Appunti su Equazioni Cartesiane, Parametrizzazioni, Spazio Tangente

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appunti su Equazioni Cartesiane, Parametrizzazioni, Spazio Tangente"

Transcript

1 Appunti su Equazioni Cartesiane, Parametrizzazioni, Spazio Tangente Corso di Geometria 1 - a.a. 2010/2011 Andrea Sambusetti Sapienza Università di Roma

2 1 Terminologia Il simbolo indica un riferimento a uno degli esercizi dei fogli on-line. Sia S un sottoinsieme di R n e P 0 = (x 0 1,..., x 0 n) S: Definizioni 1.1 (Intorni, insiemi aperti, domini) un intorno rettangolare aperto (per brevità: un intorno) di P 0 in R n è un prodotto di intervalli aperti U P0 = (x 0 1 ɛ 1, x 0 1+ɛ 1 ) (x 0 n ɛ 1, x 0 n+ɛ 1 ); un intorno U S P 0 di P 0 in S è l intersezione U S P 0 = U P0 S di un intorno U P0 di P 0 in R n con S; un dominio è un sottoinsieme D R n aperto e connesso: cioè, per ogni punto P D esiste un intorno U P contenuto in D (aperto) e per ogni coppia di punti P, Q D esiste una curva continua α : [0, 1] D tale che α(0) = P, α(1) = Q (connesso). Definizioni 1.2 (Continuità e omeomorfismi) un applicazione F : S S tra sottoinsiemi di R n è continua in P 0 S se per ogni successione P n S tale che P n P 0, si ha F (P n ) F (P 0 ); F si dirà continua se è continua in ogni punto di S; un applicazione F : S S tra sottoinsiemi di R n si dice un omeomorfismo tra S ed S se è continua, biiettiva, e la sua inversa F 1 è continua. Definizioni 1.3 (Coni, cilindri, insiemi di rotazione) S = C(B, V ) è un cono di vertice V e base B R n se S = P B r V,P, dove r V,P indica la retta passante per i punti V, P ; [ 6.1, 6.3, 7.7] S = Cyl(B, V ) è un cilindro di asse v e base B R n se S = P B rv P, dove rp v indica la retta di direzione v passante per P ; [ 6.2, 7.7] (per n=3) S è un insieme di rotazione se esiste una retta r dello spazio tale che per ogni piano π ortogonale a r la sezione S π è una circonferenza oppure l insieme vuoto; equivalentemente, se Simm(S) contiene tutte le rotazioni R r,ϑ di asse r e angolo ϑ R; [ 6.1, 6.2, 7.8, 7.10] Definizioni 1.4 (Eq.cartesiane, parametrizzazioni) un insieme di equazioni cartesiane (C k ) per S è una funzione (C k ) G = (G i ) : D R n R m tale che S sia l insieme dei punti che soddisfano il sistema G 1 (P ) =... = G m (P ) = 0, i.e. S = Ker(G) = G 1 (0); l insieme di equazioni cartesiane si dirà regolare in P 0 se il rango di (dg) P0 è massimo 1, [ 5.1, 5.2, 5.3, 5.4, 5.5, 6.1, 6.2, 6.3, 7.6, 7.7, 7.10, 8.5] 1 nel caso comune in cui m n, ciò significa che rk(dg) P0 = m. 2

3 una parametrizzazione per S è una funzione F = (F i ) : D R d R n, dove D è un dominio, tale che S = Im(F ); una parametrizzazione (C 1 ) si dice regolare in P se il rango di (df ) P è massimo 2, e si dirà regolare se è regolare in ogni punto; [ 7.3, 7.5, 7.6, 8.5] Un insieme S si dice una curva (risp. una superficie) parametrizzata se ammette una parametrizzazione F : D R R n (risp. F : D R 2 R n ) con S = Im(F ), ed F è almeno C 1 ; S si dirà una curva (risp. una superficie) regolare se ammette una parametrizzazione regolare. [ 7.3, 7.6, 8.5] Definizioni 1.5 (Grafici, rigate) S è un grafico rispetto a x 1,..., x d se ammette una parametrizzazionegrafico 3, cioè S = F (D) dove F : D R d R n è della forma F (x 1,..., x d ) = (x 1,..., x d, f 1 (x 1,..., x d ),..., f n d (x 1,..., x d )) si dice anche che S è il grafico della funzione f = (f i ) : D R d R n d. Un altra locuzione equivalente è: è possibile esplicitare x d+1,..., x n in funzione di x 1,..., x d su S; [ 5.2, 7.6] S è un grafico rispetto a x 1,..., x d vicino a P 0 se esiste un intorno UP S 0 di P 0 in S che è un grafico rispetto a x 1,..., x d ; diremo anche, in tal caso, che è possibile esplicitare x d+1,..., x n in funzione di x 1,..., x d su S vicino a P 0 ; [ 8.4] S è una superficie rigata se ha una parametrizzazione F : U = I R R n del tipo F (s, t) = α(s) + tv(s) dove α, v sono due curve parametrizzate e v(s) non è mai nullo (v va pensato geometricamente come un campo di vettori lungo α); [ 6.2, 6.3, 7.9, 8.5, 8.6] 2 Equazioni Cartesiane vs Parametrizzazioni Il problema che tratteremo è il seguente, fondamentale in matematica: dato un sistema di equazioni del tipo G(X) = 0, dove X = (x 1,..., x n ) R n e G = (G i ) : D R n R m, e cioè: G 1 (x 1,..., x n ) = 0 G 2 (x 1,..., x n ) = 0 G m (x 1,..., x n ) = 0 le soluzioni S R n di tale sistema (se esistono) formano uno spazio di che dimensione? In funzione di quanti parametri possono esprimersi? Tale problema consiste quindi nel cercare di passare da equazioni cartesiane per un insieme S ad una parametrizzazione di S. Notiamo che tale problema è stato risolto nel corso di Algebra Lineare nel caso in cui le G i siano polinomi di primo grado, i.e. (1) sia un sistema lineare: 2 nel caso comune in cui d n, ciò significa che rk(df ) P = d. 3 per sua stessa definizione, una parametrizzazione-grafico, se almeno C 1, è sempre regolare, ed è sempre un omeomorfismo F : D S = F (D) (di inversa la proiezione S R n R d ). (1) 3

