Modellazione delle preferenze

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Modellazione delle preferenze"

Transcript

1 Modellazione delle preferenze Roberto Cordone 1 1 Sono debitore delle dispense di B. Simeone e F. Patrone

2 Sistemazione assiomatica Dato un insieme non vuoto di impatti F, esprimere una preferenza fra due impatti significa stabilire una relazione orientata fra loro. La preferenza viene quindi modellata come una relazione binaria su F, cioè come un sottoinsieme delle coppie ordinate di F Π F F La coppia (f 1, f 2 ) appartiene a Π quando il decisore preferisce f 1 a f 2. Anziché (f 1, f 2 ) Π, si usa scrivere f 1 Π f 2. Data Π, definiamo relazione complemento Π la relazione che lega tutte e sole le coppie non legate da Π: Π = (F F) \ Π e anziché (f1, f 2 ) Π si usa scrivere f 1 Π f 2 relazione inversa Π 1 la relazione che inverte tutte e sole le coppie legate da Π: Π 1 = {(f 1, f 2 ) F F : (f 2, f 1 ) Π}; anziché (f 1, f 2 ) Π 1 si usa scrivere f 1 Π f 2 Se F è finito, si può rappresentare Π con una matrice di incidenza il cui elemento (i, j) è pari a 1 se f i Π f j, a 0 altrimenti. Oppure si può rappresentarla con un grafo orientato i cui nodi corrispondono agli impatti f i, mentre gli archi corrispondono alle coppie in relazione. Affinché la relazione di preferenza possa modellare correttamente le intenzioni del decisore e insieme consentire algoritmi per definire una scelta soddisfacente, bisogna che goda di opportune ulteriori proprietà. C è però una certa libertà nella scelta di quali proprietà imporre, e molte di loro pongono problemi critici di grande rilevanza. In ultima analisi, la scelta del modello di preferenza va motivata sulla base degli scopi del modello stesso (vedi le conclusioni). Proprietà Una relazione Π su un insieme F è riflessiva quando f Π f per ogni f F; in questo caso, la preferenza va intesa come preferenza debole, cioè include la possibilità che i due impatti siano in realtà indifferenti (definizione alternativa: I Π) simmetrica quando f 1 Π f 2 f 2 Π f 1 per ogni f 1, f 2 F; in generale una relazione di preferenza non gode di questa proprietà, ma la introduciamo comunque, perché ne godrà la relazione di indifferenza che introdurremo in seguito antisimmetrica quando f 1 Π f 2 e f 2 Π f 1 f 1 = f 2 per ogni f 1, f 2 F; due impatti reciprocamente preferibili l uno all altro sono in realtà esattamente lo stesso impatto (definizione alternativa: Π Π 1 I) completa quando f 1 Π f 2 f 2 Π f 1 per ogni f 1, f 2 F; dati due impatti, uno dei due è sicuramente preferibile all altro (al limite, entrambi lo sono vicendevolmente) (definizione alternativa: Π Π 1 = F F) transitiva quando f 1 Π f 2 e f 2 Π f 3 f 1 Π f 3 per ogni f 1, f 2, f 3 F Sulla base di queste proprietà, possiamo introdurre le seguenti categorie di relazioni di preferenza: relazioni di preordine: godono delle proprietà riflessiva e transitiva 1

