Le omotetie. Nel caso in cui il centro di omotetia O corrisponda con l'origine degli assi, le equazioni dell'omotetia sono. le equazioni sono ωch

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Le omotetie. Nel caso in cui il centro di omotetia O corrisponda con l'origine degli assi, le equazioni dell'omotetia sono. le equazioni sono ωch"

Transcript

1 O Le omotetie Dato un numero reale non nullo h e un punto P del piano l omotetia di rapporto h e entro O è quella trasformazione he assoia a P il punto P' tale he P P OP' = h OP. Se è P(xy) allora P'(hx ; hy). P' è detto omotetio di P. O si die entro di omotetia. Il numero h è detto rapporto di omotetia. se h =1 si ha l'identità; se h = 1 si ha la simmetria rispetto all'origine. se h>0 l'omotetia si die diretta (P e P' si trovano dalla stessa parte rispetto ad O); se h<0 l'omotetia si die indiretta (P e P' si trovano da parti opposte rispetto ad O). Nel aso in ui il entro di omotetia O orrisponda on l'origine degli assi le equazioni dell'omotetia sono x = hx x ω0 h : ossia y = hy y = h 0 x 0 h y e la matrie della trasformazione ha det(a)=h. ( C) ( ) x = h x x + xc Se il entro è il punto C( xc; y C) le equazioni sono ωch : o anhe svolgendo i aloli y = h y yc + yc x = hx+ p ωch : il ui entro è alolabile riordando he esso è l'unio punto unito per l omotetia. y = hy + q Le rette passanti per il entro dell omotetia sono invee rette unite per l omotetia. Omotetia deriva dal greo e signifia simile-posto ; in effetti per omotetia una figura risulta ingrandita o rimpiiolita ma non risulta spostata rispetto al entro della trasformazione. Proprietà fondamentali delle omotetie. trasforma un segmento in un segmento proporzionale una retta in una retta ad essa parallela onserva le ampiezze degli angoli il parallelismo e la perpendiolarità; trasforma una figura geometria in una figura simile a quella data ingrandendola se h > 1 o riduendola se h < 1. omponendo due omotetie on lo stesso entro C si ha anora una omotetia di entro C e rapporto dato dal prodotto dei singoli rapporti di omotetia (se i rapporti sono diversi k e h allora la omposta ha è un omotetia he ha rapporto kh): omponendo due omotetie on entri diversi si ha: Ogni omotetia ω Ch ammette l omotetia inversa ω. 1 1 C h

2 Le similitudini Una similitudine è una trasformazione geometria he onserva il rapporto fra le lunghezze di segmenti orrispondenti; ioè omunque si selgano A e B onsiderati i loro trasformati A' e B' si ha AB ' ' = kab dove k (sempre positivo k>0) si hiama rapporto di similitudine. Da un punto di vista analitio si dimostra he una similitudine è definita da equazioni del tipo: x = ax+ by+ (he sono quelle più generali di un affinità he vedremo fra poo) on la ondizione però y = ax + by + a + a = b + b he sia:! Vedi Approfondimento pag.10/11 ab + a b = 0 Da questa relazione segue he una similitudine può essere espressa in due soli modi: x = ax by+ a b σ1 : on = a + b = k > 0 SIMILITUDINE DIRETTA x y = bx + ay + b a y = a b x b a y + oppure x = ax+ by+ a b σ : on = a b = k < 0 SIMILITUDINE INDIRETTA x y = bx ay + b a y = a b x b a y + In entrambi i asi il rapporto di similitudine k positivo di ui sopra è dato da k A a b = det( ) = +. Proprietà fondamentali delle similitudini. Si può dimostrare he una similitudine gode delle seguenti proprietà: onserva il rapporto fra le lunghezze (per definizione); mantiene la "forma" in partiolare trasforma ironferenze in ironferenze (trasforma una figura geometria in una figura simile a quella data ome si die normalmente). trasforma un angolo in un angolo ongruente (onserva l ampiezza degli angoli); trasforma rette parallele in rette parallele e rette perpendiolari in rette perpendiolari; se F' è la figura geometria trasformata di F allora valgono: Area(F')=k Area(F) e perimetro(f')=k perimetro(f); k = det( A) = a + b omponendo due similitudini di rapporti k1 e k si ha anora una similitudine di rapporto k1 k ; il entro di similitudine è punto unito. Osservazione Un omotetia è un tipo partiolare di similitudine. Inoltre il valore assoluto h del rapporto di omotetia è uguale al rapporto di similitudine k ioè h = k = a + b. Composizione di un omotetia e di un isometria La omposizione di un omotetia on un isometria è sempre una similitudine; ogni similitudine si può ottenere dalla omposizione di un omotetia on un isometria (o vieversa). In partiolare si ha una similitudine diretta se è il omposto di un omotetia e di un isometria diretta (in ordine qualsiasi) mentre si ha una similitudine indiretta se è il omposto di un omotetia e di un isometria indiretta (in ordine qualsiasi). Una similitudine he abbia l origine ome punto fisso si può pensare ome il risultato della omposizione di: k 0 una omotetia di entro l origine di rapporto k 0 e matrie e di 0 k una isometria (diretta o indiretta) he lasia fissa l origine. Componendo l omotetia on ognuna delle due isometrie si ottengono le matrii dei due tipi di similitudini (ambedue di rapporto k ): Per studiare una similitudine onviene mettere in evidenza il rapporto di similitudine (he indiherà anhe il rapporto dell omotetia) per studiare poi la matrie dell isometria he resta. FF 7

