K) e H n = N(K λ n I), n N, per l asserzione (iv) del Teorema.7.2, risulta che dim(h ) e < dim(h n ) <, n N. Se n m e u H n, v H m, allora λ n (u, v) = (Ku, v) = (u, Kv) = λ m (u, v)

36 .. Sistemi di Sturm-Liouville 3 e quindi (u, v) =, dato che λ n λ m. Sia ora H il sottospazio di H formato da tutte le combinazioni lineari finite di elementi di H k, k =,,... ; è chiaro che H contiene tutti gli H k. Chiaramente K(H ) H ed, inoltre, K(H ) H, dato che (Ku, v) = (u, Kv) =, se u H e v H. La restrizione K di K a H è pure un operatore simmetrico e compatto ed inoltre σ(k ) = {}, dato che ogni suo autovalore λ non nullo sarebbe un autovalore di K (ma allora ogni autovettore u H corrispondente a λ starebbe in H ). Per il Lemma.9., allora (K u, u) = per ogni u H. Ma se u, v H, risulta che 2(K u, v) = (K (u + v), u + v) (K u, u) (K v, v) = e quindi K. Perciò H N(K) = H H ed allora H = {} e cioè H è denso in H. Scegliendo una base ortonormale da ogni H n, n =,, 2,, otteniamo allora una base ortonormale per tutto H. Si noti che H contiene una base ortonormale numerabile, dato che H è separabile. Esempio.9.3. Riprendiamo ancora l Esempio.8.4. simmetrico se e solo se a(n) R per ogni n N. È chiaro che K è In questo caso σ(k) è composto dai valori distinti di a(n); siano questi {a(n j )} j=,...,j, con J. Si avrà allora che m = min{a(n j ) : j {,..., J}}, M = max{a(n j ) : j {,..., J}}. Posto H j = N(K a(n j )I), si ha: l 2 = H H 2... Sistemi di Sturm-Liouville Si consideri il problema al contorno: (.9) Lu = [p(t)u ] + q(t)u = f(t), t (, T ); u() = u(t ) = ; il sistema (.9) è un esempio di problema di Sturm-Liouville; se si suppone che p C ([, T ]), q, f C ([, T ]), le soluzioni dell equazione differenziale in (.9) sono di classe C 2 [, T ]; chiameremo queste soluzioni classiche e, come è noto dalla teoria generale delle equazioni differenziali lineari, esse sono della forma u = u + c u + c 2 u 2, dove u è una soluzione particolare, u e u 2 sono soluzioni linearmente indipendenti dell equazione omogenea associata Lu = e c, c 2 sono costanti reali.

37 32. Cenni di Analisi Funzionale Vedremo in seguito come si potrà parlare di soluzioni di (.9) in senso generalizzato, nel caso in cui le funzioni p, q ed f siano discontinue. Per poter far ciò, supponiamo che le funzioni p e q soddisfino le seguenti richieste: (.) p(t) e q(t), t [, T ]. Nelle ipotesi di regolarità sui coefficienti finora specificate, il sistema (.9) ha una ed una sola soluzione classica. Infatti, vista la forma delle soluzioni di Lu = f, troveremo una soluzione di (.9) se e solo se il sistema lineare { c u () + c 2 u 2 () = u(), c u (T ) + c 2 u 2 (T ) = u(t ), ha soluzione. Questo si verifica se e solo se il sistema omogeneo associato { c u () + c 2 u 2 (T ) =, c u () + c 2 u 2 (T ) =, ha la sola soluzione nulla e, in questo caso, la soluzione del sistema non omogeneo è unica. Il sistema omogeneo ha soluzione nulla se e solo se il sistema (.9) con f ha la sola soluzione nulla. Questo si verifica osservando che, se Lu =, allora si ha che = T T u Lu dt = T [ p(t)(u ) 2 + q(t)u 2] dt u { [p(t)u ] + q(t)u } dt = T (u ) 2 dt, dopo un integrazione per parti, dove si sono applicate le condizioni al contorno in (.9) e le ipotesi (.). La funzione u deve essere allora costante e, quindi, nulla per soddisfare le condizioni al contorno. Abbiamo perciò dimostrato che ad ogni f C ([, T ]) corrisponde una sola soluzione del problema (.9), che indicheremo con u = Kf; resta quindi definito un operatore (lineare) su C ([, T ]). Vediamo ora come si può definire una soluzione generalizzata di (.9) quando si supponga che i coefficienti p e q siano solo di classe L [, T ], ferme restando le ipotesi (.), ed il termine f sia in L 2 [, T ]. Cominciamo con il definire un nuovo spazio di Hilbert, { T } H = v AC[, T ] : v (t) 2 dt <, v() = v(t ) =, con il prodotto scalare (u, v) = T u(t) v(t) dt