4 Teorema 2.1 Sia G(X) = G 0 X + b = 0 un sistema lineare in X = (x 1,..., x n ), con G 0 M(m, n, R) e b R m. L insieme S delle soluzioni, se non vuoto, è un sottospazio affine di R n di dimensione d = n rk(g 0 ). Euristicamente, ciò vuol dire che da ogni equazione, che pone un vincolo su (x 1,..., x n ), possiamo ricavare un incognita x i, e dunque se le m equazioni sono indipendenti (cioè rk(g 0 ) = m) le soluzioni si esprimono in funzione di d = n m variabili libere. Reciprocamente, nel corso di Algebra lineare abbiamo visto: Teorema 2.2 Sia F = (F i ) : R d R n una parametrizzazione del tipo F (x 1,..., x d ) = P 0 + x 1 v x d v d = P 0 + F 0 X dove {v 1,..., v d } sono d vettori linearmente indipendenti (cioè rk(f 0 ) = d). Allora S = ImF è l insieme delle soluzioni di un sistema del tipo (1), costituito da m = n d equazioni polinomiali di grado 1 indipendenti. Osservazioni 2.3 (Equazioni cartesiane e parametrizzazioni C 0 ) (i) È facile convincersi che, nel caso in cui le equazioni cartesiane G i siano solo funzioni C 0, l insieme delle soluzioni S non ha una naturale dimensione deducibile da n, m. Si pensi al seguente esempio: detta ß 0 se r 1 f(r) = r 1 se r 1 sia S k : G k (x, y) = f( x 2 + y 2 ) k = 0. L insieme S k è una circonferenza per ogni k > 0, mentre S 0 è un cerchio, dunque un oggetto bi-dimensionale (nonostante sia definito da un equazione in due variabili). (ii) Analogo problema c è per le parametrizzazioni che sono solo C 0 : la curva di Peano ( è un esempio di parametrizzazione continua F : [0, 1] R 2 tale che S = Im(F ) è un quadrato pieno (dunque un oggetto bi-dimensionale, nonostante sia parametrizzato da una sola variabile). Il Teorema 2.1 si generalizza a equazioni C k qualsiasi (con k 1) a meno di sostituire la condizione rk(g 0 ) = m con rk(dg) P0 = m, fornendo però solamente un enunciato locale : una garanzia, cioè, della possibilià di passare da equazioni cartesiane a parametrizzazioni in un intorno di un punto P 0 fissato: Teorema del Dini 2.4 Sia G = (G i ) : D R n R m n, sia S = Ker(G) e P 0 S. Supponiamo che: (i) G sia di classe C k (con k 1); (ii) l insieme di equazioni G i = 0 sia regolare in P 0, cioè rk(dg) P0 = m (diciamo, per semplicità, che det( Gi P0 ) i=1,...,m j=1,...,m 0). Allora, detto d = n m, S è un grafico C k rispetto a (x 1,..., x d ) vicino a P 0 : esiste cioè un intorno UP S 0 di P 0 tale che UP S 0 = Im(F ) per una parametrizzazionegrafico F (x 1,.., x d ) = (x 1,..., x d, f d+1 (x 1,.., x d ),..., f n (x 1,.., x d )) di classe C k. Esempio 2.5 Trovare tutti i punti P nei quali è applicabile il teorema del Dini, per tutti gli insiemi definiti negli esercizi 7.3, 7.6, 7.7 e 7.10(i)&(ii). Specificare quali variabili sono esplicitabili rispetto alle altre vicino a P. 4

5 È naturale porsi anche il problema inverso: dato un insieme S R n definito come l immagine di una parametrizzazione F, è possibile realizzarlo come l insieme delle soluzioni di un sistema del tipo (1)? Ancora una volta, c è un analogo del Teorema 2.2 che fornisce una risposta positiva sotto simili ipotesi di regolarità per F, e sempre in un senso puramente locale, come descritto qui di seguito: Teorema inverso del Dini 2.6 Sia F = (F i ) : D R d n R n. Supponiamo che: (i) F sia di classe C k (con k 1); (ii) F sia regolare in Q 0, cioè rk(df ) Q0 = d (diciamo, per semplicità, che det( Fi Q0 ) i=1,...,d j=1,...,d 0). Allora, esiste un intorno U Q0 R d di Q 0 tale che l insieme S = F (U Q0 ) è un grafico rispetto a x 1,..., x d, ed è descritto da m = n d equazioni cartesiane regolari del tipo (1), con G = (G i ) di classe C k e rk(dg) P0 = m. Corollario 2.7 Sia F = (F i ) : D R d n R n di classe C 1 e regolare in Q 0. Allora, F UQ0 : U Q0 F (U Q0 ) è un omeomorfismo, se U Q0 è un intorno di Q 0 abbastanza piccolo. Note al Teorema Inverso del Dini 2.8 (i) Il Teorema inverso del Dini non afferma che F stessa è una parametrizzazionegrafico, ma solo che S = F (U Q0 ) ammette una parametrizzazione-grafico F (in genere diversa da F ). La dimostrazione spiega come trovare tale F. (ii) Lo stesso teorema non afferma che F (D) ammette n d equazioni cartesiane (C k, regolari) nel punto P 0 = F (Q 0 ): ciò è vero solo per l insieme S = F (U Q0 ) F (D), per un intorno U Q0 di Q 0 abbastanza piccolo. 4 Esempio 2.9 Determinare in quali punti (nel rispettivo dominio di definizione) le parametrizzazioni dell esercizio 8.1(ii)&(iii), 8.5 degli insiemi B 1, B 2 ed E sono regolari. Il Teorema Inverso del Dini assicura l esistenza di equazioni cartesiane per B 1, B 2 ed E? Tali equazioni esistono sì o no? Sono regolari ovunque? Daremo una dimostrazione dei due Teoremi 2.4&2.6 usando un risultato 5 di base visto nel corso di Analisi Matematica II, che supporremo acquisito: 4 Attenzione al fatto che F (U Q0 ) non è (in generale) un intorno di P 0 = F (Q 0 ) in F (D). Per es., nell esercizio 8.1(i), dove Q 0 = 0 R, P 0 = O R 2 ed F (D) = B 1 è una curva ad, se U Q0 è un intervallo piccolo contenente lo zero, l insieme F (U Q0 ) non è un intorno di P 0, in quanto (essendo F UQ0 continua e iniettiva) F (U Q0 ) contiene solo uno dei due rami della curva, vicino ad O. Ne segue che ciascuno dei due rami della curva B 1 vicino ad O ammette un equazione cartesiana regolare, ma l unione dei due rami non la ammette (poiché T O B 1 non è uno spazio vettoriale, cp. Proposizione 3.6 e discussione in 3.5(i)). 5 In realtà, in molti testi si dimostra prima il Teorema del Dini, e poi il Teorema della Funzione Inversa; i due teoremi sono in effetti equivalenti. 5