3 Le affinità Si hiama affinità (o trasformazione affine) la orrispondenza biunivoa T he fa orrispondere al punto P x = ax+ by+ di oordinate ( xy ; ) il punto P' di oordinate ( x ; y ) seondo le equazioni: ossia y = ax + by + x a b x = + dove i oeffiienti a b a b sono numeri reali. L'appliazione è biunivoa y a b y se e solo se det( ) a b A = = ab ab 0. La matrie A si hiama matrie dell affinità. a b 1 Se e sono nulli l origine resta fissa. N.B. det(a) 0 A 1 b = b det( A) a a ; A-1 è la matrie assoiata alla trasformazione inversa T -1 la ui equazione risulta abbastanza semplie utilizzando la x notazione matriiale: y = 1 b b x det( A) a a y. Si ha: Affinità diretta (ioè onserva l orientamento dei vertii di un poligono) det(a)>0; Affinità indiretta (ioè inverte l orientamento dei vertii di un poligono) det(a)<0; Proprietà fondamentali delle affinità. Si può dimostrare he un'affinità gode delle seguenti proprietà: a una retta orrisponde un altra retta (onserva l allineamento); a rette parallele orrispondono rette parallele (onserva il parallelismo); a rette inidenti orrispondono rette inidenti (onserva l inidenza); le onihe si trasformano in onihe (ellisse ellisse parabola parabola iperbole iperbole); il rapporto delle aree di figure orrispondenti è ostante ioè: se la figura F' è l'immagine orrispondente di una figura F allora Area (F')= det(a) Area (F). Area(F') Il rapporto ostante fra tali aree si hiama rapporto di affinità r ioè r = det( A) =. Area(F) Esso rappresenta l area del parallelogramma nel quale si trasforma il quadrato di lato unitario. In generale un'affinità: non onserva la forma delle figure (non onserva le distanze fra i punti). Infatti l'immagine di un rettangolo è in generale un parallelogramma osì ome l'immagine di una ironferenza è un'ellisse. non onserva gli angoli per esempio rette perpendiolari non neessariamente vengono trasformate in rette perpendiolari. Nel aso in ui il rapporto di affinità r sia uguale a +1 l affinità onserva le aree e si die equivalenza. Partiolari affinità: le dilatazioni x = hx + p Le equazioni on hh 0 rappresentano partiolari affinità hiamate dilatazioni di rapporti h y = hy + q e h. x = ax+ by+ Si ottengono dall equazione on b= 0 a = 0 y = ax + by + FF 8

4 Classifiazione delle affinità Le affinità si possono lassifiare in vari tipi a seonda delle proprietà di ui godono o meglio a seonda delle proprietà invarianti proprietà ioè he si onservano nella trasformazione. Le proprietà invarianti delle trasformazioni sono riassunte nella tabella he segue; si può osservare he passando dall insieme delle isometrie a quello delle similitudini a quello delle affinità le proprietà invarianti diventano via via più deboli : Invarianti delle isometrie Allineamento dei punti Inidenza e parallelismo tra oppie di rette Forma delle figure Ampiezza degli angoli Lunghezze: A'B' = AB Aree: Area(F')=Area(F) Invarianti delle similitudini Allineamento dei punti Inidenza e parallelismo tra oppie di rette Forma delle figure Ampiezza degli angoli Rapporti tra le lunghezze: k= det( A) = A'B' AB Rapporti tra le aree: k = det( A) = Area(F') Area(F) Invarianti delle affinità Allineamento dei punti Inidenza e parallelismo tra oppie di rette Rapporti tra le aree: r = det( A) = Area(F') Area(F) Il rapporto di affinità è il quadrato del rapporto di similitudine r = k oppure il rapporto di similitudine è la radie quadrata del rapporto di affinità: ossia k = r. Un isometria è una partiolare similitudine in ui il rapporto di similitudine k vale 1: k = det( A) = 1. L insieme delle affinità si può quindi osì rappresentare e shematizzare. Traslazioni Simmetrie entrali Rotazioni Isometrie DIRETTE Simmetrie assiali Glissosimmetrie Isometrie INDIRETTE Si osserva he all'insieme delle affinità appartengono le similitudini e le isometrie ome asi partiolari di affinità. All'insieme delle similitudini appartengono le omotetie e le isometrie. a + a = b + b x = ax + by + Un affinità di equazioni è una similitudine se e solo se vale:. ab + a b = 0 y = ax + by + x = ax by + L omotetia è una partiolare similitudine diretta (si ottiene dall equaz. on b = 0 ) y = bx + ay + a + a = b + b = 1 x = ax + by + Un affinità di equazioni è un isometria se e solo se vale: e ab + ab = 0 y = ax + by + det(a)=±1. FF 9

