Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :"

Transcript

1 Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K: b( u + v, w) = b( u, w) + b( v, w); b( u, v + w) = b( u, v) + b( u, w); b(k u, v) = kb( u, v) = b( u, k v). Definizione...simmetrica o prodotto scalare se per ogni v, w V b( v, w) = b( w, v).

2 Forme bilineari Teorema di rappresentazione Sia b una forma bilineare. Nelle ipotesi precedenti, sia B una base per V = V n (K) e x, y i vettori delle coordinate di v e w rispett., rispetto a B. Allora b( v, w) = x T A y, dove A è la matrice di b rispetto a B. Viceversa ogni matrice A individua una forma bilineare f, ponendo f ( v, w) = x T A y. Teorema b( v, w) = x T A y = polinomio omogeneo di II grado Una forma bilineare è simmetrica se e solo se lo è la matrice che la rappresenta. Definizione Uno spazio vettoriale su cui è assegnata una forma bilineare simmetrica si dice spazio metrico.

3 Forme quadratiche Definizione Sia b : V V K un prodotto scalare. L applicazione q : { V K v q( v) = b( v, v). è la forma quadratica associata al prodotto scalare b. q( v) = b( v, v) = x T A x = polinomio omogeneo di II grado nelle x 1,..., x n.

4 Forme bilineari Definizioni e caratterizzazioni Due vettori sono ortogonali se il loro prodotto scalare è nullo. Dato un sottoinsieme A di V, il suo complemento ortogonale è costituito da tutti e soli i vettori di V che sono ortogonali a tutti i vettori di A. Un prodotto scalare è regolare o non degenere se e solo se V = { 0} (radicale di V ). È degenere altrimenti. Equivalentemente è regolare se e solo se la matrice che lo rappresenta è non singolare. Definizioni Un vettore (che non sia 0) si dice isotropo se è ortogonale a se stesso. Anisotropo altrimenti. Se V contiene un vettore isotropo, si dice che V è uno spazio metrico isotropo. Se non contiene alcun vettore isotropo spazio metrico anisotropo.

5 Esercizio 1. In R 3, data la funzione f : { R 3 R 3 R ( v, w) xx + 2xy + 2x y + 3yy + zz, dove v 1 = (x, y, z), v 2 = (x, y, z ); a) dire se f è una forma bilineare; b) dire se f è un prodotto scalare; c) scrivere la matrice di f rispetto alla base canonica di R 3 ; d) dire se i vettori v = (1, 2, 4) e w = (0, 1, 2) sono ortogonali; e) determinare v ; f) scrivere la forma quadratica associata e stabilire se f è degenere; g) determinare l insieme I dei vettori isotropi di R 3.

6 Esercizio 2. Tema esame del 15 luglio 2009 Nello spazio vettoriale R 3 si consideri la forma bilineare b k, definita rispetto alla base canonica dalla matrice A k = 2 k k(k 2), dove k è un parametro reale. a) Determinare i valori di k per cui b k è un prodotto scalare; b) per ciascuno dei valori determinati al punto precedente, determinare la dimensione per il radicale di b k e, se esiste, una sua base; c) posto: k = 1, v = (1, 0, 1), w = (1, 1, 1) determinare il complemento ortogonale di < v > e di < w >, rispetto a b 1.

7 Esercizio 3. Date le forme quadratiche a) su R 3, q(x, y, z) = x 2 3xy + 4y 2, b) su R 4, q(x, y, z, t) = xy, c) su R 4, q(x, y, z, t) = 2xy zt, d) su R 3, q(x, y, z) = x 2 5xy + z 2, determinare il prodotto scalare a cui sono associate e la matrice rispetto alla base canonica. Proposizione Se b : V V K è un prodotto scalare su V, la forma quadratica q : { V K v q( v) = b( v, v) gode delle seguenti proprietà: a) per ogni λ K, per ogni v V : q(λ v) = λ 2 q( v); b) se la caratteristica del campo è diversa da 2, 2b( v, w) = q( v + w) q( v) q( w).

8 Decomposizioni Proprietà Sia V n (R) uno spazio metrico e sia U un suo sottospazio. Allora: dim U + dim U dim V ; se il prodotto scalare è regolare, dim U + dim U = dim V ; se il prodotto scalare è regolare e U è regolare (cioè U U = { 0}), allora U U ( = V, da cui U ) = U; se v V è anisotropo, < v > è regolare.

