SOLUZIONI COMPITO del 10/01/2019 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SOLUZIONI COMPITO del 10/01/2019 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A"

Transcript

1 SOLUZIONI COMPITO del 0/0/209 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A Esercizio Osserviamo che Pertanto, i = 2e iπ/, + i = 2e iπ/. e 7iπ/8, 2e iπ/ z = = e 2e 7iπ/2 = e 7iπ/8, iπ/ e iπ/8, e 65iπ/8. Esercizio 2 La funzione proposta è definita e continua per tutti gli x R in cui il denominatore non si annulla, cioè per x 2 0, ovvero C.E.(f) = (, 2) ( 2, 2) (2, + ). Inoltre, f(x) = 8 + log 6 = ±, = x = 2 è asintoto verticale; x 2 ± x 2 ± (x + 2) 8 + log 6 f(x) = = ±, = x = 2 è asintoto verticale; x 2 ± x 2 ± (x 2) f(x) = m = q = f(x) x = [f(x) mx = x = ±, = non c è asintoto orizzontale; x2 x x =, [ x + log(2 + x 2 ) x 2 x 2 x x + log(2 + x 2 ) x 2 x + x = x 2 = x2 x 2 =. Quindi, la retta obliqua y = x è asintoto obliquo a ±. Esercizio L equazione differenziale proposta è un equazione lineare del secondo ordine a coefficienti costanti, non omogenea, la cui equazione caratteristica associata è data da λ 2 + 8λ + 6 = 0 ed ha per soluzione λ =. Pertanto, l integrale generale dell equazione omogenea associata sarà y 0 (x) = C e x + C 2 xe x. Inoltre, utilizzando il metodo di somiglianza, si ricava che una soluzione particolare sarà data da y p (x) = Ax 2 e x, da cui y p(x) = Ae x (2x x 2 ) e y p (x) = Ae x (2 6x + 6x 2 ). Inserendo nell equazione completa, otteniamo Ae x (2 6x + 6x 2 + 6x 2x 2 + 6x 2 ) = 2e x, da cui A =. Pertanto, l integrale generale dell equazione completa sarà dato da y(x) = C e x + C 2 xe x + x 2 e x. Calcoliamo, ora, y(x) (2 + x 2 )e x (C + C 2 x + x 2 )e x (2 + x 2 )e x x e x = x e x = (C 2 + C 2 x) = 6 C = 8, C 2 = 0. x Quindi, esiste un unica soluzione dell equazione proposta soddisfacente la condizione richiesta ed essa è della forma y(x) = (8 + x 2 )e x.

2 Esercizio Ricordando che si ricava log( + t) = t t2 2 + t t + o(t ), con t = sin x; sin t = t t + o(t ), con t = x; (sin x)2 (sin x) log( + sin x) = sin x + 2 = x x + o(x ) (x x 2 (sin x) + o(x )) 2 = x x x2 2 + x 6 + x + o(x ). + o((sin x) ) + (x x + o(x )) Pertanto, il polinomio cercato sarà P (x) = x 2 x2 + 6 x 2 x. Esercizio 5 i) Per l enunciato e la dimostrazione si veda il libro di testo. ii) Sia F : R R la funzione definita da F (x) = x 0 (e t )f (t) dt. (x x + o(x )) + o(x ) Poiché f C (R) ed è strettamente crescente, si ottiene che f (x) 0, per ogni x R. Pertanto, dal Teorema di Torricelli si ricava F (x) = (e x )f (x) { 0 per x > 0; = 0 per x = 0; 0 per x < 0. Pertanto, x = 0 è punto di minimo assoluto per F e, poiché F (0) = 0, si ricava subito che F 0 in tutto R. 2

3 TEMA B Esercizio Osserviamo che + i = 2e iπ/, i = 2e iπ/6. Pertanto, e iπ/8, 2e z = iπ/6 2e = iπ/2 = 8 e iπ/8, 2 2e iπ/ e 7iπ/8, e 6iπ/8. Esercizio 2 La funzione proposta è definita e continua per tutti gli x R in cui il denominatore non si annulla, cioè per x 6 0, ovvero C.E.(f) = (, 2) ( 2, 2) (2, + ). Inoltre, f(x) = 6 + log 5 8 =, = x = 2 è asintoto verticale; x 2 ± x 2 ± 2(x + 2) 6 + log 5 8 f(x) = =, = x = 2 è asintoto verticale; x 2 ± x 2 ± 2(x 2) f(x) = 2x 5 m = q = x f(x) x = [f(x) mx = =, = non c è asintoto orizzontale; 2x 5 x 5 = 2, [ 2x 5 + log( + x ) x x 6 + 2x 2x 5 + log( + x ) x + 2x 5 2x = x = 6 x x =. Quindi, la retta obliqua y = 2x è asintoto obliquo a ±. Esercizio L equazione differenziale proposta è un equazione lineare del secondo ordine a coefficienti costanti, non omogenea, la cui equazione caratteristica associata è data da λ 2 6λ + 9 = 0 ed ha per soluzione λ =. Pertanto, l integrale generale dell equazione omogenea associata sarà y 0 (x) = C e x + C 2 xe x. Inoltre, utilizzando il metodo di somiglianza, si ricava che una soluzione particolare sarà data da y p (x) = Ax 2 e x, da cui y p(x) = Ae x (2x + x 2 ) e y p (x) = Ae x (2 + 2x + 9x 2 ). Inserendo nell equazione completa, otteniamo Ae x (2 + 2x + 9x 2 2x 8x 2 + 9x 2 ) = 6e x, da cui A =. Pertanto, l integrale generale dell equazione completa sarà dato da y(x) = C e x + C 2 xe x + x 2 e x. Calcoliamo, ora, y(x) ( + x 2 )e x (C + C 2 x + x 2 )e x ( + x 2 )e x x + e x = x + e x = (C + C 2 x) = 5 C = 6, C 2 = 0. x + Quindi, esiste un unica soluzione dell equazione proposta soddisfacente la condizione richiesta ed essa è della forma y(x) = (6 + x 2 )e x.