5 Approfondimento Come si spiegano le ondizioni a + a = b + b ab + a b = 0 e a + a = b + b = 1 per similitudini e isometrie? ab + a b = 0 Premessa I versori di un sistema di riferimento sono: i! 1! 0 = = ( 1;0 ) j = = ( 0;1) 0 1 Mediante l appliazione di una trasformazione geometria he lasia fissa l origine x y = a b x a b y i versori si trasformano ome segue:! a b i =! a b 1 a i = = a b a b 0 a 1! a b j =! ioè a b 0 b 0 a a 0 1 b b' j = = a b a b 1 b La matrie A dei oeffiienti i fornise informazioni su ome si trasformano i versori del sistema di riferimento a seguito della trasformazione affine: le due olonne orrispondono alle omponenti dei a b trasformati dei versori fondamentali ioè A =. a b 1 Esempio 1): A 1 = = a 0 1 = a 1 = b 1 = b' det( A) = 1 ( ) = 3 Il quadrato di lato unitario individuato dai versori! i e! j è trasformato nel parallelogramma he ha per lati i!"!" e j. Nell esempio trattato l area del parallelogramma è 3 = he è proprio il valore del determinante della matrie della trasformazione. Questo fatto vale in generale e lo si può provare. a b det ( A) = = ab ab a b L area del parallelogramma nel quale si trasforma il quadrato di lato unitario è uguale al valore assoluto del determinante della matrie della trasformazione: Area = A det ( ) Esempio ): A = det( A) = 6 *6 ( * 4) = 36 8 = 8 Area parallelogramma=10 *8 ( ) = 80 5 = 8 FF 10

6 Parliamo ora delle isometrie. Per isometria due figure sono ongruenti ed in partiolare hanno la stessa area. Questo omporta he i versori fondamentali i! e j! devono essere trasformati in modo da definire anora un quadrato di lato A =±. Però questo non basta; affinhé il parallelogramma dei versori trasformati sia un quadrato di lato unitario oorre he i!"!" e j siano perpendiolari e abbiano modulo 1. a b Data quindi la matrie della trasformazione A = a b e i trasformati dei versori fondamentali i!" = a a = ( a; a ) e!" j b = b = ( b; b a b ) oorre he sia: = 1 ossia ab = a b ioè: a b ab + a b = 0 (ondizione di perpendiolarità) unitario. Per quanto appena detto iò implia he sia det ( ) 1 poihé m 1 = a a m = b b si ha m 1 m m 1 m = 1. Inoltre i!"!" = j = 1 he signifia: a + a = b + b = 1 ioè: a + a = b + b = 1 (moduli dei versori fondamentali trasformati uguali a 1) Vediamo ora per le similitudini. Affinhé un affinità sia una similitudine oorre omunque he il parallelogramma dei versori trasformati sia anora un quadrato (per similitudine gli angoli rimangono gli stessi) e iò omporta he i!"!" e j siano anora perpendiolari; quindi deve valere: ab + a b = 0 (ondizione di perpendiolarità) Inoltre per similitudine basta he i moduli dei versori trasformati siano fra loro uguali ossia: a + a = b + b (moduli dei versori fondamentali trasformati uguali fra loro) FF 11

Le trasformazioni NON isometriche

Le trasformazioni NON isometriche Le trasformazioni NON isometrihe Sono trasformazioni non isometrihe quelle trasformazioni he non onservano le distanze fra i punti Fra queste rientrano le affinità L insieme delle affinità si può osì rappresentare

Dettagli

Trasformazioni geometriche nel piano: dalle isometrie alle affinità

Trasformazioni geometriche nel piano: dalle isometrie alle affinità Trasformazioni geometrihe nel piano: dalle isometrie alle affinità Le trasformazioni geometrihe In generale una trasformazione geometria è una orrispondenza biunivoa del piano in sé, ossia assoia ad un

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometrihe Definizione Una trasformazione geometria dei punti del piano è una orrispondenza biunivoa tra i punti del piano: ad ogni punto P del piano orrisponde uno e un solo punto P

Dettagli

TRASFORMAZIONI GEOMETRICHE

TRASFORMAZIONI GEOMETRICHE TRASFORMAZIONI GEOMETRICHE Def. Una trasformazione geometrica T tra i punti di un piano è una corrispondenza biunivoca che ad ogni punto P del piano associa uno e un solo punto P' appartenente al piano

Dettagli

I I. è un affinità, avente la matrice della trasformazione uguale a: A 1 x A2. Proprietà invarianti

I I. è un affinità, avente la matrice della trasformazione uguale a: A 1 x A2. Proprietà invarianti TRAFORMAZON Una trasformazione (geometrica) è una funzione iunivoca fra i punti del piano. Un punto si dice unito rispetto ad una data trasformazione se il suo corrispondente è se stesso. Una retta si

Dettagli

GEOMETRIA ANALITICA 8 LE CONICHE

GEOMETRIA ANALITICA 8 LE CONICHE GEOMETRIA ANALITICA 8 LE CONICHE Tra tutte le urve, ne esistono quattro partiolari he vengono hiamate onihe perhé sono ottenute tramite l intersezione di una superfiie i-onia on un piano. A seonda della

Dettagli

Scrivi l equazione di un iperbole conoscendone i fuochi e la costante ( = differenza costante) 2k.

Scrivi l equazione di un iperbole conoscendone i fuochi e la costante ( = differenza costante) 2k. . ESERCIZI SULL IPERBOLE A partire dall equazione di un iperbole stabilisi quanto valgono I. le oordinate dei vertii e dei fuohi II. la ostante (differenza ostante delle distanze di un punto dai fuohi)

Dettagli

Trasformazioni geometriche del piano. 3 marzo 2013

Trasformazioni geometriche del piano. 3 marzo 2013 Trasformazioni geometriche del piano 3 marzo 2013 1 Indice 1 Trasformazioni geometriche del piano 3 1.1 Affinità............................... 4 1.2 Isometrie.............................. 8 1.2.1 Simmetrie..........................