3 relazioni di ordine parziale: godono delle proprietà riflessiva, transitiva e antisimmetrica relazioni di ordine debole: godono delle proprietà riflessiva, transitiva e di completezza relazioni di ordine totale: godono delle proprietà riflessiva, transitiva, antisimmetrica e di completezza Relazioni derivate Data una relazione di preferenza qualsiasi Π, se ne possono derivare altre due relazioni: 1. indifferenza: f 1 f 2 quando f 1 Π f 2 e f 2 Π f 1 (definizione alternativa Ind Π = Π Π 1 ) 2. incomparabilità: f 1 f 2 quando f 1 Π f 2 e f 2 Π f 1 (definizione alternativa Inc Π = Π Π 1 ) 3. preferenza stretta: f 1 Π f 2 quando f 1 Π f 2 e f 2 Π f 1 (definizione alternativa ˆΠ = Π \ Π 1 ) Data una coppia (f 1, f 2 ), possono valere quindi quattro casi: 1. f 1 f 2 : f 1 è strettamente preferibile a f 2 2. f 2 f 1 : f 2 è strettamente preferibile a f 1 3. f 1 f 2 : f 1 e f 2 sono indifferenti 4. f 1 f 2 : f 1 e f 2 sono incomparabili L incomparabilità modella le situazioni in cui il decisore non è indifferente fra due impatti, ma incapace o non disposto a scegliere fra loro. L incomparabilità è simmetrica. L indifferenza è riflessiva e simmetrica. Se la preferenza è transitiva, è anche transitiva. Quindi, è una relazione di equivalenza. La preferenza stretta è irriflessiva (f f per ogni f F) e asimmetrica (f 1 f 2 f 2 f 1 per ogni f 1, f 2 F). Se la preferenza è un ordine parziale, la relazione di indifferenza è vuota: il decisore non è mai indifferente fra due alternative (tutt al piì si dichiara incapace di dare una preferenza, cioè ci possono essere coppie di impatti incomparabili). Se la preferenza è un ordine debole, la relazione di incompatibilità è vuota: il decisore è in grado di mettere in fila gli impatti dal migliore al peggiore, eventualmente con degli ex-aequo. Se la preferenza è un ordine totale, c è contemporaneamente una concatenazione completa e senza pareggi: solo impatti identici sono fra loro indifferenti (per antisimmetria). Un assiomatica alternativa Si può costruire un assiomatica alternativa, partendo dalla preferenza stretta, cioè escludendo a priori la riflessività: f f per ogni f F (irriflessività). Dato un preordine stretto, si può costruire una relazione di indifferenza x y x y e y x 2

4 e una di preferenza debole x y x y oppure x y La relazione di indifferenza cosí ottenuta non è necessariamente transitiva, e quindi non è in generale una relazione di equivalenza, dato che racchiude in sé sia il caso di coppie equivalenti sia il caso di coppie non confrontabili. Problemi critici sull ipotesi di transitività Merita una discussione approfondita l ipotesi di transitività. La transitività è la condizione richiesta più spesso a una relazione di preferenza. Si ritiene di non poterla evitare, dato che negarla porterebbe a effetti paradossali come i seguenti: 1. supponiamo che un decisore, posto di fronte alla scelta fra A e B (una mela e una pera, ad esempio) affermi di preferire A; posto di fronte alla scelta fra B e C (una pera e un arancia, ad esempio) affermi di preferire B; posto di fronte alla scelta fra A e C (una mela e un arancia) affermi di non saper scegliere. Attraverso una catena di scambi, si può facilmente indurlo a cedere C (l arancia) in cambio di A (la mela), nonostante abbia affermato di non saper scegliere fra le due. 2. un decisore potrebbe addirittura avere preferenze strutturate ciclicamente, senza che però vi sia indifferenza (concetto che introdurremo in seguito) fra gli elementi del ciclo; qualora la preferenza fosse addirittura stretta (concetto che introdurremo in seguito), si potrebbe ricavare denaro da ogni passaggio (dandogli una pera in cambio di un arancia e denaro, una mela in cambio di una pera e denaro, un arancia in cambio di una mela e denaro), lasciando alla fine il decisore con la soluzione iniziale (l arancia) e avendone ricavato denaro per niente. Questa è quella che gli economisti chiamano money pump. La transitività non è tuttavia del tutto innocua come assunzione, per diversi motivi: 1. influenza del tempo: le scelte vengono in realtà fatte in istanti diversi; è possibile che la preferenza cambi nel tempo, dando luogo a violazioni della transitività. Si possono eliminare queste violazioni assegnando agli impatti anche un indice temporale, e stabilendo la relazione di preferenza non fra gli impatti, ma fra le coppie impatto-tempo (preferisco una mela oggi a una pera domani). Questo però complica moltissimo il modello. Il problema non è banale, dato che lo scopo del modello è aiutare a prendere decisioni per il futuro. 2. capacità discriminatoria limitata: il decisore non è effettivamente in grado di distinguere perfettamente tra loro le scelte; vi sono scelte estremamente simili fra le quali il decisore è indifferente, ma con una catena di scelte simili si possono legare scelte molto diverse. L esempio classico è quello della tazzina di caffé con una quantità di zucchero che cambia di un granello alla volta: ammettiamo che il decisore preferisca il caffé amaro; posto di fronte a una tazzina con n granelli e una con n + 1 granelli dovrebbe però considerarle indifferenti, cioè contemporaneamente preferire la tazzina più dolce alla meno dolce e viceversa. Attraverso una catena di tazzine, si può arrivare alla conclusione che il decisore preferisca il caffé dolce. In breve, o si assume una capacità infinita di discriminazione (che è illusoria) oppure si perde la transitività della preferenza. 3