6 Teorema della Funzione Inversa 2.10 Sia D dominio, e F : D R k R k un applicazione con F (Q 0 ) = P 0 tale che (i) F è di classe C k (con k 1); (ii) F è regolare in P 0, cioè det(df ) P0 0. Allora, esistono intorni U Q0, V P0 di Q 0, P 0 R k tali che F UQ0 : U Q0 V P0 sia biiettiva e con inversa di classe C k. Dimostrazione del Teorema 2.4. Supponiamo, per semplicità di scrittura, che det( Gi P0 ) i=1,...,m j=1,...,m P 0 = (x 0 1,..., x 0 n). Consideriamo G : D R n R n definita come G(x 1,..., x n ) = (G 1 (x 1,..., x n ),..., G m (x 1,..., x n ), x m+1,..., x n ). 0, e sia Chiamiamo O l origine in R m, e Q 0 = G(P 0 ) = (O, x 0 m+1,..., x 0 n). Notiamo che G(S) O R d, dove d = n m. Per ipotesi det(d G) P0 = det( Gi P0 ) i=1,...,m j=1,...,m 0, dunque il Teorema della Funzione Inversa ci fornisce intorni U P0, V Q0 rispettivamente di P 0, Q 0 R n tali che G UP0 : U P0 V Q0 sia biiettiva e con inversa C k, denotata F. Poiché F inverte G su V Q0, essa è della forma: F (x 1,..., x n ) = ( F 1 (x 1,..., x n ),..., F m (x 1,..., x n ), x m+1,..., x n ). Pertanto, se U = V Q0 (O R d ), l applicazione F = F U : U R d S U P0 F (x m+1,..., x n ) = ( F 1 (O, x m+1,..., x n ),..., F m (O, x m+1,..., x n ), x m+1,..., x n ) è una parametrizzazione C k e biiettiva di S U P0, che è quindi un grafico C k rispetto alle d variabili x m+1,..., x n. Dimostrazione del Teorema 2.6. Supponiamo ancora, per semplicità di scrittura, che det( Fi Consideriamo F : D R d R d definita come F (x 1,..., x d ) = (F 1 (x 1,..., x d ),..., F d (x 1,..., x d )) Q0 ) i=1,...,d j=1,...,d 0. e sia Q 0 = F (P 0 ). Per ipotesi det(d F ) Q0 = det( Fi Q0 ) i=1,...,d j=1,...,d 0, dunque il Teorema della Funzione Inversa ci fornisce intorni U Q0, V P0 rispettivamente di P 0, Q 0 R d tali che F UQ0 : U Q0 V P0 sia biiettiva e con inversa C k, denotata F 1. Sia allora S = F (U Q0 ). Detta F = F F 1 : V P0 R d R n, si ha S = F (V P0 ) e (poiché F 1 inverte F su U Q0 ), la parametrizzazione F è della forma F (x 1,.., x d ) = (x 1,..., x d, F d+1(x 1,.., x d ),..., F n(x 1,.., x d )) sicché S è un grafico C k rispetto a x 1,..., x d. Pertanto S ha equazioni cartesiane: G 1 (x 1,..., x n ) = x d+1 F d+1 (x 1,.., x d ) = 0 G 2 (x 1,..., x n ) = x d+2 F d+2 (x 1,.., x d ) = 0 G m (x 1,..., x n ) = x n F n(x 1,.., x d ) = 0 e G = (G i ) è chiaramente regolare in P 0. 6

7 Dimostrazione del Corollario 2.7. Con le stesse notazione della dimostrazione precedente, si noti che F UQ0 è un omeomorfismo (per il Teorema delle Funzione Inversa) ed F anche (in quanto parametrizzazione-grafico, cf. Nota 3 in 1). Dunque F UQ0 = F F UQ0 è un omeomorfismo. 3 Spazio tangente Lo spazio tangente ad un sottoinsieme S R n in un suo punto P 0 è un approssimazione di S come un unione di rette vicino al punto scelto. La natura dello spazio tangente in un punto dà informazioni sul sottoinsieme S nell intorno di tale punto (per esempio permette di distinguere sottoinsiemi molto differenti tra loro) ed è uno strumento fondamentale in geometria algebrica e differenziale. Definizione 3.1 (Vettori tangenti) Sia S R n un sottoinsieme, e sia P 0 S. Un vettore unitario û R n si dice un versore tangente ad S in P 0 se esiste una P 0P n P 0P n = û. successione di punti P n S, P n P 0, tale che lim n Qualsiasi vettore del tipo u = λû si dirà allora un vettore tangente ad S in P 0. Lo spazio tangente ad S in P 0 è l insieme T P0 S = {u R n u vettore tangente ad S in P 0 } ed è anche detto il cono tangente ad S in P 0 (per quanto spiegato sotto in 3.3(i)). Il sottoinsieme T aff P 0 S = P 0 + T P0 S è detto cono affine tangente ad S in P 0. Esempio 3.2 (i) Se S = Q 2, allora T O S = R 2 [ 8.1(i)]. (ii) Se S = {(e t cos t, e t sin t) t R } {O} è una spirale logaritmica, allora T O S = R 2 [ 8.1(iii)]. (iii) Se C + = {(x, y, z) R 3 x 2 + y 2 = z 2, z 0} è la falda superiore del cono C = {(x, y, z) R 3 x 2 + y 2 = z 2 }, allora T O C + = C [ 8.1(iv)]. Le Proposizioni 3.3, 3.4, 3.6 che seguono aiutano a calcolare T P0 S in molti casi: Proposizione 3.3 Sia S R n e P 0 S: (i) T P0 S (rispettivamente T aff P 0 S) è un cono di vertice O (risp. di vertice P 0 ); (ii) se U S P 0 è un intorno di P 0 in S, si ha T P0 S = T P0 U S P 0 ; (iii) se S = S 1 S 2 e P 0 S 1 S 2, allora T P0 S = T P0 S 1 T P0 S 2. Dimostrazione. (i) Sia TP 1 0 S l insieme dei versori unitari tangenti a S in P 0. T P0 S è il cono di vertice O e base B = TP 1 0 S. Si noti inoltre che un cono traslato è un cono. (ii) Evidentemente T P0 UP S 0 T P0 S; poichè d altra parte ogni û TP 1 0 S è ottenuto da una successione di punti P n S tali che P n P 0, e ogni tale successione è contenuta definitivamente in UP S 0, vale anche l inclusione inversa. 7