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1 SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x, y, z) è un vettore in coordinate ortonormali,

Dettagli

Geometria Superiore Esercizi 1 (da consegnare entro... )

Geometria Superiore Esercizi 1 (da consegnare entro... ) Geometria Superiore Esercizi 1 (da consegnare entro... ) In questi esercizi analizziamo il concetto di paracompattezza per uno spazio topologico e vediamo come questo implichi l esistenza di partizioni

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Denis Nardin January 2, 2010 1 Equazioni differenziali In questa sezione considereremo le proprietà delle soluzioni del problema di Cauchy. Da adesso in poi (PC) indicherà

Dettagli

Parte 2. Metodi Matematici per la Meccanica Quantistica. Spazi di pre-hilbert e spazi di Hilbert. Gianpiero CATTANEO

Parte 2. Metodi Matematici per la Meccanica Quantistica. Spazi di pre-hilbert e spazi di Hilbert. Gianpiero CATTANEO Parte Metodi Matematici per la Meccanica Quantistica Spazi di pre-hilbert e spazi di Hilbert Gianpiero CATTANEO 10 giugno 008 Indice I - Spazi con Prodotto Interno e Spazi di Hilbert 5 1 Spazi con Prodotto

Dettagli

1.1. Spazi metrici completi

1.1. Spazi metrici completi SPAZI METRICI: COMPLETEZZA E COMPATTEZZA Note informali dalle lezioni 1.1. Spazi metrici completi La nozione di convergenza di successioni è centrale nello studio degli spazi metrici. In particolare è

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI

CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI CAPITOLO IV RISOLUZIONE DEI SISTEMI LINEARI COL METODO DEI DETERMINANTI 1. REGOLA DI CRAMER Sia S un sistema lineare di n ( 2) equazioni in n incognite su un campo K : a 11 x 1 + a 12 x 2 + + a 1n x n

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni

Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni Classificazione Singolarità isolate, Serie di Laurent, Residui, Teorema dei residui e applicazioni Docente:Alessandra Cutrì Richiamo:Zeri di Funzioni olomorfe (o analitiche) Sia f : A C C A aperto connesso,

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:...

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:... Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8 Cognome:................ Nome:................ Matricola:................ (Dare una dimostrazione esauriente di tutte le

Dettagli

Note integrative ed Esercizi consigliati

Note integrative ed Esercizi consigliati - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Note integrative ed consigliati Laura Poggiolini e Gianna Stefani Indice 0 1 Convergenza uniforme 1 2 Convergenza totale 5 1 Numeri

Dettagli

Online Gradient Descent

Online Gradient Descent F94 Metodi statistici per l apprendimento Online Gradient Descent Docente: Nicolò Cesa-Bianchi versione 9 aprile 06 L analisi del Perceptrone ha rivelato come sia possibile ottenere dei maggioranti sul

Dettagli

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine Lezione 6 Nucleo, Immagine e Teorema della Dimensione In questa lezione entriamo nel vivo della teoria delle applicazioni lineari. Per una applicazione lineare L : V W definiamo e impariamo a calcolare

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Prof. Stefano Capparelli

Prof. Stefano Capparelli APPUNTI PER UN SECONDO CORSO DI ALGEBRA LINEARE Prof. Stefano Capparelli A mia madre Prefazione. Brevi Richiami di Algebra Lineare. Forma Canonica di Jordan.. Blocco di Jordan.. Base di Jordan.. Polinomio