Dettagli

Trasformazioni geometriche nel piano

Trasformazioni geometriche nel piano Trasformazioni geometriche nel piano Le trasformazioni geometriche In generale una trasformazione geometrica è una corrispondenza biunivoca del piano in sé, ossia associa ad un punto del piano uno ed un

Dettagli

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa.

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa. τ : P P' oppure P'=τ(P) P immagine di P trasformato di P secondo τ se α è una figura geometrica α =τ(α) è la figura geometrica trasformata x' = f (x, y) τ : y' = g(x, y) espressione analitica della trasformazione

Dettagli

Trasformazioni geometriche nel piano: dalle isometrie alle affinità

Trasformazioni geometriche nel piano: dalle isometrie alle affinità Trasformazioni geometriche nel piano: dalle isometrie alle affinità Le trasformazioni geometriche In generale una trasformazione geometrica è una corrispondenza biunivoca del piano in sé, ossia associa

Dettagli

17 LE TRASFORMAZIONI GEOMETRICHE

17 LE TRASFORMAZIONI GEOMETRICHE 17 L TRSFORMZIONI GOMTRIH TST I FIN PITOLO 1 Nella trasformazione di equazioni: x' x y 1 y' x y al punto corrisponde: ; 0 ' 3; 4. ' 3;. ' ; 3. ' 1; 4. ' 4; 1. Quale delle seguenti affermazioni è falsa?

Dettagli

Nei capitolo precedenti sono state studiate le isometrie e le similitudini del piano; si è visto

Nei capitolo precedenti sono state studiate le isometrie e le similitudini del piano; si è visto CAPITOLO 7 LE AFFINITA 7. Richiami di teoria Nei capitolo precedenti sono state studiate le isometrie e le similitudini del piano; si è visto che questi due tipi di trasformazioni hanno alcune proprietà

Dettagli

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 3

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 3 TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 3 Le Isometrie trasformazioni geometriche che lasciano invariate la forma e le dimensioni delle figure I movimenti Traslazioni Rotazioni Ribaltamenti Principali

Dettagli

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d q in forma matriciale: X A X B, cioè a c b d q Dove a A c b d è la matrice della trasformazione. Se

Dettagli

Lezione 5 Geometria Analitica 1

Lezione 5 Geometria Analitica 1 Lezione 5 Geometria Analitica 1 Donato A Ciampa In questa lezione richiameremo alcune nozioni della geometria analitica, quali le trasformazioni del piano in se stesso e le varie equazioni relative alla

Dettagli

TRASFORMAZIONI GEOMETRICHE ( 1 ) Risolvendo il sistema lineare ( 1 ) rispetto alle incognite x, y si ottiene: = e

TRASFORMAZIONI GEOMETRICHE ( 1 ) Risolvendo il sistema lineare ( 1 ) rispetto alle incognite x, y si ottiene: = e Generalità sulle affinità TRASFORMAZIONI GEOMETRICHE Chiamasi affinità o trasformazione lineare una corrisondenza biunivoca tra due iani o tra unti dello stesso iano che trasforma rette in rette conservando

Dettagli

Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti

Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti Gli esercizi assegnati all esame saranno varianti di alcuni degli esercizi seguenti 1.1) Su un piano α (trasparente) sia tracciato un triangolo equilatero. Si consideri un piano β parallelo ad α e raggi

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

TRASFORMAZIONI LINEARI SUL PIANO

TRASFORMAZIONI LINEARI SUL PIANO TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d in forma matriciale: X A X B, cioè a c b d Dove a A c b d è la matrice della trasformazione. Se il

Dettagli

Gli integrali indefiniti

Gli integrali indefiniti Gli integrali indefiniti PREMESSA Il problema del alolo dell area del sotto-grafio di f() Un problema importante, anhe per le appliazioni in fisia, è quello del alolo dell area sotto a al grafio di una

Dettagli

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1 Introduzione Nella computer grafica, gli oggetti geometrici sono definiti a partire da un certo numero di elementi di base chiamati primitive grafiche Possono essere punti, rette e segmenti, curve, superfici

Dettagli

Proprietà delle operazioni sui numeri naturali

Proprietà delle operazioni sui numeri naturali Proprietà delle operazioni sui numeri naturali 1. Le proprietà delle operazioni possono essere introdotte geometriamente in modo da fornirne una giustifiazione intuitiva e una visualizzazione : 2. Le proprietà

Dettagli

CONOSCENZE e COMPETENZE per MATEMATICA

CONOSCENZE e COMPETENZE per MATEMATICA e COMPETENZE per MATEMATICA LA MISURA DELLE GRANDEZZE GEOMETRICHE E LE GRANDEZZE PROPORZIONALI definizione di classe di grandezze geometriche; conoscere le classi geometriche: lunghezze, ampiezze, aree;

Dettagli

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 )

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Testo 1: Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Lavoro di gruppo T1: discuti assieme ai tuoi compagni il significato di quanto hai letto

Dettagli

La composizione di isometrie

La composizione di isometrie La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano

Dettagli

Proprietà delle operazioni sui numeri naturali. Introduzione geometrica alle proprietà delle operazioni = 11 = 8 + 3

Proprietà delle operazioni sui numeri naturali. Introduzione geometrica alle proprietà delle operazioni = 11 = 8 + 3 Proprietà delle operazioni sui numeri naturali 1. Le proprietà delle operazioni possono essere introdotte geometriamente in modo da fornirne una giustifiazione intuitiva e una visualizzazione : 2. Le proprietà