9 Esercizio 4. Sia f : Mat 2 (R) Mat 2 (R) R tale che (( ) ( )) ( ) ( ) x y x y f, z t z t = xx +yy x y x y, z t z t Mat 2 (R). a) Verificare che f è un prodotto scalare e scriverne la matrice rispetto alla base ( ( ) ( ) ( ) ( )) B = E 1 =, E =, E =, E =. 0 1 b) Scrivere una base per il radicale V. c) Posto A =< E 1, E 2 >, determinare A, ( A ), < A > A, < A > + A. Il complemento ortogonale di V non è banale, per cui f è degenere. Si ha che: dim A + dim A > dim V, quindi la somma A + A non è diretta e ( A ) A.

10 Esercizio 5. Siano V = R 4 e f : R 4 R 4 R il prodotto scalare definito da: f ((x, y, z, t), (x, y, z, t )) = 1 2 xt x t yz y z, (x, y, z, t), (x, y, z, t ) R 4. Siano inoltre: U =< (1, 0, 0, 0), (0, 1, 0, 0) >, W =< (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) > e Z =< (1, 0, 0, 0), (0, 0, 0, 1) >. a) Stabilire se f è regolare o degenere. b) Stabilire se U è regolare; determinare U e ( U ). Fare lo stesso per W e per Z. f è regolare. I sottospazi U e W non sono regolari, per cui, nonostante dim U + dim U = dim V e dim W + dim W = dim V, ciascuno sottospazio non è in somma diretta con il proprio complemento ortogonale. Z, invece, è un sottospazio regolare per cui oltre al fatto che dim Z + dim Z = dim Z, si ha anche Z Z = V.

11 Esercizio 6. Dire se i prodotti scalari a) f : R 3 R 3 R tale che f ((x, y, z), (x, y, z )) = 2xx + xy + x y + yy + zz b) f : Mat 2 (R) Mat 2 (R) R tale che (( ) ( )) x y x y f, z t z t = xx + yy sono definiti positivi. Definizione definito positivo o euclideo se v V : q( v) > 0; definito negativo se v V : q( v) < 0; semidefinito positivo se v V : q( v) 0; semidefinito negativo se v V : q( v) 0; indefinito altrimenti, cioè se v 1, v 2 V : q( v 1 ) < 0 < q( v 2 )....oppure determinare gli autovalori!

12 Esercizio In R 3 sia M = la matrice del prodotto scalare f rispetto alla base canonica. Posto A = {(0, k, 0), (k, 2k, 1), (2k, k, 0)}, determinare una base e la dimensione di A, al variare del parametro reale k. Se V n (R) è uno spazio euclideo (con prodotto scalare euclideo), allora ogni vettore è anisotropo; per ogni sottoinsieme A di V n (R) si ha < A > A = V n (R).

13 Esercizio 8. Nello spazio vettoriale R 4 sia un prodotto scalare. Posto f ((x, y, z, t), (x, y, z, t )) = xx tt A = {(k, 0, 1, k), (k, 0, k, k)}, determinare una base e la dimensione di A. Attenzione: il prodotto scalare f non è euclideo, quindi non è più vero che < A > A = V n (R) = R 3.

14 Esercizio 9. Dato il prodotto scalare euclideo su R 3 q(x, y, z) = x 2 + (x + y + z) 2 + z 2, determinare la norma dei seguenti vettori: v 1 = (1, 2, 3), v 2 = (0, 1, 1), v 3 = (1, 0, 0). Definizione Sia v V (R) e sia un prodotto scalare euclideo. Si definisce norma del vettore v lo scalare v = v v.

15 Esercizio 10. Nello spazio vettoriale R 3 si costruisca una base ortogonale rispetto al prodotto scalare f ((x, y, z), (x, y, z )) = xx + yy + zz + xy + x y + yz + y z. Definizione Una base B = ( e 1,..., e n ) dello spazio vettoriale metrico (V n (K), ) si dice ortogonale o diagonalizzante rispetto al prodotto scalare se per ogni i, j = 1,..., n con i j, vale: e i e j = 0. Gram-Schmidt (se prodotto scalare euclideo): e 1 = e 1, e 2 = e 2 e 2 e 1 q( e 1 ) e 1 e n = e n e n e n 1 q( e n 1 ) e n 1 e n e 1 e q( e 1 ) 1.