5 3. effetti di contesto o framing: il modo in cui le alternative sono presentate influisce pesantemente sulle preferenze, anche se le alternative sono del tutto identiche. In un celebre esperimento, si chiese a un campione di persone di immedesimarsi nel ministro della sanità di un paese in cui è appena scoppiata un epidemia. Se il ministro non fa nulla, muoiono 600 persone. Si deve scegliere fra due programmi di intervento: (a) programma A: si salvano 200 persone (b) programma B: con un terzo di probabilità si salvano tutti, con due terzi nessuno La maggioranza del campione scelse il programma A. Si chiese quindi di scegliere fra altri due programmi di intervento: (a) programma C: muoiono 400 persone (b) programma D: con un terzo di probabilità non muore nessuno, con due terzi tutti La maggioranza del campione scelse il programma D. Eppure il programma A è identico al C e il programma B al D. Il contesto (cioè l idea di salvare piuttosto che di far morire ) cambia la percezione. Soluzioni dominate e non dominate Da una relazione di preferenza fra impatti deriva immediatamente una relazione fra soluzioni: una soluzione è preferita a un altra quando l impatto della prima è preferito a quello della seconda. La relazione fra soluzioni conserva le proprietà riflessiva, transitiva e di completezza; perde in generale quella antisimmetrica, perché possiamo avere soluzioni con lo stesso impatto, ma diverse tra loro. Supponiamo ora che Π sia una relazione riflessiva e transitiva. Diremo soluzione dominata una soluzione x tale che x X : f (x ) Π f (x) soluzione non dominata altrimenti Si noti l uso della preferenza stretta (derivata da quella debole): se una soluzione ne ammette un altra indifferente, non è dominata. Se la relazione di preferenza Π è riflessiva e transitiva, esiste sempre almeno una soluzione non dominata. Sotto queste ipotesi, ha senso assumere che un decisore razionale sceglie sempre una soluzione non dominata. Quindi, la soluzione di un problema di decisione sarà l insieme X delle soluzioni non dominate. In alcuni casi, ci sarà una sola soluzione non dominata, oppure tutte le soluzioni non dominate saranno fra loro indifferenti. In altri casi, però, potremo avere diverse soluzioni fra loro incomparabili, per cui il problema sarà in effetti più semplificato che risolto. Ora consideriamo il problema di determinare le soluzioni non dominate. Se X finito, possiamo costruire il grafo delle preferenze: i nodi corrispondono alle soluzioni, mentre gli archi corrispondono alle coppie di nodi tali che il primo estremo sia strettamente preferito al secondo. Le soluzioni non dominate corrispondono ai nodi privi di archi entranti. Basta scorrere gli archi per determinarle. Ad esempio, si supponga di dover andare da Milano a Roma e di dover scegliere il mezzo fra cinque alternative X = {Treno, Pullman, Auto, Taxi, Aereo} 4