8 (iii) Anche in questo caso si ha chiaramente T P0 S i T P0 S, dunque l inclusione T P0 S 1 T P0 S 2 T P0 S. D altra parte, se û TP 1 0 S è ottenuto da una successione di punti P n S tali che P n P 0, esiste una sottosuccessione P nk dei P n che è tutta contenuta in un S i, quindi û T P0 S i ; da cui l inclusione inversa. Proposizione 3.4 (Spazio tangente per parametrizzazioni regolari) (i) Sia F :D R d R n una parametrizzazione-grafico, P 0 = F (Q 0 ), S = F (D): allora T P0 S è uno spazio vettoriale di dimensione d uguale a Im(dF ) Q0 ; (ii) sia F :D R d R n una parametrizzazione qualsiasi regolare in P 0 = F (Q 0 ), ed S = F (U Q0 ): allora T P0 S è uno spazio vettoriale di dimensione d uguale a Im(dF ) Q0, purché U Q0 sia un intorno abbastanza piccolo di Q 0. Dimostrazione. (i) Mostriamo che Im(dF ) Q0 T P0 S. In effetti, sia v = (df ) q0 (û), dove possiamo supporre û = 1. Allora v = lim 0+t nu) F (Q 0) F (Q n t n, per qualsiasi successione t n 0. Detti Q n = Q 0 + t n u, si ha t n =, e dunque F (Q n ) F (Q 0 ) F (Q 0 )F (Q n ) v = lim = lim n n F (Q 0 )F (Q n ) F (Q 0)F (Q n ) Poiché F (Q n ) S e F (Q n ) F (Q 0 ) = P 0 (per la continuità di F ), il primo quoziente nel limite tende a un versore tangente ˆv T 1 P 0 S; dunque il secondo tende necessariamente a v, sicché (2) mostra che v T P0 S. Viceversa, sia ˆv T P0 S, che possiamo supporre unitario. Esistono allora punti P n = F (Q n ) S con P n P 0 tali che ˆv = lim n P 0 P n P 0 P n = lim n F (Q 0 )F (Q n ) F (Q 0 )F (Q n ) = lim n F (Q 0 )F (Q n ) (2) F (Q 0 )F (Q n ) Poiché F è almeno C 1, si ha F (Q n ) = F (Q 0 ) + (df ) Q0 ( Q 0 Q n ) + o(), dunque v = lim n (df ) Q0 ( Q 0 Q n ) + o() (df ) Q0 ( Q 0 Q n ) + o() Poiché P n = F (Q n ) P 0 = F (Q 0 ), si ha che Q n Q 0 e quindi i versori (3) Q 0Q n Q 0Q n tendono a un versore tangente û T Q0 D = R 2. Da (3) e dall ipotesi che F sia C 1 e regolare segue allora che (df ) Q0 (û) 0 e ˆv = (df ) Q 0 (û) (df ) Q0 (û) Im(dF ) Q 0. (ii) La dimostrazione è identica ad (i). L unica difficoltà supplementare è nel punto in cui si dice che se P n = F (Q n ) P 0 = F (Q 0 ) allora Q n Q 0. Ciò è evidente nel caso in cui F sia una parametrizzazione-grafico, mentre discende dalla continuità di F 1 in questo caso (si ricordi che il Corollario 2.7 assicura che F UQ0 è un omeomorfismo, se U Q0 è un intorno di Q 0 abbastanza piccolo). 8

9 Osservazioni 3.5 (Retta e piano tangente a curve/superfici regolari) (i) Sia C una curva regolare parametrizzata da F : D R R n, e P 0 = F (Q 0 ). La proposizione precedente assicura che esiste un intorno U Q0 = (Q 0 ɛ, Q 0 +ɛ) tale che T P0 F (U Q0 ) = Im(dF ) Q0 = F (Q 0 )R; da qui il nome di retta tangente per la retta passante per P 0 e avente vettore direzione F (Q 0 ). Ma attenzione: mentre per una curva-grafico C si ha sempre T P0 C = F (Q 0 )R, in generale per una curva regolare qualsiasi si ha solo T P0 C F (Q 0 )R: per esempio, nel caso della curva B 1 fatta ad dell Esercizio 8.1(ii), la proposizione precedente, insieme alla Proprietà 3.3(iii), mostra che T O B 1 è l unione delle due rette y = ±2x. (ii) Se S è una superficie regolare parametrizzata da F : D R 2 R n e P 0 = F (Q 0 ), allora T P0 F (U Q0 ) = Im(dF ) Q0 = Span{F x (Q 0 ), F y (Q 0 )}, da cui il nome di piano tangente per il piano passante per P 0 e avente questa giacitura. Ma mentre per una superficie-grafico S si ha T P0 S = Span{F x (Q 0 ), F y (Q 0 )}, per una superficie regolare qualsiasi si ha solo T P0 S Span{F x (Q 0 ), F y (Q 0 )}: di nuovo, nel caso della superficie S dell Esercizio 8.1(v) (un cilindro di base la curva ad ) la proposizione precedente, insieme alla Proprietà 3.3(iii), mostra che T O S è l unione dei due piani y = ±2x. Proposizione 3.6 (Spazio tangente per equazioni cartesiane regolari) Sia G = (G i ) : D R n R m regolare in P 0, con P 0 S = ker(g): allora T P0 S è uno spazio vettoriale di dimensione n m uguale a ker(dg) P0. Dimostrazione. Per il Teorema del Dini esiste un intorno VP S 0 di P 0 in S che è un grafico: esiste cioè una parametrizzazione-grafico F : U Q0 R d R n con d = n m, F (Q 0 ) = P 0 e F (U Q0 ) = V P0. Per le Proposizioni 3.3&3.4 sappiamo che T P0 S = T P0 V P0 = Im(dF ) Q0. Resta da vedere che Im(dF ) Q0 = ker(dg) P0. Ma poiché G(F (U Q0 )) = 0, differenziando si ottiene (dg) P0 (df ) Q0 = 0, quindi Im(dF ) Q0 ker(dg) P0. D altronde, poiché (df ) Q0 ha rango d e (dg) P0 ha rango m, gli spazi Im(dF ) Q0 e ker(dg) P0 hanno entrambi dimensione uguale a d, e pertanto coincidono. Nota 3.7 Nel caso di un insieme S definito da una equazione cartesiana regolare G(x 1,..., x n ) = 0 (per esempio una curva in R 2 o una superficie in R 3 ), dg = (G x1,..., G xn ) può essere identificato, in ogni punto, ad un vettore detto il gradiente di G, denotato grad(g). Allora T P0 S = ker(dg) P0 = grad P0 (G), ovvero: grad(g) è un vettore normale allo spazio tangente, in ogni punto di S. Esercizio 3.8 Per ogni insieme S degli Esercizi 7.3, 7.6, 7.7, 8.1(iv), 8.1(v): (i) trovare i punti P S in cui l equazione cartesiana è regolare; in tali punti, determinare un equazione cartesiana per T P S, ed un vettore normale a T P S; (ii) trovare i punti P S in cui l equazione cartesiana non è regolare; in tali punti, determinare comunque un equazione cartesiana per T P S, e dire se si tratta di uno spazio vettoriale. 9