16 Esercizio 11. Tema esame del 1 aprile 2004 Nello spazio vettoriale R 3 è data la funzione ϕ tale che, per ogni coppia di vettori v = (x, y, z), v = (x, y, z ) R 3, si ha h, k R, ϕ( v, v ) = hxx +hxz +kyy +(h 2 h+1)yz +h 2 zx +(k 2)x +zy +2zz. Determinare per quali valori di h e k: a) ϕ è una forma bilineare; b) ϕ è un prodotto scalare; c) ϕ è un prodotto scalare definito positivo. Nei casi in cui ϕ è un prodotto scalare: d) verificare se la base canonica di R 3 è ortogonale; in caso di risposta negativa, ortogonalizzarla; e) costruire il sottoinsieme U dei vettori di R 3 isotropi rispetto a ϕ; verificare se U è sottospazio vettoriale di R 3 ; f) stabilire se esistono valori dei parametri per i quali R 3 ammette una base ortonormale; in caso di risposta positiva, determinare una tale base.

17 Esercizio 12. Tema esame del 17 marzo 2005 Nello spazio vettoriale R 3 sia ϕ : R 3 R 3 R la funzione tale che v = (x, y, z), v = (x, y, z ) R 3 si ha h, k, R, ϕ( v, v ) = (h + k)xx + h 2 xy + hyx + hyy + hxz + (k 1)x+ +h 3 zx + (h + k)zz + (h k)yz + (h k)zy. Stabilire per quali valori di h e k la funzione: a) ϕ è una forma bilineare; b) ϕ è un prodotto scalare; c) ϕ è un prodotto scalare definito positivo. Nei casi in cui ϕ è un prodotto scalare: d) verificare se la base canonica di R 3 è ortogonale; in caso di risposta negativa, ortogonalizzarla; e) costruire, se possibile, una base ortonormale che contenga il vettore (0, 1, 0).

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24 Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione

Dettagli

Prova scritta di Geometria 2 Prof. M. Boratynski

Prova scritta di Geometria 2 Prof. M. Boratynski 10/9/2008 Es. 1: Si consideri la forma bilineare simmetrica b su R 3 associata, rispetto alla base canonica {e 1, e 2, e 3 } alla matrice 3 2 1 A = 2 3 0. 1 0 1 1) Provare che (R 3, b) è uno spazio vettoriale

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga Lezioni del corso di Geometria e Algebra prof Michele Mulazzani dott Alessia Cattabriga AA 20001/2002 Indice 1 Equazioni e sistemi lineari 4 11 Alcune strutture algebriche 4 12 Operazioni standard su K

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE FLAVIO ANGELINI Sommario Queste note hanno lo scopo di indicare a studenti di Economia interessati alla finanza quantitativa i concetti essenziali

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof.

Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof. A01 178 Grazie ai Colleghi di Geometria del Dipartimento di Matematica dell Università degli Studi di Torino per il loro prezioso contributo. Grazie al Prof. S.M. Salamon per tanti utili suggerimenti e

Dettagli

1 Regole generali per l esame. 2 Libro di Testo

1 Regole generali per l esame. 2 Libro di Testo FACOLTÀ DI INGEGNERIA Corso di GEOMETRIA E ALGEBRA (mn). (Ing. per l Ambiente e il Territorio, Ing. Informatica - Sede di Mantova) A.A. 2008/2009. Docente: F. BISI. 1 Regole generali per l esame L esame

Dettagli

Università degli Studi di Roma La Sapienza Laurea in Ingegneria Energetica A.A. 2014-2015 Programma del corso di Geometria Prof.

Università degli Studi di Roma La Sapienza Laurea in Ingegneria Energetica A.A. 2014-2015 Programma del corso di Geometria Prof. Università degli Studi di Roma La Sapienza Laurea in Ingegneria Energetica A.A. 2014-2015 Programma del corso di Geometria Prof. Antonio Cigliola Prerequisiti Logica elementare. Principio di Induzione.