4 Esercizio Ricordando che sin t = t t + o(t ), con t = 2 log( + x); log( + t) = t t2 2 + t t + o(t ), con t = x; si ricava (2 log( + x)) sin[2 log( + x) = 2 log( + x) = 2 [x x2 2 + x + o(x ) + o((2 log( + x)) ) 8 6 = 2x x 2 + 2x 2 x + 2x + o(x ). Pertanto, il polinomio cercato sarà P (x) = 2x x 2 2 x + 2 x. Esercizio 5 i) Per l enunciato e la dimostrazione si veda il libro di testo. ii) Sia F : R R la funzione definita da F (x) = x [x x2 2 + x + o(x ) + o(x ) (t )f (t) dt. Poiché f C 2 (R) ed è strettamente concava, si ottiene che f (x) 0, per ogni x R. Pertanto, dal Teorema di Torricelli si ricava F (x) = (x )f (x) { 0 per x > ; = 0 per x = ; 0 per x <. Pertanto, x = è punto di massimo assoluto per F e, poiché F () = 0, si ricava subito che F 0 in tutto R.

5 TEMA C Esercizio Osserviamo che i = 2e 5iπ/, + i = 2e iπ/6. Pertanto, e iπ/8, 2e 5iπ/ z = = e 2e iπ/2 = iπ/ e 7iπ/8, e 6iπ/8, e 85iπ/8. Esercizio 2 La funzione proposta è definita e continua per tutti gli x R in cui il denominatore non si annulla, cioè per x 0, ovvero C.E.(f) = (, 2) ( 2, 2) ( 2, + ). Inoltre, x f(x) = log(2 + 2) 2 ± x 2 ± 8 2(x + =, = x = 2 è asintoto verticale; 2) x f(x) = 6 + log(2 + 2) 2 ± x 2 ± 8 2(x =, = x = 2 è asintoto verticale; 2) f(x) = x 5 m = q = x f(x) x = [f(x) mx = =, = non c è asintoto orizzontale; x 5 x 5 =, [ x 5 + log(2 + x ) x x + x x 5 + log(2 + x ) x + x 5 6x = x = x x =. Quindi, la retta obliqua y = x è asintoto obliquo a ±. Esercizio L equazione differenziale proposta è un equazione lineare del secondo ordine a coefficienti costanti, non omogenea, la cui equazione caratteristica associata è data da λ 2 8λ + 6 = 0 ed ha per soluzione λ =. Pertanto, l integrale generale dell equazione omogenea associata sarà y 0 (x) = C e x + C 2 xe x. Inoltre, utilizzando il metodo di somiglianza, si ricava che una soluzione particolare sarà data da y p (x) = Ax 2 e x, da cui y p(x) = Ae x (2x + x 2 ) e y p (x) = Ae x (2 + 6x + 6x 2 ). Inserendo nell equazione completa, otteniamo Ae x (2 + 6x + 6x 2 6x 2x 2 + 6x 2 ) = 8e x, da cui A =. Pertanto, l integrale generale dell equazione completa sarà dato da y(x) = C e x + C 2 xe x + x 2 e x. Calcoliamo, ora, y(x) ( + 8x 2 )e x (C + C 2 x + x 2 )e x ( + x 2 )e x x + e x = x + e x = (C + C 2 x) = C = 6, C 2 = 0. x + Quindi, esiste un unica soluzione dell equazione proposta soddisfacente la condizione richiesta ed essa è della forma y(x) = (6 + x 2 )e x. 5