Dettagli

I appello - 24 Marzo 2006

I appello - 24 Marzo 2006 Facoltà di Ingegneria - Corso di Laurea in Ing. Energetica e Gestionale A.A.2005/2006 I appello - 24 Marzo 2006 Risolvere gli esercizi motivando tutte le risposte. I.) Studiare la convergenza puntuale,

Dettagli

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2 Chiusura lineare Def. Sia A V (K) con A. Si dice copertura lineare (o chiusura lineare) di A, e si indica con L(A), l insieme dei vettori di V che risultano combinazioni lineari di un numero finito di

Dettagli

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Attività didattica ANALISI MATEMATICA [2000] Periodo di svolgimento:

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

Informatica Grafica. Un introduzione

Informatica Grafica. Un introduzione Informatica Grafica Un introduzione Rappresentare la Geometria Operabile da metodi di calcolo automatici Grafica Vettoriale Partiamo dalla rappresentazione di un punto... Spazi Vettoriale SPAZI VETTORIALI

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

Appunti del corso di Probabilità e Processi Stocastici

Appunti del corso di Probabilità e Processi Stocastici Appunti del corso di Probabilità e Processi Stocastici in continua revisione e aggiornamento Michele Gianfelice Dipartimento di Matematica Università della Calabria Campus di Arcavacata Ponte Pietro Bucci

Dettagli

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI 2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 8 - METODI ITERATIVI PER I SISTEMI LINEARI Lucio Demeio Dipartimento di Scienze Matematiche 1 Norme e distanze 2 3 4 Norme e distanze

Dettagli

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga Lezioni del corso di Geometria e Algebra prof Michele Mulazzani dott Alessia Cattabriga AA 20001/2002 Indice 1 Equazioni e sistemi lineari 4 11 Alcune strutture algebriche 4 12 Operazioni standard su K

Dettagli

Massimi e minimi vincolati in R 2 - Esercizi svolti

Massimi e minimi vincolati in R 2 - Esercizi svolti Massimi e minimi vincolati in R 2 - Esercizi svolti Esercizio 1. Determinare i massimi e minimi assoluti della funzione f(x, y) = 2x + 3y vincolati alla curva di equazione x 4 + y 4 = 1. Esercizio 2. Determinare

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

TOPOLOGIE. Capitolo 2. 2.1 Spazi topologici

TOPOLOGIE. Capitolo 2. 2.1 Spazi topologici Capitolo 2 TOPOLOGIE Ogni spazio che si considera in gran parte della matematica e delle sue applicazioni è uno spazio topologico di qualche tipo: qui introduciamo in generale le nozioni di base della

Dettagli

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale Università degli Studi di Catania A.A. 2012-2013 Corso di laurea in Ingegneria Industriale Corso di Analisi Matematica I (A-E) (Prof. A.Villani) Elenco delle dimostrazioni che possono essere richieste

Dettagli

Appunti di Analisi convessa. Paolo Acquistapace

Appunti di Analisi convessa. Paolo Acquistapace Appunti di Analisi convessa Paolo Acquistapace 6 dicembre 2012 Indice 1 Spazi vettoriali topologici 4 1.1 Insiemi convessi.......................... 4 1.2 Funzionale di Minkowski..................... 6

Dettagli

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli

FUNZIONI CONTINUE - ESERCIZI SVOLTI

FUNZIONI CONTINUE - ESERCIZI SVOLTI FUNZIONI CONTINUE - ESERCIZI SVOLTI 1) Verificare che x è continua in x 0 per ogni x 0 0 ) Verificare che 1 x 1 x 0 è continua in x 0 per ogni x 0 0 3) Disegnare il grafico e studiare i punti di discontinuità

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Prova scritta di Geometria 2 Prof. M. Boratynski

Prova scritta di Geometria 2 Prof. M. Boratynski 10/9/2008 Es. 1: Si consideri la forma bilineare simmetrica b su R 3 associata, rispetto alla base canonica {e 1, e 2, e 3 } alla matrice 3 2 1 A = 2 3 0. 1 0 1 1) Provare che (R 3, b) è uno spazio vettoriale

Dettagli

Geometria I A. Algebra lineare

Geometria I A. Algebra lineare UNIVERSITÀ CATTOLICA DEL SACRO CUORE Facoltà di Scienze Matematiche, Fisiche e Naturali Geometria I A. Algebra lineare Prof.ssa Silvia Pianta Anno Accademico 22/23 Indice Spazi vettoriali 7 Definizione

Dettagli

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W Matematica B - a.a 2006/07 p. 1 Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. Definizione 1. La funzione L : V W si dice una applicazione

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

Operatori non limitati con domini densi in spazi di Hilbert.