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz: FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +

Dettagli

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1 SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x, y, z) è un vettore in coordinate ortonormali,

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2 Chiusura lineare Def. Sia A V (K) con A. Si dice copertura lineare (o chiusura lineare) di A, e si indica con L(A), l insieme dei vettori di V che risultano combinazioni lineari di un numero finito di

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

Geometria I A. Algebra lineare

Geometria I A. Algebra lineare UNIVERSITÀ CATTOLICA DEL SACRO CUORE Facoltà di Scienze Matematiche, Fisiche e Naturali Geometria I A. Algebra lineare Prof.ssa Silvia Pianta Anno Accademico 22/23 Indice Spazi vettoriali 7 Definizione

Dettagli

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura Cognome Nome Matricola ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura (Primo appello/ii prova parziale 15/6/15 - Chiarellotto-Urbinati) Per la II prova: solo esercizi

Dettagli

Algebre di Lie semisemplici, sistemi di radici e loro classificazione

Algebre di Lie semisemplici, sistemi di radici e loro classificazione UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA MAGISTRALE IN MATEMATICA Algebre di Lie semisemplici, sistemi di radici e loro classificazione Relatore

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Corrado Zanella. Modelli Geometrici. applicabili in Meccanica dei Solidi, Robotica, Visione Computazionale

Corrado Zanella. Modelli Geometrici. applicabili in Meccanica dei Solidi, Robotica, Visione Computazionale Corrado Zanella Modelli Geometrici applicabili in Meccanica dei Solidi, Robotica, Visione Computazionale ii Versione del 23 settembre 2010 www.corradozanella.it Questo lavoro è diffuso sotto licenza Creative

Dettagli

Applicazioni lineari

Applicazioni lineari CAPITOLO 8 Applicazioni lineari Esercizio 8.. Sia T : R 3 R 3 l applicazione definita da T(x,x,x 3 ) = (x,x,x 3 ). Stabilire se T è lineare. Esercizio 8.. Verificare che la funzione determinante definita

Dettagli

MOMENTI DI INERZIA. m i. i=1

MOMENTI DI INERZIA. m i. i=1 MOMENTI DI INEZIA Massa Ad ogni punto materiale si associa uno scalare positivo m che rappresenta la quantità di materia di cui è costituito il punto. m, la massa, è costante nel tempo. Dato un sistema

Dettagli

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA COGNOME NOME CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA SIMULAZIONE SCRITTO DI MATEMATICA DISCRETA, SECONDA PARTE Per ottenere la sufficienza bisogna rispondere in modo corretto ad almeno

Dettagli

Esercizi e Complementi di Geometria Analitica 2003/2004

Esercizi e Complementi di Geometria Analitica 2003/2004 Dipartimento di Matematica Guido Castelnuovo Università degli Studi di Roma La Sapienza Esercizi e Complementi di Geometria Analitica 2003/2004 Domenico Fiorenza e Marco Manetti Premessa Queste note sono

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

Parte 2. Metodi Matematici per la Meccanica Quantistica. Spazi di pre-hilbert e spazi di Hilbert. Gianpiero CATTANEO

Parte 2. Metodi Matematici per la Meccanica Quantistica. Spazi di pre-hilbert e spazi di Hilbert. Gianpiero CATTANEO Parte Metodi Matematici per la Meccanica Quantistica Spazi di pre-hilbert e spazi di Hilbert Gianpiero CATTANEO 10 giugno 008 Indice I - Spazi con Prodotto Interno e Spazi di Hilbert 5 1 Spazi con Prodotto

Dettagli

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine Lezione 6 Nucleo, Immagine e Teorema della Dimensione In questa lezione entriamo nel vivo della teoria delle applicazioni lineari. Per una applicazione lineare L : V W definiamo e impariamo a calcolare

Dettagli

Diagonalizzazione di matrici e applicazioni lineari

Diagonalizzazione di matrici e applicazioni lineari CAPITOLO 9 Diagonalizzazione di matrici e applicazioni lineari Esercizio 9.1. Verificare che v = (1, 0, 0, 1) è autovettore dell applicazione lineare T così definita T(x 1,x 2,x 3,x 4 ) = (2x 1 2x 3, x

Dettagli

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica.