Dettagli

Affinità parte seconda Pagina 8 di 5 easy matematica di Adolfo Scimone

Affinità parte seconda Pagina 8 di 5 easy matematica di Adolfo Scimone Affinità arte seconda agina 8 di 5 easy matematica di Adolfo Scimone Omotetia Definizione 1 - Si chiama omotetia di centro x ( 0, y0 ) ogni trasformazione biunivoca del iano in se in cui due unti corrisondenti

Dettagli

Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche

Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi

Dettagli

Esercizi sulle affinità - aprile 2009

Esercizi sulle affinità - aprile 2009 Esercizi sulle affinità - aprile 009 Ingegneria meccanica 008/009 Esercizio Sono assegnate nel piano le sei rette r : =, s : =, t : =, r : =, s : =, t : = determinare l affinità che trasforma ordinatamente

Dettagli

Corso di Matematica II

Corso di Matematica II Corso di Matematica II Università degli Studi della Basilicata Dipartimento di Scienze Corso di laurea in Chimica e in Scienze Geologiche A.A. 2014/15 dott.ssa Vita Leonessa Elementi di geometria analitica

Dettagli

PP ', stessa direzione e stesso verso.

PP ', stessa direzione e stesso verso. 1 ISOMETRIE Trasformazione geometrica: corrispondenza biunivoca che ad ogni punto P del piano associa un altro punto P' dello stesso piano. Se il punto trafformato P' (immagine del punto P) coincide con

Dettagli

Lezione3. Trasformazioni. Michele Antolini Dipartimento di Ingegneria Meccanica Politecnico di Milano

Lezione3. Trasformazioni. Michele Antolini Dipartimento di Ingegneria Meccanica Politecnico di Milano Lezione3 Informatica Grafica Lezione del 17 Marzo 2010 Dipartimento di Ingegneria Meccanica Politecnico di Milano michele.antolini@mail.polimi.it 3.1 La geometria dell antichità si divide in due per quanto

Dettagli

punti uniti rette di punti uniti rette unite qual è la trasformazione inversa

punti uniti rette di punti uniti rette unite qual è la trasformazione inversa 3) Dì quali sono i punti uniti, le rette di punti uniti, le rette unite di una a) simmetria centrale b) simmetria assiale c) traslazione d) rotazione e) omotetia Simmetria centrale: si ha un solo punto

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE LE TRASFORMAZIONI GEOMETRICHE LA SIMMETRIA ASSIALE Definizione: il simmetrico P di un punto P, rispetto alla simmetria assiale di asse r gode delle seguenti proprietà: P e P sono equidistanti da r e il

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE pag. 1 LE TRASFORMAZIONI GEOMETRICHE Trasformazione geometrica Movimento rigido Traslazione Simmetria Costruzione di due punti simmetrici rispetto ad una retta Poligoni aventi assi di simmetria Rotazione

Dettagli

Trasformazioni geometriche

Trasformazioni geometriche Trasformazioni geometriche Generalità sulle trasformazioni geometriche Una trasformazione geometrica è una corrispondenza biunivoca, quindi una funzione, che associa a un punto P del piano in un punto

Dettagli

1 L omotetia. i punti O, A e A siano allineati

1 L omotetia. i punti O, A e A siano allineati 1 L omotetia DEFINIZIONE. Dato un punto O ed un numero reale k, si dice omotetia di centro O e rapporto k, quella trasformazione del piano che associa ad ogni punto A il corrispondente punto A tale che

Dettagli

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario.

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario. Capitolo 4 Le rotazioni 4.1 Richiami di teoria E' opportuno ricordare che, dato un angolo orientato ao ˆ b, si usa la convenzione di prendere come verso positivo quello antiorario e come verso negativo

Dettagli

1 MATRICI E CONICHE...2

1 MATRICI E CONICHE...2 Conihe e matrii Geeoomeet trri iaa aannaal litiaa ppeerr laa l teerrzzaa t l laassssee 11 Iniie 1 MATRICI E CONICHE... 1.1 Polarità... 1. Conihe... 1.3 Retta polare i un punto rispetto a una onia... 3

Dettagli

TRASFORMAZIONI GEOMETRICHE E FUNZIONI

TRASFORMAZIONI GEOMETRICHE E FUNZIONI TRASFORMAZIONI GEOMETRICHE E FUNZIONI La trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti di un piano; è indicata con t ed è un applicazione del piano in se che trasforma

Dettagli

Trasformazioni non isometriche 1

Trasformazioni non isometriche 1 Trasformazioni non isometriche 1 Continuiamo il discorso sulle trasformazioni geometriche, considerando quelle non isometriche. 1. Omotetie Una delle più semplici trasformazioni non isometriche è l omotetia,

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE SECONDA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE

Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE SECONDA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE LICEO LAURA BASSI - BOLOGNA Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE SECONDA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE MATEMATICA ARGOMENTI: EQUAZIONI

Dettagli

Esercizî di Geometria

Esercizî di Geometria Esercizî di Geometria (Carlo Petronio Foglio del 27/4/2015 Esercizio 1 Determinare l espressione dell isometria di R 2 descritta: (a La riflessione σ rispetto alla retta l di equazione 3x 2 = 5; ( 3 (b

Dettagli

Gli angoli corrispondenti sono congruenti; I lati corrispondenti, che si dicono lati omologhi, sono in rapporto costante:

Gli angoli corrispondenti sono congruenti; I lati corrispondenti, che si dicono lati omologhi, sono in rapporto costante: ome sai, se vuoi riprodurre una figura, puoi disegnarla perfettamente uguale rispettandone la forma e le dimensioni e cambiandone quindi solo la posizione. In questo caso la riproduci isometricamente,

Dettagli

C C B B. Fig. C4.1 Isometria.