6 Esercizio Ricordando che sinh t = t + t + o(t ), con t = 2 log( + x); log( + t) = t t2 2 + t t + o(t ), con t = x; si ricava (2 log( + x)) sinh[2 log( + x) = 2 log( + x) + = 2 [x x2 2 + x + o(x ) + o((2 log( + x)) ) = 2x x 2 + 2x 2 + x 2x + o(x ). Pertanto, il polinomio cercato sarà P (x) = 2x x 2 + 2x 5 2 x. Esercizio 5 i) Per l enunciato e la dimostrazione si veda il libro di testo. ii) Sia F : R R la funzione definita da F (x) = x (t )f (t) dt. [x x2 2 + x + o(x ) + o(x ) Poiché f C 2 (R) ed è strettamente concava, si ottiene che f (x) 0, per ogni x R. Pertanto, dal Teorema di Torricelli si ricava F (x) = (x )f (x) { 0 per x > ; = 0 per x = ; 0 per x <. Pertanto, x = è punto di massimo assoluto per F e, poiché F () = 0, si ricava subito che F 0 in tutto R. 6

7 TEMA D Esercizio Osserviamo che Pertanto, + i = 2e iπ/, i = 2e iπ/. z = 2e iπ/ 2e iπ/ = 2e 7iπ/2 = 8 2 e 7iπ/8, e 7iπ/8, e iπ/8, e 65iπ/8. Esercizio 2 La funzione proposta è definita e continua per tutti gli x R in cui il denominatore non si annulla, cioè per x 2 2 0, ovvero C.E.(f) = (, 2) ( 2, 2) ( 2, + ). Inoltre, x f(x) = 2 ± x f(x) = 2 ± f(x) = m = q = log x 2 ± 2 2(x + = ±, = x = 2 è asintoto verticale; 2) 2 + log 2 2(x = ±, = x = 2 è asintoto verticale; 2) x 2 ± 6 x x 2 f(x) x = [f(x) mx = = ±, = non c è asintoto orizzontale; x x =, [ x + log( + x 2 ) 2x 2 x 2 2 x x + log( + x 2 ) 2x 2 x + 6x = x 2 = 2 2x2 x 2 = 2. Quindi, la retta obliqua y = x 2 è asintoto obliquo a ±. Esercizio L equazione differenziale proposta è un equazione lineare del secondo ordine a coefficienti costanti, non omogenea, la cui equazione caratteristica associata è data da λ 2 + 6λ + 9 = 0 ed ha per soluzione λ =. Pertanto, l integrale generale dell equazione omogenea associata sarà y 0 (x) = C e x + C 2 xe x. Inoltre, utilizzando il metodo di somiglianza, si ricava che una soluzione particolare sarà data da y p (x) = Ax 2 e x, da cui y p(x) = Ae x (2x x 2 ) e y p (x) = Ae x (2 2x + 9x 2 ). Inserendo nell equazione completa, otteniamo Ae x (2 2x + 9x 2 + 2x 8x 2 + 9x 2 ) = e x, da cui A = 2. Pertanto, l integrale generale dell equazione completa sarà dato da y(x) = C e x + C 2 xe x + 2x 2 e x. Calcoliamo, ora, y(x) ( + 2x 2 )e x (C + C 2 x + 2x 2 )e x ( + 2x 2 )e x x e x = x e x = (C + C 2 x) = C = 8, C 2 = 0. x Quindi, esiste un unica soluzione dell equazione proposta soddisfacente la condizione richiesta ed essa è della forma y(x) = (8 + 2x 2 )e x. 7

8 Esercizio Ricordando che si ricava log( + t) = t t2 2 + t t + o(t ), con t = sinh x; sinh t = t + t + o(t ), con t = x; (sinh x)2 (sinh x) log( + sinh x) = sin x + 2 = x + x + o(x ) (x + x 2 (sinh x) + o(x )) 2 = x + x x2 2 x 6 + x + o(x ). Pertanto, il polinomio cercato sarà P (x) = x 2 x2 + 2 x 5 2 x. Esercizio 5 i) Per l enunciato e la dimostrazione si veda il libro di testo. ii) Sia F : R R la funzione definita da F (x) = x 0 + o((sinh x) ) + (x + x + o(x )) (e t )f (t) dt. (x + x + o(x )) + o(x ) Poiché f C (R) ed è strettamente crescente, si ottiene che f (x) 0, per ogni x R. Pertanto, dal Teorema di Torricelli si ricava F (x) = (e x )f (x) { 0 per x > 0; = 0 per x = 0; 0 per x < 0. Pertanto, x = 0 è punto di minimo assoluto per F e, poiché F (0) = 0, si ricava subito che F 0 in tutto R. 8

SOLUZIONI COMPITO A. 3. Imponendo la condizione iniziale y(0) = 1 e, si ricava C = 0, quindi la soluzione cercata sarà. y(x) + 1 = exp(e x x2 2 1)