Operatori non limitati con domini densi in spazi di Hilbert. Capitolo 5 Operatori non limitati con domini densi in spazi di Hilbert. In questo capitolo estenderemo la teoria degli operatori in spazi di Hilbert considerando operatori non limitati (in particolare

Dettagli

Corso di Laurea in Ingegneria Informatica Analisi Numerica

Corso di Laurea in Ingegneria Informatica Analisi Numerica Corso di Laurea in Ingegneria Informatica Lucio Demeio Dipartimento di Scienze Matematiche 1 2 Analisi degli errori Informazioni generali Libro di testo: J. D. Faires, R. Burden, Numerical Analysis, Brooks/Cole,

Dettagli

Esercitazioni di statistica

Esercitazioni di statistica Esercitazioni di statistica Misure di associazione: Indipendenza assoluta e in media Stefania Spina Universitá di Napoli Federico II stefania.spina@unina.it 22 ottobre 2014 Stefania Spina Esercitazioni

Dettagli

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI)

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) 1 Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) Approssimazioni di Taylor BPS, Capitolo 5, pagine 256 268 Approssimazione lineare, il simbolo

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

16. Vari modi di convergenza delle successioni di funzioni reali misurabili.

16. Vari modi di convergenza delle successioni di funzioni reali misurabili. 16. Vari modi di convergenza delle successioni di funzioni reali misurabili. L argomento centrale di questa ultima parte del corso è lo studio in generale della convergenza delle successioni negli spazi

Dettagli

Introduzione alla programmazione lineare. Mauro Pagliacci

Introduzione alla programmazione lineare. Mauro Pagliacci Introduzione alla programmazione lineare Mauro Pagliacci c Draft date 25 maggio 2010 Premessa In questo fascicolo sono riportati gli appunti dalle lezioni del corso di Elaborazioni automatica dei dati

Dettagli

Teoremi di rigidità per funzioni di Sobolev e applicazioni.

Teoremi di rigidità per funzioni di Sobolev e applicazioni. Università degli Studi di Roma La Sapienza A.A. 01-013 Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea Specialistica in Matematica Teoremi di rigidità per funzioni di Sobolev e applicazioni.

Dettagli

1 Regole generali per l esame. 2 Libro di Testo

1 Regole generali per l esame. 2 Libro di Testo FACOLTÀ DI INGEGNERIA Corso di GEOMETRIA E ALGEBRA (mn). (Ing. per l Ambiente e il Territorio, Ing. Informatica - Sede di Mantova) A.A. 2008/2009. Docente: F. BISI. 1 Regole generali per l esame L esame

Dettagli

Stabilità di Lyapunov

Stabilità di Lyapunov Stabilità di Lyapunov Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche Ancona Introduzione. In queste note presentiamo i primi elementi della teoria della stabilità

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO

Dettagli

TOPOLOGIA ALBERTO SARACCO

TOPOLOGIA ALBERTO SARACCO TOPOLOGIA ALBERTO SARACCO Abstract. Le presenti note saranno il più fedeli possibile a quanto detto a lezione. I testi consigliati sono Jänich [1], Kosniowski [2] e Singer- Thorpe [3]. Un ottimo libro

Dettagli

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24 Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione

Dettagli

Proprietà metriche di R. Funzioni da R in R. Funzioni continue da R in R. Limiti di funzioni da R in R.