C C B B. Fig. C4.1 Isometria. 4. Isometrie 4.1 Definizione di isometria Date due figure congruenti è possibile passare da una all altra con una trasformazione. Una trasformazione geometrica in un piano è una funzione biunivoca che

Dettagli

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica Didattica della Matematica per il triennio Geometria sintetica e geometria analitica anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica

Dettagli

1 Congruenza diretta e inversa

1 Congruenza diretta e inversa 1 Congruenza diretta e inversa PROPRIETÀ. La congruenza tra due figure piane mantiene inalterata la lunghezza dei segmenti e l ampiezza degli angoli; ciò che cambia è la posizione delle figure nel piano.

Dettagli

Disegna la figura di cui vuoi la trasformata e gli oggetti (asse o centro di simmetria, vettore,...) che caratterizzano la trasformazione

Disegna la figura di cui vuoi la trasformata e gli oggetti (asse o centro di simmetria, vettore,...) che caratterizzano la trasformazione LE TRASFORMAZIONI IN CABRI Per ottenere la figura immagine di una figura data in una trasformazione Disegna la figura di cui vuoi la trasformata e gli oggetti (asse o centro di simmetria, vettore,...)

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Un trasformazione geometrica t è una corrispondenza biunivoca che fa corrispondere ad un punto P del piano un altro punto P, ad una figura F una figura F. Il punto P si dice il trasformato di P secondo

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE Lezione 8 3/11/2017 LE TRASFORMAZIONI GEOMETRICHE Narciso di Caravaggio I sette tipi di fregi TRASFORMARE Ogni giorno facciamo esperienza di trasformazioni nello spazio: ci si sposta nello spazio si

Dettagli

Formulario. Coordinate del punto medio M di un segmento di estremi A(x 1, y 1 ) e B(x 2, y 2 ): x1 + x y 2

Formulario. Coordinate del punto medio M di un segmento di estremi A(x 1, y 1 ) e B(x 2, y 2 ): x1 + x y 2 Formulario Componenti di un vettore di estremi A(x 1, y 1 e B(x 2, y 2 B A = AB = (x2 x 1 i + (y 2 y 1 j Distanza tra due punti A(x 1, y 1 e B(x 2, y 2 : AB = (x 2 x 1 2 + (y 2 y 1 2 Coordinate del punto

Dettagli

Negli esercizi che seguono ci sono alcune cose da specificare:

Negli esercizi che seguono ci sono alcune cose da specificare: DISCLAIMER Negli esercizi che seguono ci sono alcune cose da specificare: ) voi dovete interpretare i simboli V e A (R) sempre come R. Questo oggetto sarà chiamato alle volte piano affine e alle volte

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI: soluzioni Corso di Geometria, a.a. 2009-2010 Ing. Informatica e Automatica Esercizi VI: soluzioni 5 novembre 2009 1 Geometria del piano e prodotto scalare Richiami. Il prodotto scalare di due vettori del piano v,

Dettagli

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni Corso di Geometria 0- Meccanica Elettrotecnica Esercizi : soluzioni Esercizio Scrivere la matrice canonica di ciascuna delle seguenti trasformazioni lineari del piano: a) Rotazione di angolo π b) Rotazione

Dettagli

4^C - Esercitazione recupero n 6

4^C - Esercitazione recupero n 6 4^C - Esercitazione recupero n 6 1 Sono assegnate le parabole p' e p'' di equazioni rispettivamente: y=x e x= y y a Forniscine la rappresentazione grafica dopo aver determinato, tra l'altro, i loro punti

Dettagli

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera? Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc

Dettagli

Trasformazioni del piano isometrie

Trasformazioni del piano isometrie Trasformazioni del piano Sia E il piano euclideo. Trasformazione del piano in sé: è una funzione T da E ad E con buone proprietà di continuità, (la parola continuità qui ha un significato tecnico che non

Dettagli

Geometria analitica del piano

Geometria analitica del piano Geometria analitica del piano dott.ssa Vita Leonessa Università degli Studi della Basilicata (27 marzo 2008) (Analisi) Matematica 2 CdL in Chimica, Biotecnologie, Scienze Geologiche Rette Fissato un sistema

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA GEOMETRIA ANALITICA NEL PIANO Dr. Erasmo Modica erasmo@galois.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema

Dettagli

Le Isometrie e il piano cartesiano

Le Isometrie e il piano cartesiano Le Isometrie e il piano cartesiano Generalità piano Gli enti geometrici del piano come punti, rette, angoli, poligoni,... possono essere spostati sul TRSLTI v RILTTI RISPTTO UN RTT r Francesca Incensi

Dettagli

GEOMETRIA ANALITICA

GEOMETRIA ANALITICA GEOMETRIA ANALITICA matematica@blogscuola.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un

Dettagli

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI

Corso di Geometria, a.a Ing. Informatica e Automatica Esercizi VI Corso di Geometria, a.a. 009-010 Ing. Informatica e Automatica Esercizi VI 5 novembre 009 Leggere i Capitoli 1-18, 0-4 del libro di testo. Tralasciare il Capitolo 19 (Sottospazi affini). 1 Geometria del

Dettagli

CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico

CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico Baluardo Partigiani n 6 28100 - Novara Tel. 0321/620047 - Fax. 0321/620622 Email: novc010008@istruzione.it