SOLUZIONI COMPITO A. 3. Imponendo la condizione iniziale y(0) = 1 e, si ricava C = 0, quindi la soluzione cercata sarà. y(x) + 1 = exp(e x x2 2 1) SOLUZIONI COMPITO A Esercizio Utilizzando lo sviluppo di Mc Laurin al terzo ordine per il sin t, con t = x 4/, e quello al primo ordine per il log( + t), con t = x, otteniamo e quindi il ite proposto diviene

Dettagli

Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti:

Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti: Risolvere i problemi di Cauchy o trovare l integrale generale delle seguenti equazioni differenziali del II ordine lineari a coefficienti costanti: 1. y 5y + 6y = 0 y(0) = 0 y (0) = 1 2. y 6y + 9y = 0

Dettagli

Ingegneria civile - ambientale - edile

Ingegneria civile - ambientale - edile Ingegneria civile - ambientale - edile Analisi - Prove scritte dal 7 Prova scritta del 9 giugno 7 Esercizio Determinare i numeri complessi z che risolvono l equazione Esercizio (i) Posto a n = n i z z

Dettagli

SOLUZIONI COMPITO A. Esercizio 1 Utilizzando la formula risolutiva per l equazioni di secondo grado, valida anche in campo complesso, otteniamo:

SOLUZIONI COMPITO A. Esercizio 1 Utilizzando la formula risolutiva per l equazioni di secondo grado, valida anche in campo complesso, otteniamo: SOLUZIONI COMPITO A Esercizio 1 Utilizzando la formula risolutiva per l equazioni di secondo grado, valida anche in campo complesso, otteniamo: z = i + i + i 3 In forma algebrica, otteniamo: = i + 1 +

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 3 settembre 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 3 settembre 2018 Università di Pisa - orso di Laurea in Informatica nalisi Matematica Pisa, settembre 208 ( cos x sin se x 0 Domanda Sia f : R R definita da f(x = x 0 se x = 0. non esiste la derivata di f in x = 0 f (0

Dettagli

y 3y + 2y = 1 + x x 2.

y 3y + 2y = 1 + x x 2. Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 03-04 (dott.ssa Vita Leonessa) Esercizi svolti: Equazioni differenziali ordinarie. Risolvere

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Matematica - Prova d esame (25/06/2004)

Matematica - Prova d esame (25/06/2004) Matematica - Prova d esame (/6/4) Università di Verona - Laurea in Biotecnologie AI - A.A. /4. (a) Disegnare sul piano di Gauss i numeri z = i e w = i, e scriverne la forma trigonometrica. Calcolare z

Dettagli

Istituzioni di matematica

Istituzioni di matematica Istituzioni di matematica TUTORATO 2 - Soluzioni Mercoledì 28 novembre 2018 Esercizio 1. Studiare la seguente funzione e tracciarne il graco f(x) = x 3 3x 2 - Il dominio di denizione è l'insieme D = R

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico /3 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 9//3 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato. Tempo

Dettagli

Matematica, 12 CFU, Corso di laurea in Scienze Biologiche- A.A Laurea Triennale

Matematica, 12 CFU, Corso di laurea in Scienze Biologiche- A.A Laurea Triennale Matematica, CFU, Corso di laurea in Scienze Biologiche- A.A. 009-00 Laurea Triennale Luglio 00- COMPITO - Totale punti 40, punteggio minimo 4 Nome Cognome. (4 punti) Calcolare i seguenti limiti: (a) lim

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 9 Gennaio 2018 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 05/06 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 0/0/06 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

Compitino di Analisi Matematica 1 Prima parte, Tema A Ingegneria Civile, Ambientale e Edile COGNOME: NOME: MATR.: RISPOSTE:

Compitino di Analisi Matematica 1 Prima parte, Tema A Ingegneria Civile, Ambientale e Edile COGNOME: NOME: MATR.: RISPOSTE: Compitino di Analisi Matematica 1 Prima parte, Tema A Ingegneria Civile, Ambientale e Edile 20 maggio 2014 COGNOME: NOME: MATR.: RISPOSTE: A B C D E 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 1 Prima parte,

Dettagli

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza ANALISI MATEMATICA Commissione L Caravenna, V Casarino, S Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Nome, Cognome, numero di matricola: Vicenza, 7 Luglio 205 TEMA - parte B Esercizio

Dettagli

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A Modulo di Matematica, Corsi di Laurea in VIT e STL - Raccolta degli Esami.. - Facoltà di graria Corsi di Laurea in VIT e STL Modulo di Matematica Esame del //.. / Scritto Teoria Esercizi Voto Istruzioni:

Dettagli

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI Notiamo che lo studio delle funzioni assegnate f,..., f 4 si riduce a considerare

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d Esame (26/07/2010) Università di Verona - Laurea in Biotecnologie - A.A. 2009/10 1 Matematica e Statistica Prova d Esame di MATEMATICA (26/07/2010) Università di Verona