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica. Esempio Risultati sperimentali Approssimazione con il criterio dei minimi quadrati Esempio Interpolazione con spline cubica. Esempio 1 Come procedere? La natura del fenomeno suggerisce che una buona approssimazione

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - Edile ed Edile-Architettura Primo Esonero del corso di Geometria Docente F. Flamini, Roma, 2//28 SOLUZIONI COMPITO I ESONERO Esercizio.

Dettagli

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W Matematica B - a.a 2006/07 p. 1 Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. Definizione 1. La funzione L : V W si dice una applicazione

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

3. SPAZI VETTORIALI CON PRODOTTO SCALARE

3. SPAZI VETTORIALI CON PRODOTTO SCALARE 3 SPAZI VETTORIALI CON PRODOTTO SCALARE 31 Prodotti scalari Definizione 311 Sia V SV(R) Un prodotto scalare su V è un applicazione, : V V R (v 1,v 2 ) v 1,v 2 tale che: i) v,v = v,v per ogni v,v V ; ii)

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

II Spazi vettoriali ed applicazioni lineari

II Spazi vettoriali ed applicazioni lineari II Spazi vettoriali ed applicazioni lineari Nel capitolo precedente abbiamo visto come assumano un ruolo importante nello studio dello Spazio Euclideo la sua struttura di spazio affine e quindi di spazio

Dettagli

1.1. Spazi metrici completi

1.1. Spazi metrici completi SPAZI METRICI: COMPLETEZZA E COMPATTEZZA Note informali dalle lezioni 1.1. Spazi metrici completi La nozione di convergenza di successioni è centrale nello studio degli spazi metrici. In particolare è

Dettagli

APPENDICE NOZIONI BASE E VARIE

APPENDICE NOZIONI BASE E VARIE pag. 131 Appendice: Nozioni base e varie G. Gerla APPENDICE NOZIONI BASE E VARIE 1. Funzioni e relazioni di equivalenza Questi appunti sono rivolti a persone che abbiano già una conoscenza elementare della

Dettagli

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati.

Richiami su norma di un vettore e distanza, intorni sferici in R n, insiemi aperti, chiusi, limitati e illimitati. PROGRAMMA di Fondamenti di Analisi Matematica 2 (DEFINITIVO) A.A. 2010-2011, Paola Mannucci, Canale 2 Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte.

Richiami sulle derivate parziali e definizione di gradiente di una funzione, sulle derivate direzionali. Regola della catena per funzioni composte. PROGRAMMA di Fondamenti di Analisi Matematica 2 (che sarà svolto fino al 7 gennaio 2013) A.A. 2012-2013, Paola Mannucci e Claudio Marchi, Canali 1 e 2 Ingegneria Gestionale, Meccanica-Meccatronica, Vicenza

Dettagli

PROBLEMI DI GEOMETRIA

PROBLEMI DI GEOMETRIA PROBLEMI DI GEOMETRIA Lucio Guerra 1994 v. 1 2001 v. 2.7 Dipartimento di Matematica e Informatica - Università di Perugia Indice 1. EQUAZIONI LINEARI 1 2. SPAZI VETTORIALI 2 3. APPLICAZIONI LINEARI 4 4.

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle

Dettagli

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni

Dettagli

Analisi 2 - funzioni di più variabili. Andrea Minetti - andrea.minetti@gmail.com

Analisi 2 - funzioni di più variabili. Andrea Minetti - andrea.minetti@gmail.com Analisi 2 - funzioni di più variabili Andrea Minetti - andrea.minetti@gmail.com January 28, 2011 Ciao a tutti, ecco i miei riassunti, ovviamente non posso garantire la correttezza (anzi garantisco la non

Dettagli

4. Operazioni binarie, gruppi e campi.

4. Operazioni binarie, gruppi e campi. 1 4. Operazioni binarie, gruppi e campi. 4.1 Definizione. Diremo - operazione binaria ovunque definita in A B a valori in C ogni funzione f : A B C - operazione binaria ovunque definita in A a valori in

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

I polinomi 1; x;x 2 ;x 3 sono linearmente indipendenti; infatti. 0= 1 1+ 2 x+ 3 x 2 + 4 x 3 =) 1 = 2 == 4 =0