2 Equazioni Cartesiane vs Parametrizzazioni

2 Equazioni Cartesiane vs Parametrizzazioni Complementi ed Esercizi di Geometria Differenziale - A. Sambusetti 1 2 Equazioni Cartesiane vs Parametrizzazioni Il problema che tratteremo è il seguente, fondamentale in matematica: dato un sistema di

Dettagli

Primissime nozioni di Geometria Differenziale A. Sambusetti

Primissime nozioni di Geometria Differenziale A. Sambusetti Primissime nozioni di Geometria Differenziale A. Sambusetti Notazioni - Richiami. un intorno di P 0 = (x 0 n,, x 0 n) in R n è un sottoinsieme aperto U P0 contenente un prodotto di intervalli aperti (x

Dettagli

LEZIONE 37. x 2 a 2 + y2. b 2 = 2z, x 2. a 2 y2. b 2 = 2z. Esempio Sia S il cilindro luogo dei punti P = (x, y, z) soddisfacenti l equazione

LEZIONE 37. x 2 a 2 + y2. b 2 = 2z, x 2. a 2 y2. b 2 = 2z. Esempio Sia S il cilindro luogo dei punti P = (x, y, z) soddisfacenti l equazione LEZIONE 37 37.1. Altri esempi di superfici. In questo paragrafo daremo altri esempi di superfici. Esempio 37.1.1. Sia D R 2 un aperto. Allora il grafico Γ ϕ di una funzione ϕ: D R 3 di classe C 1 è una

Dettagli

Esercizi di Geometria 1 Foglio 4 (24 novembre 2015)

Esercizi di Geometria 1 Foglio 4 (24 novembre 2015) Esercizi di Geometria 1 Foglio 4 (24 novembre 2015) (esercizi analoghi potranno essere chiesti all esame scritto o orale) 6. Coniche. Esercizio 6.1 (Definizione intrinseca di ellisse, iperbole e parabola)

Dettagli

Prova scritta di Geometria differenziale - 27/2/2012

Prova scritta di Geometria differenziale - 27/2/2012 Prova scritta di Geometria differenziale - 27/2/2012 Tempo disponibile: 3 ore Non sono ammesse calcolatrici, appunti o libri di testo. Una copia degli appunti è disponibile per libera consultazione alla

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Geometria Differenziale 2017/18 Esercizi I

Geometria Differenziale 2017/18 Esercizi I Geometria Differenziale 17/18 Esercizi I 1 Esercizi sulle curve piane 1.1 Esercizio Si consideri la curva parametrizzata sin t, t [, π]. cos(t) a) Stabilire per quali valori di t la parametrizzazione è

Dettagli

Prova scritta di Geometria differenziale - 27/9/2012

Prova scritta di Geometria differenziale - 27/9/2012 Prova scritta di Geometria differenziale - 27/9/2012 Tempo disponibile: 3 ore Non sono ammesse calcolatrici, appunti o libri di testo. Una copia degli appunti è disponibile per libera consultazione alla

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 4 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 4 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 4 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 5.2, 5.3

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

Soluzioni. Foglio 1. Rette e piani. n x + c = 0. (1)

Soluzioni. Foglio 1. Rette e piani. n x + c = 0. (1) Soluzioni Foglio 1. Rette e piani. Esercizio 1. Se n è la normale al piano, sia c = n x 0. Dimostriamo prima che se x π, allora x soddisfa Si ha Sostituendo dentro (1) si ottiene n x + c = 0. (1) x = x

Dettagli

Funzioni di n variabili a valori vettoriali

Funzioni di n variabili a valori vettoriali Funzioni di n variabili a valori vettoriali Ultimo aggiornamento: 22 maggio 2018 1 Differenziale per funzioni da R n in R k Una funzione F : A R n R k può essere vista come una k-upla di funzioni scalari

Dettagli

Complementi ed Esercizi di Geometria Differenziale - A. Sambusetti 1

Complementi ed Esercizi di Geometria Differenziale - A. Sambusetti 1 Complementi ed Esercizi di Geometria Differenziale - A. Sambusetti 1 7 Campi vettoriali. Siano S, S d-sottovarietà differenziabili di R n : un applicazione f : S R è detta una funzione su S; un applicazione

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Curve nello spazio Gennaio Lunghezza d arco

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria. Curve nello spazio Gennaio Lunghezza d arco Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria Curve nello spazio Gennaio 013 Indice 1 Lunghezza d arco 1 1.1 Parametrizzazione alla lunghezza d arco..................... 1. Ogni