Dettagli

Matematica, 12 CFU. Corso di laurea in Scienze Biologiche- A.A Laurea Triennale

Matematica, 12 CFU. Corso di laurea in Scienze Biologiche- A.A Laurea Triennale Matematica, 2 CFU Corso di laurea in Scienze Biologiche- A.A. 2009-200 Laurea Triennale 4 Febbraio 200- COMPITO - Totale punti 40, punteggio minimo 24 Nome Cognome. (4 punti) Calcolare i seguenti limiti:

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea (quadriennale) in Fisica a.a. 2002/03 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

Istituzioni di Matematica II 5 Luglio 2010

Istituzioni di Matematica II 5 Luglio 2010 Istituzioni di Matematica II 5 Luglio 010 1. Classificare, al variare del parametro α R, la forma quadratica (1 + α )x + 4xy + αy.. i) Si determinino tutti i punti critici della seguente funzione f(x,

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d Esame (04/0/00) Università di Verona - Laurea in Biotecnologie - A.A. 009/0 Matematica e Statistica Prova d Esame di MATEMATICA (04/0/00) Università di Verona - Laurea in

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine nno ccademico 5/6 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 4/7/6 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato. Tempo

Dettagli

Confronto locale di funzioni Test di autovalutazione

Confronto locale di funzioni Test di autovalutazione Test di autovalutazione 1. Per x 0: (a) x 3 = o(x 4 ) (b) x 4 = o(sin x 2 ) (c) x 3 x 3 + 1 (d) x 7 + x x 2 x 2. Il limite lim x 0 + (a) vale 0 (b) non esiste (c) vale 2 (d) è infinito 4x 3 x ln x tan

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Prova scritta di Analisi Matematica 1 Prima parte, Tema A Ingegneria dell Energia, Univ. di Pisa COGNOME: NOME: MATR.: RISPOSTE:

Prova scritta di Analisi Matematica 1 Prima parte, Tema A Ingegneria dell Energia, Univ. di Pisa COGNOME: NOME: MATR.: RISPOSTE: Prova scritta di Analisi Matematica 1 Prima parte, Tema A Ingegneria dell Energia, Univ. di Pisa 12 gennaio 2013 COGNOME: NOME: MATR.: RISPOSTE: A B C D E 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 1 Prima

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (26/06/203) Università di Verona - Laurea in Biotecnologie - A.A. 202/3 Matematica e Statistica Prova di MATEMATICA (26/06/203) Università di Verona - Laurea in Biotecnologie

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 22 luglio 2016 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti Equazioni differenziali del 2 ordine Prof. Ettore Limoli Sommario Equazione differenziale omogenea a coefficienti costanti... 1 Equazione omogenea di esempio... 2 Equazione differenziale non omogenea a

Dettagli

TEMA 1. F (x, y) = e xy + x + y.

TEMA 1. F (x, y) = e xy + x + y. FONDAMENTI DI ANALII MATEMATICA 2 Commissione F. Albertini, V. Casarino, M. Motta Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Vicenza, 23 gennaio 217 Primo appello Avvertenza: Nella prima

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 6 giugno 2004: soluzioni ESERCIZIO - Data la funzione f) 3 2 4 + 27 + 9 2 ) /3 4 + 27, + 9 si chiede

Dettagli

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1

Soluzioni. 152 Roberto Tauraso - Analisi Risolvere il problema di Cauchy. { y (x) + 2y(x) = 3e 2x y(0) = 1 5 Roberto Tauraso - Analisi Soluzioni. Risolvere il problema di Cauchy y (x) + y(x) = 3e x y() = R. Troviamo la soluzione generale in I = R. Una primitiva di a(x) = è A(x) = a(x) dx = dx = x e il fattore

Dettagli

Risoluzione del compito n. 1 (Gennaio 2018)

Risoluzione del compito n. 1 (Gennaio 2018) Risoluzione del compito n. (Gennaio 208 PROBLEMA Calcolate 3(2 i 2 i(5i 6 4+2i 2 5(3 + i. Determinate le soluzioni z C dell equazione z 2 + z = + i. Osserviamo che (2 i 2 = 4 4i = 3 4i e che 4+2i 2 = 6+4

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 8/9 Corso di Analisi Matematica - professore Alberto Valli foglio di esercizi - dicembre 8 Integrali

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

7.1. Esercizio. Assegnata l equazione differenziale lineare di primo

7.1. Esercizio. Assegnata l equazione differenziale lineare di primo ANALISI MATEMATICA I Soluzioni Foglio 7 14 maggio 2009 7.1. Esercizio. Assegnata l equazione differenziale lineare di primo ordine y + y = 1 determinarne tutte le soluzioni, determinare la soluzione y(x)

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi con soluzione

EQUAZIONI DIFFERENZIALI Esercizi con soluzione EQUAZIONI DIFFERENZIALI Esercizi con soluzione 1. Calcolare l integrale generale delle seguenti equazioni differenziali lineari del primo ordine: (a) y 2y = 1 (b) y + y = e x (c) y 2y = x 2 + x (d) 3y