Dettagli

Coniche R. Notari 15 Aprile

Coniche R. Notari 15 Aprile Coniche R. Notari 15 Aprile 2006 1 1. Notazioni. Proposizione 1 Ogni conica si rappresenta tramita un equazione algebrica di secondo grado della forma a 11 x 2 +2a 12 xy + a 22 y 2 + +2a 13 x + 2a 23 y

Dettagli

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z GEOMETRIA LINEARE E CONICHE - GIUGNO 2002 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: r : x = z y = 0 x = z 2, s : y = z. Dopo aver provato che r ed s sono

Dettagli

II Università degli Studi di Roma

II Università degli Studi di Roma Versione preliminare gennaio TOR VERGATA II Università degli Studi di Roma Dispense di Geometria. Capitolo 3. 7. Coniche in R. Nel Capitolo I abbiamo visto che gli insiemi di punti P lineare di primo grado

Dettagli

Parte 12b. Riduzione a forma canonica

Parte 12b. Riduzione a forma canonica Parte 2b. Riduzione a forma canonica A. Savo Appunti del Corso di Geometria 202-3 Indice delle sezioni. Coniche, 2. Esempio di riduzione, 4 3. Teoremi fondamentali, 6 4. Come determinare l equazione canonica,

Dettagli

Tutte le parabole sono simili?

Tutte le parabole sono simili? Tutte le parabole sono simili? Livello scolare: biennio Abilità interessate Individuare proprietà invarianti per similitudini. Analizzare e risolvere semplici problemi mediante l'applicazione delle similitudini.

Dettagli

Programma di matematica classe 3^ sez. E a.s

Programma di matematica classe 3^ sez. E a.s Programma di matematica classe 3^ sez. E a.s. 2018-2019 Testo in adozione: LA matematica a colori - EDIZIONE BLU per il secondo biennio vol.3 Autore: Leonardo Sasso Ed Petrini -------------------------------------------------------------------------

Dettagli

Goniometria. r x. con x = 1 rad se l = r.

Goniometria. r x. con x = 1 rad se l = r. Goniometria Misura degli angoli Gli angoli vengono spesso misurati in gradi sessagesimali ( = /360 dell'angolo giro), anhe se una Legge dello Stato italiano del 960 impone di esprimerli in radianti. Ogni

Dettagli

SOMMARIO I SISTEMI LINEARI CAPITOLO 13 CAPITOLO 14 I RADICALI CAPITOLO 15 LE OPERAZIONI CON I RADICALI III. Riepilogo: Metodi di risoluzione 704

SOMMARIO I SISTEMI LINEARI CAPITOLO 13 CAPITOLO 14 I RADICALI CAPITOLO 15 LE OPERAZIONI CON I RADICALI III. Riepilogo: Metodi di risoluzione 704 SOMMARIO T E CAPITOLO 13 3 video ( Metodo di riduzione Metodo di Cramer Un problema con tre incognite) e inoltre 9 animazioni I SISTEMI LINEARI 1 I sistemi di due equazioni in due incognite 670 688 2 Il

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L ELLISSE INTRODUZIONE L ellisse fa parte di un insieme di curve (circonferenza, parabola, iperbole) chiamate coniche, perché si possono

Dettagli

Liceo scientifico Marie Curie. Programma di MATEMATICA

Liceo scientifico Marie Curie. Programma di MATEMATICA Liceo scientifico Marie Curie Programma di MATEMATICA Classe IV ginnasio A A.S.2010/11 ALGEBRA I numeri razionali Operazioni ed espressioni Potenze con esponente intero negativo Insiemi e logica Le rappresentazioni

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

21. (cenni di) Geometria analitica del piano.

21. (cenni di) Geometria analitica del piano. . (cenni di) Geometria analitica del piano... Definizione. Sia π un piano e sia O un suo punto. Siano i e j due versori ortogonali tra loro e paralleli al piano π. Diremo che la terna ordinata (O, i, j)

Dettagli

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT 1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo

Dettagli

RIPASSO E APPROFONDIMENTO DI ARGOMENTI DEL TERZO ANNO

RIPASSO E APPROFONDIMENTO DI ARGOMENTI DEL TERZO ANNO RIPASSO E APPROFONDIMENTO DI ARGOMENTI DEL TERZO ANNO 1 La circonferenza. 2 La parabola. 3 L ellisse. L iperbole. 5 Le coniche. 6 Equazione generale di una conica. 7 Calcolo delle principali caratteristiche

Dettagli

Lo studio delle trasformazioni del piano in sé presuppone anche la conoscenza di alcune

Lo studio delle trasformazioni del piano in sé presuppone anche la conoscenza di alcune Capitolo 1 Richiami sulle funzioni 1.1 Richiami di teoria Lo studio delle trasformazioni del piano in sé presuppone anche la conoscenza di alcune nozioni sulle funzioni e sui vettori. Per tale motivo in

Dettagli

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE 1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo

Dettagli

Liceo scientifico E. Fermi Nuoro Anno scolastico 2008/2009. Classe 3 a ARGOMENTI STUDIATI IN MATEMATICA

Liceo scientifico E. Fermi Nuoro Anno scolastico 2008/2009. Classe 3 a ARGOMENTI STUDIATI IN MATEMATICA Liceo scientifico E. Fermi Nuoro Anno scolastico 2008/2009 Classe 3 a C ARGOMENTI STUDIATI IN MATEMATICA Docente : prof. GUISO Agostino Logica matematica La Logica degli enunciati.nozioni fondamentali.