6 con la seguente relazione di preferenza stretta = {(Treno, Taxi),(Auto, Pullman), (Auto, Taxi), (Auto, Treno),(Aereo, Pullman),(Aereo, Taxi)}. (vedi Figura 1). Si noti che la relazione di preferenza è a rigore fra gli impatti, ma qui si sta assumendo che ogni soluzione abbia un suo diverso impatto, a cui diamo lo stesso nome della soluzione. Le soluzioni non dominate sono X = {Auto, Aereo}. Treno Taxi Auto Pullman Aereo Figura 1: Grafo delle preferenze per una relazione di preferenza stretta Quindi, nel caso in cui X è finito, si pu o applicare la definizione, costruire il grafo delle preferenze e determinare i nodi con grado entrante nullo. Questo corrisponde a effettuare confrontare ogni coppia di impatti. Se la complessit a di un singolo confronto è O (p) perché occorre confrontare tutti gli indicatori, la complessit a totale è Θ( X 2 p). Ovviamente, questa procedura non è lecita nel caso di X infinito. Per risolvere questo caso, occorre aggiungere ipotesi ulteriori. Ordini deboli e funzioni valore Data una funzione valore v : F R, è possibile costruire una relazione di preferenza Π v = {(f, f ) F F : v (f ) v (f )} cioè f f v (f ) v (f ). Si dice che la funzione valore è conforme alla relazione di preferenza. È facile vedere che le relazioni di indifferenza e preferenza stretta si traducono nell uguaglianza e nella differenza stretta fra i valori. È facile vedere che, se una funzione valore v è conforme a una relazione di preferenza Π, data qualsiasi funzione strettamente crescente φ : R R la funzione composta φ(v ( )) è anch essa conforme a Π. Quindi ci sono infinite funzioni valore conformi alla stessa relazione. Se una relazione di preferenza ammette una funzione valore conforme ad essa, allora la relazione è di ordine debole. Si può infatti dimostrare semplicemente che gode della proprietà riflessiva, transitiva e di completezza (si sfrutta il fatto che i numeri reali ne godono). L implicazione inversa avrebbe una forte rilevanza per i problemi di decisione. Infatti, è possibile che da colloqui con il decisore emerga che la sua relazione di preferenza è riflessiva (banale), transitiva (il decisore è molto razionale) e completa (il decisore ha le idee molto chiare). In tale caso, sarebbe comodo poter dire che esiste una funzione valore conforme alla relazione, in modo da sfruttarla nel procedimento risolutivo. Questo non è però sempre vero. Un esempio di relazione di ordine debole (anzi, totale) non sempre corrispondente a una funzione valore è l ordine lessicografico. Supponiamo che F R 2 (cioè 5

7 gli impatti siano vettori di due numeri reali) e che [f 1, f 2 ] [f 1, f 2 ] f 1 < f 1 oppure f 1 = f 1 e f 2 < f 2: l impatto f è preferito all impatto f se la sua prima componente è minore, oppure se è uguale ed è minore la seconda. Si può dimostrare che non esiste una funzione che assegni ad ogni impatto in F un valore tale che la preferenza fra impatti corrisponda a una relazione fra i valori. Tuttavia, ci sono condizioni tecniche ulteriori che consentono di far corrispondere alla maggior parte degli ordini deboli una funzione valore conforme. Un primo esempio è il caso in cui F sia finito. Se una relazione di preferenza è di ordine debole ed è definita su un insieme finito, allora esiste una funzione valore conforme ad essa. Storicamente, questa funzione è denominata conto di Borda: v (f) = {f F : f f } cioè il valore di un impatto è il numero di impatti cui è preferibile (compreso esso stesso). È possibile estendere la proprietà al caso di insiemi infiniti numerabili e ad alcuni insiemi continui (ma occorrono assiomi abbastanza tecnici). Modelli normativi, descrittivi e prescrittivi La scelta della relazione di preferenza dipende in larga misura dallo scopo del modello stesso. Vi sono tre grandi categorie di modelli: 1. normativi: sono basati su proprietà logiche a cui i decisori dovrebbero conformarsi (ad esempio, la transitività è spesso considerata un requisito) 2. descrittivi: sono volti a rappresentare fedelmente il comportamento del decisore, cioè il modo in cui effettivamente prende le sue decisioni 3. prescrittivi: sono volti a creare un ponte fra i due approcci, aiutando il decisore a conformarsi a principi normativi, nel massimo rispetto delle sue effettive preferenze 6