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale a.a. 2011 2012 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012 Università degli Studi della Calabria Facoltà di Ingegneria Correzione della Seconda Prova Scritta di nalisi Matematica 7 luglio cura dei Prof. B. Sciunzi e L. Montoro. Seconda Prova Scritta di nalisi

Dettagli

Università di Roma Tor Vergata Corso di Laurea in Ingegneria Canale SE-Z Prof.ssa Teresa D Aprile Analisi Matematica I Prova scritta del 19/07/2017

Università di Roma Tor Vergata Corso di Laurea in Ingegneria Canale SE-Z Prof.ssa Teresa D Aprile Analisi Matematica I Prova scritta del 19/07/2017 Università di Roma Tor Vergata Corso di Laurea in Ingegneria Canale SE-Z Profssa Teresa D Aprile Analisi Matematica I Prova scritta del 9/07/207 Cognome (in STAMPATELLO): Nome (in STAMPATELLO): Esercizio

Dettagli

Derivate e studio di funzioni di una variabile

Derivate e studio di funzioni di una variabile Derivate e studio di funzioni di una variabile Paolo Montanari Appunti di Matematica Derivate e studio di funzioni 1 Rapporto incrementale e derivata Sia f(x) una funzione definita in un intervallo X R

Dettagli

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A Matematica A Corso di Laurea in Chimica Prova scritta del 7..6 Tema A P) Data la funzione f(x) = ex+ x determinarne (a) campo di esistenza; (b) zeri e segno; (c) iti agli estremi del campo di esistenza

Dettagli

Cognome: Nome: Matricola: Prima parte

Cognome: Nome: Matricola: Prima parte Analisi e Geometria 1 Primo appello 14 Febbraio 217 Compito B Docente: Numero di iscrizione all appello: Cognome: Nome: Matricola: Prima parte a. Scrivere la condizione di ortogonalità tra il piano (X

Dettagli

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) = STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali

Dettagli

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A Modulo di Matematica, Corsi di Laurea in VIT e STL - Raccolta degli Esami.. 9- Facoltà di graria Corsi di Laurea in VIT e STL Modulo di Matematica Esame del //.. 9/ Scritto Teoria Esercizi Voto Istruzioni:

Dettagli

Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. 2

Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. 2 Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. Corso di laurea in Matematica, a.a. 003-004 17 dicembre 003 1. Si consideri la funzione f : R R definita da f(x, y) = x 4 y arctan

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

SOLUZIONE DEL PROBLEMA 2 TEMA DI MATEMATICA ESAME DI STATO 2016

SOLUZIONE DEL PROBLEMA 2 TEMA DI MATEMATICA ESAME DI STATO 2016 SOLUZIONE DEL PROBLEMA 2 TEMA DI MATEMATICA ESAME DI STATO 2016 1. Per prima cosa determiniamo l espressione analitica della funzione f per x 8. x 8 = y y = 2x 16 2 4 Del grafico di f (x) possiamo dire

Dettagli

1.3. Se esistono i limiti sinistro e destro della funzione in un punto, allora esiste anche il limite della funzione nel punto stesso.

1.3. Se esistono i limiti sinistro e destro della funzione in un punto, allora esiste anche il limite della funzione nel punto stesso. Esercitazione 8 Novembre 018 1. Stabilire quali delle seguenti affermazioni sono vere e quali false. 1.1. Se una funzione f(x) è definita in un intervallo aperto (a, b), ha senso chiedersi se esistono

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione

Dettagli

Analisi Matematica 1+2

Analisi Matematica 1+2 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali

Dettagli

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera?

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera? DERIVATE Rispondere ai seguenti quesiti. Una sola risposta è corretta.. Data la funzione f(x) =+ x 7, quale delle seguente affermazioni èvera? (a) f(x) nonè derivabile in x =0 (b) f (0) = (c) f (0) = (d)

Dettagli

Risoluzione del compito n. 7 (Settembre 2018/2)

Risoluzione del compito n. 7 (Settembre 2018/2) Risoluzione del compito n. 7 (Settembre 08/ PROBLEMA Determinate le soluzioni (z, w, con z, w C,delsistema i z =(+iw i iw =( i z 3 4 i. Moltiplicando la prima equazione per i questa diventa z =( iw e sostituendo

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osserviamo anzitutto che la funzione g(x) = (ax b)e,-,. è continua e derivabile in R in quanto composizione di funzioni continue e derivabili. Per discutere la presenza di

Dettagli

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento Traccia n. Studiare il comportamento della funzione: Svolgimento f(x) = 3x + ex 3x e x Determinazione del campo di esistenza, E[f]. La funzione si presenta come rapporto di due funzioni; il campo di esistenza

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 6 giugno 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Studio del segno delle derivate. Lezione 11 del 6/12/2018