Dettagli

Un approccio costruttivo alle trasformazioni geometriche del piano

Un approccio costruttivo alle trasformazioni geometriche del piano Un approccio costruttivo alle trasformazioni geometriche del piano Le cosiddette trasformazioni geometriche elementari del piano sono corrispondenze bigettive, del piano su se stesso, caratterizzate dalla

Dettagli

Il punto di intersezione degli assi coordinati prende il nome di origine O degli assi

Il punto di intersezione degli assi coordinati prende il nome di origine O degli assi GEOMETRIA ANALITICA PIANO CARTESIANO Ad ogni punto P del piano corrisponde una coppia di numeri sugli assi cartesiani. La coppia di numeri che indichiamo con (x,) prendono il nome di coordinate cartesiane

Dettagli

ESERCITAZIONE INVALSI GEOMETRIA PIANA FEBBRAIO 2012

ESERCITAZIONE INVALSI GEOMETRIA PIANA FEBBRAIO 2012 ESERCITAZIONE INVALSI GEOMETRIA PIANA FEBBRAIO 2012 G 1 : Considera la corona circolare formata da due cerchi aventi il raggio uno il doppio dell altro, l angolo al centro â e le due corde AB e A B. La

Dettagli

Gli approcci alla programmazione dinamica: alcuni esempi

Gli approcci alla programmazione dinamica: alcuni esempi Gli approi alla programmazione dinamia: aluni esempi Franeso Menonin February, 2002 Ottimizzazione dinamia Il problema he qui si onsidera è quello di un soggetto he intende massimizzare (o minimizzare)

Dettagli

Esempio: Trovare le coordinate del punto medio del segmento di estremi. Applicando la formula, abbiamo che:

Esempio: Trovare le coordinate del punto medio del segmento di estremi. Applicando la formula, abbiamo che: IL PINO CRTESINO E L RETT Il punto medio di un segmento Il punto medio di un segmento è quel punto M che appartiene al segmento e ha la stessa distanza dagli estremi e del segmento. Dati i punti, il punto

Dettagli

MOTORI PER AEROMOBILI

MOTORI PER AEROMOBILI MOORI PER AEROMOBILI Cap.2 CICLI DI URBINA A GAS PER LA PRODUZIONE DI POENZA (Shaft power yles) E opportuno suddividere i numerosi tipi di ili di turbina a gas in due ategorie: - ili di turbina a gas per

Dettagli

PROGRAMMA di MATEMATICA

PROGRAMMA di MATEMATICA Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 3^ F a.s. 2013/14 - Docente: Marcella Cotroneo Libro di testo : Leonardo Sasso "Nuova Matematica a colori 3" - Petrini Ore settimanali

Dettagli

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012 GEOMETRIA svolgimento di uno scritto del Gennaio ) Trovare una base per lo spazio delle soluzioni del seguente sistema omogeneo: x + y 5z = 3x y + z = x y + 8z =. Il sistema può essere scritto in forma

Dettagli

PROGRAMMA DI MATEMATICA

PROGRAMMA DI MATEMATICA A.S. 2015/2016 ALGEBRA - Equazioni letterali fratte PROGRAMMA DI MATEMATICA - Disequazioni di 1 grado ad una incognita intere e frazionarie - Sistemi di disequazioni di 1 o grado in una incognita - Sistemi

Dettagli

Gli enti geometrici fondamentali

Gli enti geometrici fondamentali capitolo 1 Gli enti geometrici fondamentali 1. Introduzione 1 2. La geometria euclidea come sistema ipotetico-deduttivo 2 Teoremi e dimostrazioni, 3 3. Postulati di appartenenza 4 4. Postulati di ordinamento

Dettagli

Come orientarsi nel libro 573 SISTEMI LINEARI. Metodo di riduzione Metodo di Cramer. e inoltre 7 animazioni e 65 esercizi in più

Come orientarsi nel libro 573 SISTEMI LINEARI. Metodo di riduzione Metodo di Cramer. e inoltre 7 animazioni e 65 esercizi in più INDICE Come orientarsi nel libro 573 Un'equazione in due incognite, a pagina 585 100 animali, 100 denari, a pagina 644 18 19 SISTEMI LINEARI 1. Sistemi di equazioni 574 584 2. Metodo di sostituzione 577

Dettagli

Elementi di teoria delle trasformazioni

Elementi di teoria delle trasformazioni Elementi di teoria delle trasformazioni LA STRUTTURA DI GRUPPO La struttura di gruppo Un gruppo è un insieme G in cui è definita una operazione ("leggere tondino") inoltre c a,b 2 G allora a b 2 G d 1

Dettagli

Quadrilateri. Il Parallelogramma

Quadrilateri. Il Parallelogramma Il Parallelogramma 2. Fai clic su Ic3 e scegli Retta per due punti : disegna la retta a. 3. Fai clic su Ic2 e scegli Nuovo Punto : fai clic fuori dalla retta a 4. Fai clic su Ic4 e scegli Retta parallela

Dettagli

TRASFORMAZIONE PRIMA SELEZIONE SELEZIONE SUCCESSIVA

TRASFORMAZIONE PRIMA SELEZIONE SELEZIONE SUCCESSIVA Come ottenere la figura immagine di una figura data Disegna la figura di cui vuoi la trasformata e gli oggetti (asse o centro di simmetria, vettore,...) che caratterizzano la trasformazione Clicca sul

Dettagli