I polinomi 1; x;x 2 ;x 3 sono linearmente indipendenti; infatti. 0= 1 1+ 2 x+ 3 x 2 + 4 x 3 =) 1 = 2 == 4 =0 ASPETTI TEORICI Spazio vettoriale Un insieme qualunque di inniti elementi V = fv i g si dice uno spazio vettoriale sull'insieme dei numeri reali R se: { E possibile denire un'operazione binaria fra gli

Dettagli

Nota: Eventi meno probabili danno maggiore informazione

Nota: Eventi meno probabili danno maggiore informazione Entropia Informazione associata a valore x avente probabilitá p(x é i(x = log 2 p(x Nota: Eventi meno probabili danno maggiore informazione Entropia di v.c. X P : informazione media elementi di X H(X =

Dettagli

Algebre di Lie Eccezionali realizzate come Algebre di Matrici

Algebre di Lie Eccezionali realizzate come Algebre di Matrici Alma Mater Studiorum Università di Bologna SCUOLA DI SCIENZE Corso di Laurea Magistrale in Matematica Algebre di Lie Eccezionali realizzate come Algebre di Matrici Tesi di Laurea in Algebra Relatore: Chiar.ma

Dettagli

ISTITUZIONI DI MATEMATICA I. (prof. M.P.Cavaliere) SPAZI VETTORIALI SU R

ISTITUZIONI DI MATEMATICA I. (prof. M.P.Cavaliere) SPAZI VETTORIALI SU R ISTITUZIONI DI MATEMATICA I (prof MPCavaliere) SPAZI VETTORIALI SU R Abbiamo visto parlando dei numeri complessi che i punti P del piano possono essere determinati da coppie di numeri reali, se è dato

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE110 A.A. 2014-2015 - Docente: Prof. Angelo Felice Lopez Tutori: Federico Campanini e Giulia Salustri Soluzioni Tutorato 13

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

Appunti di Algebra Lineare e Matrici

Appunti di Algebra Lineare e Matrici Appunti di Algebra Lineare e Matrici Basilio Bona Dipartimento di Automatica e Informatica Politecnico di Torino Internal Report: DAUIN/BB-2003-09-01 Capitolo 1 Matrici e vettori Il lettore interessato

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

UNIVERSITÀ CATTOLICA DEL SACRO CUORE. Facoltà di Scienze Matematiche, Fisiche e Naturali

UNIVERSITÀ CATTOLICA DEL SACRO CUORE. Facoltà di Scienze Matematiche, Fisiche e Naturali UNIVERSITÀ CATTOLICA DEL SACRO CUORE Facoltà di Scienze Matematiche, Fisiche e Naturali APPROFONDIMENTI DI ALGEBRA M. Chiara Tamburini Anno Accademico 2013/2014 Indice Prefazione iii I Moduli su un anello

Dettagli

AL. Algebra vettoriale e matriciale

AL. Algebra vettoriale e matriciale PPENDICI L. lgebra vettoriale e matriciale Vettori Somma di vettori: struttura di gruppo Come abbiamo richiamato nell introduzione vi sono delle grandezze fisiche caratterizzabili come vettori, cioè tali

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI

Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI Capitolo Dodicesimo CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI CAMPI SCALARI Sono dati: un insieme aperto A Â n, un punto x = (x, x 2,, x n )T A e una funzione f : A Â Si pone allora il PROBLEMA

Dettagli

Geometria Superiore. A.A. 2014/2015 CdL in Matematica Università degli Studi di Salerno. March 2, 2015

Geometria Superiore. A.A. 2014/2015 CdL in Matematica Università degli Studi di Salerno. March 2, 2015 Geometria Superiore A.A. 2014/2015 CdL in Matematica Università degli Studi di Salerno Luca Vitagliano March 2, 2015 Programma Prerequisiti. Spazi affini. Anelli commutativi con unità. Ideali. Anelli quoziente.

Dettagli

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A)

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A) Esame di Geometria - 9 CFU (Appello del 28 gennaio 23 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Nello spazio R 3, siano dati il piano e i punti P = (, 2, ), Q = (2,, ). π : x + 2y 3

Dettagli

Algebra lineare for dummies

Algebra lineare for dummies Algebra lineare for dummies Sergio Polini 26 settembre 22 Indice Premessa 2 Spazi vettoriali 3. Definizione................................ 3.2 Sottospazi vettoriali........................... 3.3 Indipendenza

Dettagli

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:...

Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8. Cognome:... Nome:... Matricola:... Prova parziale di Geometria e Topologia I - 5 mag 2008 (U1-03, 13:30 16:30) 1/8 Cognome:................ Nome:................ Matricola:................ (Dare una dimostrazione esauriente di tutte le

Dettagli

Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio

Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio Lezioni di Geometria e Algebra Fulvio Bisi, Francesco Bonsante, Sonia Brivio CAPITOLO 4 Applicazioni lineari 1. Definizioni ed esempi. In questo capitolo ci proponiamo di studiare le funzioni tra spazi

Dettagli

Un introduzione all algebra lineare

Un introduzione all algebra lineare Luciano A. Lomonaco Un introduzione all algebra lineare Terza edizione ARACNE Copyright MMVI ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133 A/B 00173 Roma

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

LUCIO GUERRA. dove, indica l accoppiamento covettori-vettori. L omomorfismo P è antisimmetrico

LUCIO GUERRA. dove, indica l accoppiamento covettori-vettori. L omomorfismo P è antisimmetrico VARIETÀ OMOGENEE CON STRUTTURA DI POISSON LUCIO GUERRA Abstract. Presentazione delle ricerche in collaborazione con N.Ciccoli. 1.1. Varietà di Poisson. 1. Varietà di Poisson 1.1.1. Su una varietà differenziabile

Dettagli

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A.

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A. APPLICAZIONI LINEARI Siano V e W due spazi vettoriali, di dimensione m ed n sullo stesso campo di scalari R. Una APPLICAZIONE ƒ : V W viene definita APPLICAZIONE LINEARE od OMOMORFISMO se risulta, per

Dettagli

ESERCIZI APPLICAZIONI LINEARI

ESERCIZI APPLICAZIONI LINEARI ESERCIZI APPLICAZIONI LINEARI PAOLO FACCIN 1. Esercizi sulle applicazioni lineari 1.1. Definizioni sulle applicazioni lineari. Siano V, e W spazi vettoriali, con rispettive basi B V := (v 1 v n) e B W

Dettagli

R X X. RELAZIONE TOTALE Definizione: Si definisce relazione totale tra x e y se dati X,Y diversi dall'insieme vuoto

R X X. RELAZIONE TOTALE Definizione: Si definisce relazione totale tra x e y se dati X,Y diversi dall'insieme vuoto PRODOTTO CARTESIANO Dati due insiemi non vuoti X e Y si definisce prodotto cartesiano: X Y ={ x, y x X, y Y } attenzione che (x,y) è diverso da (y,x) perchè (x,y)={x,{y}} e (y,x)={y,{x}} invece sono uguali

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

TEMA 1. 1. Della seguente matrice, calcolare i complementi algebrici e il determinante: a + b 1 a 2 S = a + b + 3 a + 2b. x = t. f = x 2 + 2xy 3y 2,

TEMA 1. 1. Della seguente matrice, calcolare i complementi algebrici e il determinante: a + b 1 a 2 S = a + b + 3 a + 2b. x = t. f = x 2 + 2xy 3y 2, Prova scritta di MATEMATICA B1 Vicenza, 17 marzo 008 TEMA 1 1 1 A = 1 0 1. 3 0 1. Stabilire se il seguente sottoinsieme di M(, R): {( ) a + b 1 a S = a, b R}, a + b + 3 a + b è un sottospazio di M(, R).

Dettagli

FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1

FOGLIO 4 - Applicazioni lineari. { kx + y z = 2 x + y kw = k. 2 k 1 FOGLIO 4 - Applicazioni lineari Esercizio 1. Si risolvano i seguenti sistemi lineari al variare di k R. { x y + z + 2w = k x z + w = k 2 { kx + y z = 2 x + y kw = k Esercizio 2. Al variare di k R trovare

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Particelle identiche : schema (per uno studio più dettagliato vedi lezione 2) φ 1

Particelle identiche : schema (per uno studio più dettagliato vedi lezione 2) φ 1 Particelle identiche : schema (per uno studio più dettagliato vedi lezione ) Funzioni d onda di un sistema composto Sistema costituito da due particelle (eventualmente identiche) H φ q H φ H ψ φ φ stato

Dettagli

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità.