Dettagli

Analisi Matematica 2. Ottimizzazione in due variabili. Ottimizzazione in due variabili 1 / 31

Analisi Matematica 2. Ottimizzazione in due variabili. Ottimizzazione in due variabili 1 / 31 Analisi Matematica 2 Ottimizzazione in due variabili Ottimizzazione in due variabili 1 / 31 Ottimizzazione. Figure: Massimi e minimi relativi (o locali), Massimi e minimi assoluti (o globali) Ottimizzazione

Dettagli

Esercizi I : curve piane

Esercizi I : curve piane Esercizi I : curve piane. Esercizio Si consideri la curva parametrizzata sin t, t [, 2π]. cos(2t) a) Stabilire per quali valori di t la parametrizzazione è regolare. b) Sia Γ la traccia di α. Descrivere

Dettagli

Geometria Differenziale 2017/18 Esercizi 3

Geometria Differenziale 2017/18 Esercizi 3 Geometria Differenziale 217/18 Esercizi 3 1 Superfici I 1.1 Esercizio a) Verificare che l ellissoide Σ : x2 a 2 + y2 b 2 + z2 c 2 = 1 è una superficie regolare in tutti i suoi punti. b) Dare una parametrizzazione

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

Alcune nozioni di calcolo differenziale

Alcune nozioni di calcolo differenziale Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio

Dettagli

1 Note ed esercizi risolti a ricevimento

1 Note ed esercizi risolti a ricevimento 1 Note ed esercizi risolti a ricevimento Nota 1. Il polinomio di Taylor della funzione f x, y) due variabili), del secondo ordine, nel punto x 0, y 0 ), è P 2 x, y) = f x 0, y 0 ) + f x x 0, y 0 ) x x

Dettagli

Matematica per l Economia, a.a Integrazione al libro di testo

Matematica per l Economia, a.a Integrazione al libro di testo Matematica per l Economia, a.a. 2016 2017 Integrazione al libro di testo Gianluca Amato 20 dicembre 2016 1 Note ed errata corrige Sezione 2.3, definizione di dominio. La definizione di dominio data dal

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo.

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo http://www.dimi.uniud.it/biomat/ Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

26 - Funzioni di più Variabili Limiti e Derivate

26 - Funzioni di più Variabili Limiti e Derivate Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 26 - Funzioni di più Variabili Limiti e Derivate Anno Accademico 2013/2014 M.

Dettagli

viene detto il sostegno della curva. Se σ è iniettiva, diciamo che la superficie è semplice. Le equazioni

viene detto il sostegno della curva. Se σ è iniettiva, diciamo che la superficie è semplice. Le equazioni Fondamenti di Analisi Matematica 2 - a.a. 2010-11 (Canale 1) Corso di Laurea in Ingegneria Gestionale, Meccanica e Meccatronica Valentina Casarino Appunti sulle superfici 1. Superfici regolari Ricordiamo

Dettagli

Soluzioni della prova scritta di Geometria 1 del 27 giugno 2019 (versione I)

Soluzioni della prova scritta di Geometria 1 del 27 giugno 2019 (versione I) Soluzioni della prova scritta di Geometria 1 del 7 giugno 019 (versione I) Esercizio 1. Sia R 4 lo spazio quadridimensionale standard munito del prodotto scalare standard con coordinate canoniche (x 1,

Dettagli

Esempi. In R 2, le coppia (2, 5) è combinazione lineare dei vettori (0, 1) e (1, 1). Infatti:

Esempi. In R 2, le coppia (2, 5) è combinazione lineare dei vettori (0, 1) e (1, 1). Infatti: Combinazioni lineari [Abate, 4.2] Sia V uno spazio vettoriale e v 1, v 2,..., v n dei vettori di V. Diremo che un vettore w V è combinazione lineare dei vettori v 1,..., v n se esistono a 1, a 2,..., a

Dettagli

Vi prego di segnalare ogni inesattezza o errore tipografico a

Vi prego di segnalare ogni inesattezza o errore tipografico a ESERCIZI DI GEOMETRIA 4 Vi prego di segnalare ogni inesattezza o errore tipografico a mll@unife.it Geometria proiettiva Esercizio 1. Dire quali tra le seguenti coordinate omogenee dei punti in P 2 rappresentano

Dettagli

GEOMETRIA B Esercizi

GEOMETRIA B Esercizi GEOMETRIA B 2016-17 BARBARA NELLI A.A. 2016-17 Alcuni degli esercizi sono presi dal libro DC [1]. 1. Esercizi Esercizio 1.1. Sia α : I R 3 una curva parametrizzata e sia v R 3 un vettore fissato. Assumiamo

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

Soluzione degli esercizi di algebra lineare (del 26 ottobre 2018)

Soluzione degli esercizi di algebra lineare (del 26 ottobre 2018) Soluzione degli esercizi di algebra lineare (del 26 ottobre 28) Esercizio. Siano V un K-spazio vettoriale con base B = (v,..., v n ) e W un K-spazio vettoriale con base C = (w,..., w m ), e sia f : V W

Dettagli

4 Funzioni continue. Geometria I 27. Cfr: Sernesi vol II, cap I, 4 [1].

4 Funzioni continue. Geometria I 27. Cfr: Sernesi vol II, cap I, 4 [1]. Geometria I 27 4 Funzioni continue Cfr: Sernesi vol II, cap I, 4 [1]. Le funzioni continue tra spazi topologici si dicono anche mappe. Si può dimostrare, esattamente come in (2.10) e in (1.10), che vale

Dettagli

LEZIONE 13. f + g: I R n

LEZIONE 13. f + g: I R n LEZINE 13 13.1. Funzioni a valori in R n. Ricordiamo che gli elementi R n sono le n uple ordinate ( 1,..., n ) di numeri reali. Se = ( 1,..., n ) R n e α R, poniamo + = ( 1 + 1,..., n + n ), α = (α 1,...,

Dettagli

14 Spazi metrici completi

14 Spazi metrici completi 54 2006-apr-26 Geometria e Topologia I 14 Spazi metrici completi (14.1) Definizione. Una successione {x n } n in uno spazio metrico si dice di Cauchy se per ogni ɛ > 0 esiste un intero N = N(ɛ) per cui

Dettagli

B = (e 1,..., e n ) di V, e una sequenza C = ( f 1,..., f n ) di vettori di. Lezione del 21 maggio.