Proprietà metriche di R. Funzioni da R in R. Funzioni continue da R in R. Limiti di funzioni da R in R. Università di Trieste - Facoltà d'ingegneria Corsi di Laurea in Ingegneria Chimica, Elettrica, Elettronica, dei Materiali Programma del corso di Analisi Matematica I Anno Accademico 1999-2000 Prof. Pierpaolo

Dettagli

Sulle funzioni di W 1,p (Ω) a traccia nulla

Sulle funzioni di W 1,p (Ω) a traccia nulla Sulle funzioni di W 1,p () a traccia nulla Sia u W 1,p (R n ) e supponiamo che il supp u, essendo un aperto di R n. Possiamo approssimare u con una successione di funzioni C il cui supporto è contenuto

Dettagli

Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio

Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio Lezioni di Geometria e Algebra Fulvio Bisi, Francesco Bonsante, Sonia Brivio CAPITOLO 4 Applicazioni lineari 1. Definizioni ed esempi. In questo capitolo ci proponiamo di studiare le funzioni tra spazi

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23 ANALISI NUMERICA Elementi finiti bidimensionali a.a. 2014 2015 Maria Lucia Sampoli ANALISI NUMERICA p.1/23 Elementi Finiti 2D Consideriamo 3 aspetti per la descrizione di elementi finiti bidimensionali:

Dettagli

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati. PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

OPERATORI NON LIMITATI

OPERATORI NON LIMITATI Capitolo 13 OPERATORI NON LIMITATI La teoria degli operatori limitati negli spazi di Hilbert è soddisfacente per molti versi, ma non cattura diversi esempi che sono pervasivi nella Fisica Matematica: gli

Dettagli

Appunti di Algebra Lineare. Antonino Salibra

Appunti di Algebra Lineare. Antonino Salibra Appunti di Algebra Lineare Antonino Salibra January 11, 2016 2 Libro di testo: Gilbert Strang, Algebra lineare, Edizioni Apogeo 2008 Programma di Algebra Lineare (2015/16) (da completare): 1. Campi numerici.

Dettagli

MODULI INIETTIVI. Definizione: Un inclusione di A-moduli ι : M N si dice estensione essenziale di M se per ogni sottomodulo non nullo P N, P ι(m) 0.

MODULI INIETTIVI. Definizione: Un inclusione di A-moduli ι : M N si dice estensione essenziale di M se per ogni sottomodulo non nullo P N, P ι(m) 0. MODULI INIETTIVI Definizione: Un inclusione di A-moduli ι : M N si dice estensione essenziale di M se per ogni sottomodulo non nullo P N, P ι(m) 0. Esempio: Supponiamo che A sia un dominio e chiamiamo

Dettagli

Misure e funzioni a variazione limitata

Misure e funzioni a variazione limitata Capitolo 2 Misure e funzioni a variazione limitata 2.1 Richiami di teoria della misura e integrazione Sia un insieme non vuoto e sia F una σ-algebra su, cioè una famiglia di sottoinsiemi di che gode delle

Dettagli

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4 CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute,

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

Soluzioni classiche dell'equazione di Laplace e di Poisson

Soluzioni classiche dell'equazione di Laplace e di Poisson Soluzioni classiche dell'equazione di Laplace e di Poisson Antonio Paradies Dipartimento di Matematica e Applicazioni Renato Caccioppoli Università degli studi di Napoli Federico II Napoli, 25 Febbraio

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

LEZIONE 16. Proposizione 16.1.2. Siano V e W spazi vettoriali su k = R, C. Se f: V W

LEZIONE 16. Proposizione 16.1.2. Siano V e W spazi vettoriali su k = R, C. Se f: V W LEZIONE 16 16.1. Applicazioni lineari iniettive e suriettive. Ricordo le seguenti due definizioni valide per applicazioni di qualsiasi tipo ϕ: X Y fra due insiemi. L applicazione ϕ si dice iniettiva se

Dettagli

POLITECNICO di BARI - A.A. 2012/2013 Corso di Laurea in INGEGNERIA Informatica e dell Automazione

POLITECNICO di BARI - A.A. 2012/2013 Corso di Laurea in INGEGNERIA Informatica e dell Automazione POLITECNICO di BARI - A.A. 0/03 Corso di Laurea in INGEGNERIA Informatica e dell Automazione Problema Sia f :[0, +[! R una funzione continua. La funzione composta g() =f(kk) è c o n t i n u a? Problema