Studio del segno delle derivate. Lezione 11 del 6/12/2018 Studio del segno delle derivate Lezione 11 del 6/12/2018 Segno della derivata prima Data una funzione f(x) derivabile in un intervallo I, allora se f x > 0 x I allora la funzione f(x) è strettamente crescente

Dettagli

Risoluzione del compito n. 2 (Febbraio 2014/1)

Risoluzione del compito n. 2 (Febbraio 2014/1) Risoluzione del compito n. Febbraio 04/ PROBLEMA Determinate le soluzioni z C del sistema { z + zz z = 4i z =5 3Iz. Dato che nella seconda equazione compare esplicitamente Iz, sembra inevitabile porre

Dettagli

(1) Determinare l integrale generale dell equazione

(1) Determinare l integrale generale dell equazione FONDAMENTI DI ANALISI MATEMATICA (9 cfu Commissione F. Albertini, V. Casarino, M. Motta Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Vicenza, 3 settembre 8 Quarto appello Avvertenza: Nella

Dettagli

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica Analisi Matematica I (A.A. 5/6) Proff. F. Bucci & E. Paolini Appello n. 3 prova scritta ( Marzo 6) Importante: Per l

Dettagli

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI

ESERCIZI SULLE EQUAZIONI DIFFERENZIALI ESERCIZI SULLE EQUAZIONI DIFFERENZIALI 1. Generalità 1.1. Verifica delle soluzioni. Verificare se le funzioni date sono soluzioni delle equazioni differenziali. xy = 2y, y = 5x 2. y = x 2 + y 2, y = 1

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014 Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I Prova scritta del 8 Gennaio 214 Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile. (1) (Punti 8)

Dettagli

Analisi Vettoriale - A.A Foglio di Esercizi n Esercizio. y [17] + y [15] = 0. z + z = 0

Analisi Vettoriale - A.A Foglio di Esercizi n Esercizio. y [17] + y [15] = 0. z + z = 0 Analisi Vettoriale - A.A. 23-24 Foglio di Esercizi n. 5 Determinare l integrale generale di 1. Esercizio y [17] + y [15] = Posto y [15] = z l equazione proposta diventa Il cui integrale generale é z +

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Risoluzione del compito n. 4 (Giugno 2014)

Risoluzione del compito n. 4 (Giugno 2014) Risoluzione del compito n. 4 Giugno 2014) PROBLEMA 1 Determinate le soluzioni z, w), con z, w C,delsistema { z = w 2 w i Dalla prima equazione ricaviamo 2iz +4i z = w 2. che sostituito nella seconda la

Dettagli

2) Data la retta r : 3x 2y + 1 = 0 trovarne il punto P di intersezione con l asse y e determinare la retta che passa per P ortogonale a r.

2) Data la retta r : 3x 2y + 1 = 0 trovarne il punto P di intersezione con l asse y e determinare la retta che passa per P ortogonale a r. Testo 1 ESONERO I 1) Calcolare le seguenti espressioni log 3 135 log 3 5 = log 5 1 125 + log 4 256 = 2) Data la retta r : 3x 2y + 1 = 0 trovarne il punto P di intersezione con l asse y e determinare la

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 5 febbraio 07 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 7) Posto

Dettagli

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) =

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) = Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica 1 La retta tangente al grafico di f nel punto ( 0, f( 0 ha equazione y = f( 0 + f ( 0 ( 0. a y = 2; b y = log 2 (e( 1; c y = 1 2 + 1 4

Dettagli

RISOLUZIONE ESERCIZI su INSIEMI NUMERICI. = 5 2 ; π = 9 2 ; ) Scrivere in forma diversa i seguenti numeri reali (a,b,c IR e a,b,c > 0):

RISOLUZIONE ESERCIZI su INSIEMI NUMERICI. = 5 2 ; π = 9 2 ; ) Scrivere in forma diversa i seguenti numeri reali (a,b,c IR e a,b,c > 0): RISOLUZIONE ESERCIZI su INSIEMI NUMERICI 1) In ordine crescente: 1/7 < 5/8 < 10 1 < 0,13 < 0,1 3 = /15 < 5/8 = 10/16 < 1/7 < < 0,0031 10 3 < 3,1 = 157/50 < π. ) In ordine crescente: 0/9 < 16/17 = 3/3

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/0/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/0/03) Università di Verona - Laurea in Biotecnologie

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del gennaio 207 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 6) Determinare

Dettagli

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare:

Per determinare una soluzione particolare descriveremo un metodo che vale solo nel caso in cui la funzione f(x) abbia una forma particolare: 42 Roberto Tauraso - Analisi 2 Ora imponiamo condizione richiesta: ( lim c e 4x + c 2 + c 3 e 2x cos(2x) + c 4 e 2x sin(2x) ) = 3. x + Il limite esiste se e solo c 3 = c 4 = perché le funzioni e 2x cos(2x)