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

Teoria dei Giochi non Cooperativi

Teoria dei Giochi non Cooperativi Politecnico di Milano Descrizione del gioco Egoismo Razionalità 1 L insieme dei giocatori 2 La situazione iniziale 3 Le sue possibili evoluzioni 4 I suoi esiti finali I Giochi della teoria Perché studiare

Dettagli

Decisioni in condizioni di rischio. Roberto Cordone

Decisioni in condizioni di rischio. Roberto Cordone Decisioni in condizioni di rischio Roberto Cordone Decisioni in condizioni di rischio Rispetto ai problemi in condizioni di ignoranza, oltre all insieme Ω dei possibili scenari, è nota una funzione di

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) Un insieme è una collezione di oggetti. Il concetto di insieme è un concetto primitivo. Deve esistere un criterio chiaro, preciso, non ambiguo, inequivocabile,

Dettagli

I Insiemi e funzioni

I Insiemi e funzioni I Insiemi e funzioni 1. INSIEMI ED OPERAZIONI SU DI ESSI 1.1. Insiemi Dal punto di vista intuitivo, il concetto di insieme può essere fatto corrispondere all atto mentale mediante il quale associamo alcuni

Dettagli

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010 elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre

Dettagli

Insiemi con un operazione

Insiemi con un operazione Capitolo 3 Insiemi con un operazione 3.1 Gruppoidi, semigruppi, monoidi Definizione 309 Un operazione binaria su un insieme G è una funzione: f : G G G Quindi, un operazione binaria f su un insieme G è

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Alcuni Preliminari. Prodotto Cartesiano

Alcuni Preliminari. Prodotto Cartesiano Alcuni Preliminari Prodotto Cartesiano Dati due insiemi A e B, si definisce il loro prodotto cartesiano A x B come l insieme di tutte le coppie ordinate (a,b) con a! A e b! B. Es: dati A= {a,b,c} e B={,2,3}

Dettagli

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi)

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) Anno 1 Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) 1 Introduzione In questa lezione imparerai a utilizzare le diverse tipologie di relazione e a distinguerle a seconda delle

Dettagli

1 Insiemi e terminologia

1 Insiemi e terminologia 1 Insiemi e terminologia Assumeremo come intuitiva la nozione di insieme e ne utilizzeremo il linguaggio come strumento per studiare collezioni di oggetti. Gli Insiemi sono generalmente indicati con le

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Premesse alla statistica

Premesse alla statistica Premesse alla statistica Versione 22.10.08 Premesse alla statistica 1 Insiemi e successioni I dati di origine sperimentale si presentano spesso non come singoli valori, ma come insiemi di valori. Richiamiamo

Dettagli

Fondamenti di Informatica II

Fondamenti di Informatica II Fondamenti di Informatica II Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Introduzione, A.A. 2009/2010 1/8

Dettagli

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà :

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà : RELAZIONI INARIE Dati due insiemi non vuoti, A detto dominio e detto codominio, eventualmente coincidenti, si chiama relazione binaria (o corrispondenza) di A in, e si indica con f : A, (oppure R ) una