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

Richiami di algebra lineare e geometria di R n

Richiami di algebra lineare e geometria di R n Richiami di algebra lineare e geometria di R n combinazione lineare, conica e convessa spazi lineari insiemi convessi, funzioni convesse rif. BT.5 Combinazione lineare, conica, affine, convessa Un vettore

Dettagli

Lezioni di Ottimizzazione

Lezioni di Ottimizzazione Lezioni di Ottimizzazione Italo Capuzzo Dolcetta Flavia Lanzara Dipartimento di Matematica Guido Castelnuovo Sapienza Università di Roma A.A. 2007-2008 Ultimo aggiornamento: October 5, 2007 1 Indice 1

Dettagli

Note del corso di SISTEMI DINAMICI. Massimiliano Berti

Note del corso di SISTEMI DINAMICI. Massimiliano Berti Note del corso di SISTEMI DINAMICI Massimiliano Berti 16 Dicembre 2011 Versione preliminare Introduzione Va sotto il nome Sistemi Dinamici la teoria delle equazioni differenziali ordinarie, cioè di equazioni

Dettagli

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007

Spazi lineari - PARTE II - Felice Iavernaro. Dipartimento di Matematica Università di Bari. 9 e 16 Marzo 2007 Spazi lineari - PARTE II - Felice Iavernaro Dipartimento di Matematica Università di Bari 9 e 16 Marzo 2007 Felice Iavernaro (Univ. Bari) Spazi lineari 9-16/03/2007 1 / 17 Condizionamento dei sistemi lineari

Dettagli

Analisi funzionale. versione 14-6-10

Analisi funzionale. versione 14-6-10 Analisi funzionale versione 4-6-0 Indice Spazi metrici, normati, di Hilbert 3. Spazi metrici.................................. 3.2 Spazi normati, spazi di Banach........................ 6.3 Spazi con prodotto

Dettagli

Successioni e serie di funzioni

Successioni e serie di funzioni Successioni e serie di funzioni A. Albanese, A. Leaci, D. Pallara In questa dispensa generalizzeremo la trattazione delle successioni e delle serie al caso in cui i termini delle stesse siano non numeri

Dettagli

Problemi al contorno per equazioni e sistemi di equazioni ellittiche, paraboliche ed iperboliche in domini a frontiera non regolare.

Problemi al contorno per equazioni e sistemi di equazioni ellittiche, paraboliche ed iperboliche in domini a frontiera non regolare. Prof.ssa Diomeda Lorenza Maria Professore Ordinario Dipartimento di Scienze Economiche Area Matematica Facoltà di Economia, Via C.Rosalba 53- Bari Tel. 080-5049169 Fax 080-5049207 E-mail diomeda@matfin.uniba.it

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

NUMERI COMPLESSI. Test di autovalutazione

NUMERI COMPLESSI. Test di autovalutazione NUMERI COMPLESSI Test di autovalutazione 1. Se due numeri complessi z 1 e z 2 sono rappresentati nel piano di Gauss da due punti simmetrici rispetto all origine: (a) sono le radici quadrate di uno stesso

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

L. Pandolfi. Lezioni di Analisi Matematica 2

L. Pandolfi. Lezioni di Analisi Matematica 2 L. Pandolfi Lezioni di Analisi Matematica 2 i Il testo presenta tre blocchi principali di argomenti: A Successioni e serie numeriche e di funzioni: Cap., e 2. B Questa parte consta di due, da studiarsi

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

5. La teoria astratta della misura.

5. La teoria astratta della misura. 5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme

Dettagli

Appunti di Complementi di Matematica. Jacobo Pejsachowicz (a cura di Nathan Quadrio)

Appunti di Complementi di Matematica. Jacobo Pejsachowicz (a cura di Nathan Quadrio) Appunti di Complementi di Matematica Jacobo Pejsachowicz (a cura di Nathan Quadrio) 1 Indice 1 Cenni della teoria degli insiemi 4 1.1 Classi ed insiemi........................... 4 1.2 Operazioni fra gli

Dettagli

Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon

Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Pierangelo Ciurlia, Riccardo Gusso, Martina Nardon Esercizi di algebra lineare e sistemi di equazioni lineari con applicazioni

Dettagli

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique.

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti verticali Sia 0 punto di accumulazione per dom(f). La retta = 0 è

Dettagli