B = (e 1,..., e n ) di V, e una sequenza C = ( f 1,..., f n ) di vettori di. Lezione del 21 maggio. Lezione del maggio. Il riferimento principale di questa lezione e costituito da parti di: 3 Trasformazioni ortogonali, 4 Complemento ortogonale, 5 Matrici di Gram e proiezioni ortogonali, 6 Orientazione

Dettagli

Soluzioni esercizi complementari

Soluzioni esercizi complementari Soluzioni esercizi complementari Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17 x, y Z xry x y X, Y sottoinsiemi di un insieme

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Vedremo tra breve un metodo per studiare il problema di trovare il minimo e il massimo di una funzione su di un sottoinsieme dello spazio ambiente che non sia un aperto. Abbiamo

Dettagli

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti.

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti. Cognome Nome A Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti. 1) 2) 3) Geometria e algebra lineare 5/11/2015 A 1) Sia π il piano passante per i punti A = ( 3, 2, 1), B = (0, 1, 2), C

Dettagli

Spazi vettoriali. Indipendenza lineare.

Spazi vettoriali. Indipendenza lineare. Spazi vettoriali Indipendenza lineare Nel piano vettoriale G 2, fissato un punto O ed identificati i vettori con i segmenti orientati con origine in O, informalmente si puo dire che che due vettori sono

Dettagli

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi:

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi: Nucleo, immagine e loro proprietà [Abate, 5.2] Data una applicazione lineare f : V W, chiamiamo nucleo di f l insieme N(f) := { v V : f(v) = 0 W } Se S V è un sottoinsieme del dominio, indichiamo con f(s)

Dettagli

Esercizi complementari

Esercizi complementari Esercizi complementari (tratti dagli esercizi del prof. Alberto Del Fra) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17 x, y

Dettagli

Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo).

Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo). ESERCIZI PER CASA di GEOMETRIA per il Corso di Laurea di Scienze dei Materiali, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 28 maggio 29 Sottospazi di uno spazio vettoriale, sistemi

Dettagli

Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

Istituzioni di Matematiche Modulo B (SG)

Istituzioni di Matematiche Modulo B (SG) Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.

Dettagli

Funzioni implicite e teorema del Dini

Funzioni implicite e teorema del Dini Funzioni implicite e teorema del Dini Il succo dell argomento può essere presentato così. Sia f una funzione a valori reali, definita in un aperto G del piano euclideo R 2 e sufficientemente buona; consideriamo

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 DOCENTE: MATTEO LONGO Rispondere alle domande di Teoria in modo esauriente e completo. Svolgere il maggior numero di esercizi

Dettagli

Geometria e Topologia I 22 Giugno 2005 (U1-10, 9:00 11:00) [PROVA PARZIALE]1/8

Geometria e Topologia I 22 Giugno 2005 (U1-10, 9:00 11:00) [PROVA PARZIALE]1/8 Geometria e Topologia I 22 Giugno 2005 (U-0, 9:00 :00) [PROVA PARZIALE]/8 Correzione 0 () In A 3 (R) siano dati i tre punti A =, B = 0, C =. 0 (a) A B e C sono allineati? Dipendenti? (b) Dimostrare che

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

GEOMETRIA 28 Giugno minuti

GEOMETRIA 28 Giugno minuti GEOMETRIA 28 Giugno 2017 90 minuti A Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata corretta nella

Dettagli

Geometria Algebrica A.A Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili.

Geometria Algebrica A.A Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili. Geometria Algebrica A.A. 2017 2018 Esercizi Insiemi algebrici affini, Insiemi algebrici irriducibili. Negli esercizi si suppone, se non scritto al contrario, che il campo k sia algebricamente chiuso di

Dettagli

Spazi vettoriali euclidei.

Spazi vettoriali euclidei. Spazi vettoriali euclidei Prodotto scalare, lunghezza e ortogonalità in R n Consideriamo lo spazio vettoriale R n = { =,,, n R}, n con la somma fra vettori e il prodotto di un vettore per uno scalare definiti

Dettagli

Geometria Algebrica A.A Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili.

Geometria Algebrica A.A Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili. Geometria Algebrica A.A. 2014 2015 Esercizi Insiemi algebrici affini, Insiemi algebrici irriducibili. Negli esercizi si suppone, se non scritto al contrario, che il campo k sia algebricamente chiuso di

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze

Dettagli

Soluzioni dell esame scritto di Algebra Lineare del 14 giugno 2017

Soluzioni dell esame scritto di Algebra Lineare del 14 giugno 2017 Soluzioni dell esame scritto di lgebra Lineare del 14 giugno 217 Esercizio 1 Dati due sottoinsiemi, B di uno stesso insieme, la loro differenza simmetrica è il sottoinsieme definito come: B := ( B) ( B)

Dettagli

Facsimile di prova d esame Esempio di svolgimento

Facsimile di prova d esame Esempio di svolgimento Geometria analitica 18 marzo 009 Facsimile di prova d esame Esempio di svolgimento 1 Nello spazio, riferito a coordinate cartesiane ortogonali e monometriche x,y,z, è assegnata la retta r di equazioni

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Funzione derivabile. La derivata.

Funzione derivabile. La derivata. Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto

Dettagli

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e.

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e. 16 42 Funzioni implicite Il seguente teorema fornisce una condizione sufficiente affinché, data un equazione della forma f(x, ) = 0, sia possibile determinare come funzione della x Teo 11 (Teorema della

Dettagli

Anno Accademico DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore 1. 4 ottobre 2005

Anno Accademico DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore 1. 4 ottobre 2005 Anno Accademico 2005-2006 DIARIO DEL CORSO SSIS Didattica della matematica per la scuola superiore 1 SILVANO DELLADIO 4 ottobre 2005 Costruzione di Z, Q, R e C, dando per scontato N. Teoria ingenua, fatta

Dettagli

f m (t) tq m + (1 t)p m

f m (t) tq m + (1 t)p m Analisi Matematica II, Anno Accademico 2017-2018. Ingegneria Edile e Architettura Vincenzo M. Tortorelli FOGLIO DI TEORIA n. 1, cfr. Foglio Esercizi n.1 RCHIAMO DELLE NOZIONI ASTRATTE SULLE FUNZIONI Ripasso

Dettagli

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011. Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo

Dettagli

Funzioni di più variabli: dominio, limiti, continuità

Funzioni di più variabli: dominio, limiti, continuità Funzioni di più variabli: dominio, limiti, continuità Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Funzioni di più variabli Analisi Matematica B 1 /

Dettagli

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y.