Dettagli

5.4 Solo titoli rischiosi

5.4 Solo titoli rischiosi 56 Capitolo 5. Teoria matematica del portafoglio finanziario II: analisi media-varianza 5.4 Solo titoli rischiosi Suppongo che sul mercato siano presenti n titoli rischiosi i cui rendimenti aleatori sono

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Corrispondenze e relazioni - Complementi

Corrispondenze e relazioni - Complementi PRODOTTO CARTESIANO Nell elencare gli elementi di un insieme, l ordine non ha alcuna importanza; ma ci sono situazioni in cui l ordine con cui si indicano gli elementi è fondamentale. La partita Milan

Dettagli

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete Funzioni in due variabili Raccolta di FAQ by Andrea Prevete 1) Cosa intendiamo, esattamente, quando parliamo di funzione reale di due variabili reali? Quando esiste una relazione fra tre variabili reali

Dettagli

Risoluzione. Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005

Risoluzione. Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005 Risoluzione Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005 1 Risoluzione Introdurremo ora un metodo per capire se un insieme di formule è soddisfacibile o meno. Lo vedremo prima per insiemi

Dettagli

5. La teoria astratta della misura.

5. La teoria astratta della misura. 5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme

Dettagli

Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole -

Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole - Analisi matriciale delle reti di Petri (P/T) - sifoni e trappole - - richiami preliminari sulle proprietà strutturali - Abbiamo visto che alcune caratteristiche dei sistemi dinamici (DES compresi) non

Dettagli

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Giuditta Franco Corso di Laurea in Bioinformatica - AA 2012/2013 Uno dei più grossi risultati nell informatica degli

Dettagli

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive.

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Lezione 6 Prerequisiti: L'insieme dei numeri interi. Lezione 5. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Questa è la prima lezione dedicata all'anello

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

= 8.000 + 2.000 = 5.000.

= 8.000 + 2.000 = 5.000. Esercizio 1 Consideriamo il mercato delle barche usate e supponiamo che esse possano essere di due tipi, di buona qualità e di cattiva qualità. Il valore di una barca di buona qualità è q = 8000, mentre

Dettagli

1 Giochi a due, con informazione perfetta e somma zero

1 Giochi a due, con informazione perfetta e somma zero 1 Giochi a due, con informazione perfetta e somma zero Nel gioco del Nim, se semplificato all estremo, ci sono due giocatori I, II e una pila di 6 pedine identiche In ogni turno di gioco I rimuove una

Dettagli

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2 Chiusura lineare Def. Sia A V (K) con A. Si dice copertura lineare (o chiusura lineare) di A, e si indica con L(A), l insieme dei vettori di V che risultano combinazioni lineari di un numero finito di

Dettagli

Se ad ogni elemento di A la relazione R associa un solo elemento di B, allora essa prende il nome di applicazione (funzione) di A in B.

Se ad ogni elemento di A la relazione R associa un solo elemento di B, allora essa prende il nome di applicazione (funzione) di A in B. 6. APPLICAZIONI o FUNZIONI Dati due insiemi A e B, sia R A B una relazione di A in B. Fissato un elemento x A può capitare che ad esso la relazione R associ un solo elemento di B, o che ne associ più di

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

CORSO DI VALUTAZIONE DI IMPATTO AMBIENTALE (VIA) TEORIA DELLE DECISIONI E MODELLI DECISIONALI

CORSO DI VALUTAZIONE DI IMPATTO AMBIENTALE (VIA) TEORIA DELLE DECISIONI E MODELLI DECISIONALI CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE ED IL TERRITORIO CORSO DI VALUTAZIONE DI IMPATTO AMBIENTALE (VIA) TEORIA DELLE DECISIONI E MODELLI DECISIONALI dr. Arch. P. Luria Dip. IMAGE (ingegneria Idraulica

Dettagli

Capitolo 20: Scelta Intertemporale

Capitolo 20: Scelta Intertemporale Capitolo 20: Scelta Intertemporale 20.1: Introduzione Gli elementi di teoria economica trattati finora possono essere applicati a vari contesti. Tra questi, due rivestono particolare importanza: la scelta

Dettagli

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica...