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità. 1 ANELLI Definizione 1.1. Sia A un insieme su cui sono definite due operazioni +,. (A, +, ) si dice Anello se (A, +) è un gruppo abeliano è associativa valgono le leggi distributive, cioè se a, b, c A

Dettagli

Facoltà di Ingegneria anno accademico 2007/08 Registro dell'attività didattica. Calcolo 2 [40214]

Facoltà di Ingegneria anno accademico 2007/08 Registro dell'attività didattica. Calcolo 2 [40214] Facoltà di Ingegneria anno accademico 2007/08 Registro dell'attività didattica Calcolo 2 [40214] Attività didattica: Attività didattica [codice] Corso di studio Facoltà Calcolo 2 [40214] Ingegneria delle

Dettagli

QUARTA PROVETTA DI ALGEBRA TRENTO, 18 DICEMBRE 2015

QUARTA PROVETTA DI ALGEBRA TRENTO, 18 DICEMBRE 2015 QUARTA PROVETTA DI ALGEBRA TRENTO, 18 DICEMBRE 2015 Nota: Questi fogli contengono gli esercizi delle quattro diverse versioni della provetta che sono state assegnate. L esercizio x.y è l esercizio x della

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro Lo Spettro primo di un anello Carmelo Antonio Finocchiaro 2 Indice 1 Lo spettro primo di un anello: introduzione 5 1.1 Le regole del gioco................................ 5 1.2 Prime definizioni e risultati

Dettagli

QUADERNI DIDATTICI. Dipartimento di Matematica. Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica

QUADERNI DIDATTICI. Dipartimento di Matematica. Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica Università ditorino QUADERNI DIDATTICI del Dipartimento di Matematica E Abbena, G M Gianella Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica Quaderno # 6 - Aprile 003 Gli esercizi proposti

Dettagli

3 Applicazioni lineari e matrici

3 Applicazioni lineari e matrici 3 Applicazioni lineari e matrici 3.1 Applicazioni lineari Definizione 3.1 Siano V e W dei K spazi vettoriali. Una funzione f : V W è detta applicazione lineare se: i u, v V, si ha f(u + v = f(u + f(v;

Dettagli

TOPOLOGIE. Capitolo 2. 2.1 Spazi topologici

TOPOLOGIE. Capitolo 2. 2.1 Spazi topologici Capitolo 2 TOPOLOGIE Ogni spazio che si considera in gran parte della matematica e delle sue applicazioni è uno spazio topologico di qualche tipo: qui introduciamo in generale le nozioni di base della

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

ALGEBRA I: MODULI. Abbiamo indicato con 0 A, 1 A lo zero e l unità nell anello A e con 0 M l elemento neutro del gruppo abeliano (M, +).

ALGEBRA I: MODULI. Abbiamo indicato con 0 A, 1 A lo zero e l unità nell anello A e con 0 M l elemento neutro del gruppo abeliano (M, +). ALGEBRA I: MODULI 1 GENERALITÀ SUGLI A-MODULI Il concetto di A-modulo generalizza quello di spazio vettoriale su un campo K Definizione 11 Sia A un anello commutativo con unità Un A-modulo è un insieme

Dettagli

ALGEBRA E LOGICA (v1.5)

ALGEBRA E LOGICA (v1.5) ALGEBRA E LOGICA (v1.5) Iniettività e suriettività: Per dimostrare che una funzione è iniettiva basta provare che se a1 = a2 => f(a1) = f(a2) per ogni valore di a (la cardinalità del codominio è maggiore

Dettagli

Università degli Studi di Parma. Dipartimento di Ingegneria Industriale Corso di Laurea Magistrale in

Università degli Studi di Parma. Dipartimento di Ingegneria Industriale Corso di Laurea Magistrale in Università degli Studi di Parma Dipartimento di Ingegneria Industriale Corso di Laurea Magistrale in INGEGNERIA MECCANICA Implementazione del codice per l analisi agli elementi niti all interno del motore

Dettagli