Dettagli

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica, a.a. 2007/08 Esercizi: Parte 1 Insiemi numerici: sup A, inf A 1. Verificare se A, nel caso sia non vuoto, è limitato superiormente,

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (24/06/20) Università di Verona - Laurea in Biotecnologie - A.A. 200/ Tema A Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O,

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3..7 TEMA Esercizio Calcolare l integrale log(3) 4 dx Svolgimento. Si ha log(3) 4 dx = (ponendo ex = t, per cui dx = dt/t) e = 4 3

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 2015/16

PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 2015/16 PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 5/6 Prova scritta del //6 Si studi, al variare di x, il comportamento della serie n= n Ax n Ax, dove A denota il numero delle lettere del nome. Si studi la funzione

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

RISULTATI DEGLI ESERCIZI SULLE EQUAZIONI NON LINEARI TEMI D ESAME DEI CORSI TENUTI PRESSO IL DTI DI CREMA

RISULTATI DEGLI ESERCIZI SULLE EQUAZIONI NON LINEARI TEMI D ESAME DEI CORSI TENUTI PRESSO IL DTI DI CREMA RISULTATI DEGLI ESERCIZI SULLE EQUAZIONI NON LINEARI TEMI D ESAME DEI CORSI TENUTI PRESSO IL DTI DI CREMA 15 giugno 2005 - n. 3 g(x) = cos x. Si osservi che considerando la funzione g (x) = sin x si ha:

Dettagli

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola:

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Dom. 1 Dom Es. 1 Es. Es. 3 Es. 4 Totale Analisi e Geometria 1 Primo appello 16 febbraio 016 Docente: Politecnico di Milano Scuola di Ingegneria Industriale e dell Informazione Cognome: Nome: Matricola:

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (08/07/20) Università di Verona - Laurea in Biotecnologie - A.A. 200/ Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O, P-Z) (08/07/20)

Dettagli

SOLUZIONI COMPITO del 1/02/2013 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A

SOLUZIONI COMPITO del 1/02/2013 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A SOLUZIONI COMPITO del /0/0 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A Esercizio Osserviamo che la serie proposta è a termini di segno

Dettagli

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore A = 1 2 0 0 2 1 B = 2 1 0 1 0 2 u = (1, 2, 1), 3 2 1 1 1 1 [E.2] Date le due matrici e il vettore A = 1 2 0 0 1 0 0 1 3 B = 1

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 2 luglio 2004: soluzioni Data la funzione f() = 3 2 2 arctan + 0, si chiede di: a) calcolare il dominio

Dettagli

ANALISI MATEMATICA. Prova scritta del 20/12/ FILA 1

ANALISI MATEMATICA. Prova scritta del 20/12/ FILA 1 ANALISI MATEMATICA CORSO C - CdL INFORMATICA Prova scritta del 0//004 - FILA ESERCIZIO Studiare la funzione f(x) log x log x determinando in particolare a) campo di esistenza ed eventuali asintoti; b)

Dettagli

4.5 Equazioni differenziali lineari del secondo ordine non omogenee 159

4.5 Equazioni differenziali lineari del secondo ordine non omogenee 159 4.5 Equazioni differenziali lineari del secondo ordine non omogenee 159 Una volta stabilito che per ogni funzione continua f l equazione (4.23) è risolubile, ci interessa determinarne l integrale generale.

Dettagli

Analisi 4 - SOLUZIONI (compito del 29/09/2011)

Analisi 4 - SOLUZIONI (compito del 29/09/2011) Corso di laurea in Matematica Analisi 4 - SOLUZIONI compito del 9/09/0 Docente: Claudia Anedda Calcolare, tramite uno sviluppo in serie noto, la radice quinta di e la radice cubica di 9 Utilizzando la

Dettagli

21 IL RAPPORTO INCREMENTALE - DERIVATE

21 IL RAPPORTO INCREMENTALE - DERIVATE 21 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

Soluzioni della prova di Matematica Maturità 2015

Soluzioni della prova di Matematica Maturità 2015 Soluzioni della prova di Matematica Maturità 015 Lara Charawi 1, Alberto Cogliati e Luca Magri 1 Dipartimento di Matematica, Università degli Studi di Pavia Dipartimento di Matematica, Università degli

Dettagli

ESERCIZI SULLO STUDIO DI FUNZIONI

ESERCIZI SULLO STUDIO DI FUNZIONI ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.

Dettagli

Tipologia delle funzioni studiate: 1. y= ax n + bx n y= e x 3. y= (ax + b)/ (cx + d) 4. y= (ax 2 + b) (cx + d)

Tipologia delle funzioni studiate: 1. y= ax n + bx n y= e x 3. y= (ax + b)/ (cx + d) 4. y= (ax 2 + b) (cx + d) - ricerca dei punti di flesso - ricerca dell asintoto orizzontale - ricerca dell asintoto verticale - ricerca dell asintoto obliquo - ricerca dei punti di intersezione con gli assi Tipologia delle funzioni

Dettagli