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y. Funzioni di più variabili Derivate parziali Qui saranno considerate soltanto funzioni di due variabili, ma non c è nessuna difficoltà ad estendere le nuove nozioni a funzioni di n ( > variabili ( Definizione:

Dettagli

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di.

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di. Derivate Definizione di derivata di f(x) in x D o f Considero una funzione e sia e definita in un intorno completo di. Consideriamo il rapporto (detto rapporto incrementale ) È evidente che il rapporto

Dettagli

Funzioni di più variabli: dominio, limiti, continuità

Funzioni di più variabli: dominio, limiti, continuità Funzioni di più variabli: dominio, limiti, continuità Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Funzioni di più variabli Analisi Matematica B 1 /

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - CCS Edilizia ed Edile/Architettura

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - CCS Edilizia ed Edile/Architettura Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria - CCS Edilizia ed Edile/Architettura II Appello corso di Geometria Docente F. Flamini, Roma, // NORME SVOLGIMENTO Scrivere negli appositi

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO 1. Domande Domanda 1. Dire quando una funzione f : X Y tra dee insiemi X ed Y si dice iniettiva.

Dettagli

Esame di GEOMETRIA 27 giugno ore 11

Esame di GEOMETRIA 27 giugno ore 11 Esame di GEOMETRIA 27 giugno 2011 - ore 11 Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata corretta

Dettagli

Istituzioni di Matematiche quarta parte

Istituzioni di Matematiche quarta parte Istituzioni di Matematiche quarta parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 22 index Derivate 1 Derivate 2 Teoremi

Dettagli

Geometria Differenziale

Geometria Differenziale Geometria Differenziale Prova scritta di Geometria Differenziale 18.03.2016 Ingegneria Meccanica, a.a. 2015-2016 Cognome...................................... Nome......................................

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni Corso di Geometria, a.a. 2009-2010 Ing. Informatica e Automatica Esercizi VI: soluzioni 5 novembre 2009 1 Geometria del piano e prodotto scalare Richiami. Il prodotto scalare di due vettori del piano v,

Dettagli

MATEMATICA II (Durante) Aversa, Marzo 2001., B = , e D = Si calcoli il rango delle matrici A, B, C, D.

MATEMATICA II (Durante) Aversa, Marzo 2001., B = , e D = Si calcoli il rango delle matrici A, B, C, D. MATEMATICA II (Durante) Aversa, Marzo 2001. COGNOME........................ NOME............... MATRICOLA............ 1. Dati i tre vettori u, v e w di R 3, si dica se essi sono linearmente dipendenti

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

Ricomincia. ha l'autovalore nullo e' invertibile (c) ha l'autovalore con autospazio di dimensione ha immagine di dimensione

Ricomincia. ha l'autovalore nullo e' invertibile (c) ha l'autovalore con autospazio di dimensione ha immagine di dimensione Test 270 Geometria Exercise GEO270 I Quiz Geometria 14/09/2012 A Revisione Info Risultati Anteprima Modifica Sei collegato come Admin User. (Esci) Aggiorna Quiz Ricomincia Iniziato: lunedì, 3 settembre

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

REGISTRO DELLE ESERCITAZIONI

REGISTRO DELLE ESERCITAZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE ESERCITAZIONI del Corso UFFICIALE di GEOMETRIA A tenute dal prof. Domenico AREZZO nell anno accademico

Dettagli

Teoria ed Esercizi di Geometria Differenziale - A. Sambusetti 1

Teoria ed Esercizi di Geometria Differenziale - A. Sambusetti 1 Teoria ed Esercizi di Geometria Differenziale - A. Sambusetti 1 1.4 Spazio tangente Lo spazio tangente ad un sottoinsieme S R n in un suo punto P 0 è un approssimazione di S come un unione di rette vicino

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI - - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle

Dettagli

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 25 FEBBRAIO a a. A a = 1 a 0

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 25 FEBBRAIO a a. A a = 1 a 0 INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 5 FEBBRAIO 013 Esercizio 1. Al variare del parametro a R, si consideri la matrice A a = 1 a 0 a 1 0. 1 1 a (1) Si discuta al variare

Dettagli

Sullo svolgimento di una delle quattro versioni della prova scritta di Geometria analitica e algebra lineare del giorno 11 febbraio 2013.

Sullo svolgimento di una delle quattro versioni della prova scritta di Geometria analitica e algebra lineare del giorno 11 febbraio 2013. Sullo svolgimento di una delle quattro versioni della prova scritta di Geometria analitica e algebra lineare del giorno febbraio 0 x + y + z = 0 Stabilire se le due rette r, di equazioni cartesiane ed

Dettagli

12 gennaio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

12 gennaio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Analisi Matematica 2. Superfici e integrali superficiali. Superfici e integrali superficiali 1 / 27

Analisi Matematica 2. Superfici e integrali superficiali. Superfici e integrali superficiali 1 / 27 Analisi Matematica 2 Superfici e integrali superficiali Superfici e integrali superficiali 1 / 27 Superficie Sia D un dominio connesso di R 2 (per def. un dominio connesso é la chiusura di un aperto connesso).

Dettagli

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

Corso interno di Matematica compito scritto del n n+1

Corso interno di Matematica compito scritto del n n+1 Corso interno di Matematica compito scritto del 4.07.05 1. Dire se la serie converge e giustificare la risposta. n=1 1 n n+1 n Soluzione: Il criterio della radice o del rapporto falliscono; proviamo col

Dettagli

CURVE E SUPERFICI / RICHIAMI

CURVE E SUPERFICI / RICHIAMI M.GUIDA, S.ROLANDO, 2016 1 CURVE E SUPERFICI / RICHIAMI Di seguito ricordiamo brevemente come curve e superfici in R 2 o R 3 vengano rappresentate classicamente come insiemi di livello di campi scalari

Dettagli