1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica... UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica Funzioni reali di variabile reale Indice Grafico di una funzione reale 2 Funzioni elementari 2 2. Funzione potenza................................................

Dettagli

Rette e curve, piani e superfici

Rette e curve, piani e superfici Rette e curve piani e superfici ) dicembre 2 Scopo di questo articolo è solo quello di proporre uno schema riepilogativo che metta in luce le caratteristiche essenziali delle equazioni di rette e curve

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali

Dettagli

Introduzione Ordini parziali e Reticoli Punti fissi

Introduzione Ordini parziali e Reticoli Punti fissi Introduzione Ordini parziali e Reticoli Punti fissi By Giulia Costantini (819048) & Giuseppe Maggiore (819050) Table of Contents ORDINE PARZIALE... 3 Insieme parzialmente ordinato... 3 Diagramma di Hasse...

Dettagli

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci

Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello. V. M. Abrusci Dispense del corso di Logica a.a. 2015/16: Problemi di primo livello V. M. Abrusci 12 ottobre 2015 0.1 Problemi logici basilari sulle classi Le classi sono uno dei temi della logica. Esponiamo in questa

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Seminario Sull Algoritmo R.S.A.

Seminario Sull Algoritmo R.S.A. Alessandrini Cristian Sicurezza 2003 Introduzione Seminario Sull Algoritmo R.S.A. L algoritmo R.S.A. fa parte degli algoritmi definiti a chiave pubblica oppure asimmetrici. Fu progettato nel 1976/77 da

Dettagli

APPENDICE NOZIONI BASE E VARIE

APPENDICE NOZIONI BASE E VARIE pag. 131 Appendice: Nozioni base e varie G. Gerla APPENDICE NOZIONI BASE E VARIE 1. Funzioni e relazioni di equivalenza Questi appunti sono rivolti a persone che abbiano già una conoscenza elementare della

Dettagli

4. Strutture algebriche. Relazioni

4. Strutture algebriche. Relazioni Relazioni Sia R una relazione definita su un insieme A (cioè R A A). R si dice riflessiva se a A : ara R si dice simmetrica se a, b A : arb = bra R si dice antisimmetrica se a, b A : arb bra = a = b R

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Sintesi di Reti Sequenziali Sincrone

Sintesi di Reti Sequenziali Sincrone LABORATORIO DI ARCHITETTURA DEI CALCOLATORI lezione n 9 Prof. Rosario Cerbone rosario.cerbone@uniparthenope.it a.a. 2007-2008 http://digilander.libero.it/rosario.cerbone Sintesi di Reti Sequenziali Sincrone

Dettagli

RELAZIONI E FUNZIONI. Per ricordare. Figura 1. Figura 2. Figura 3. Figura 4

RELAZIONI E FUNZIONI. Per ricordare. Figura 1. Figura 2. Figura 3. Figura 4 RELAZIONI E FUNZIONI 3 Per ricordare H Dati due insiemi A e B e una proposizione aperta px,y, con x 2 A e y 2 B, si dice che x eá in relazione con y, e si scrive x R y, sepx,y eá vera; si parla allora

Dettagli

2 Progetto e realizzazione di funzioni ricorsive

2 Progetto e realizzazione di funzioni ricorsive 2 Progetto e realizzazione di funzioni ricorsive Il procedimento costruttivo dato dal teorema di ricorsione suggerisce due fatti importanti. Una buona definizione ricorsiva deve essere tale da garantire

Dettagli

Lezione 5. Argomenti. Premessa Vincolo di bilancio La scelta ottima del consumatore

Lezione 5. Argomenti. Premessa Vincolo di bilancio La scelta ottima del consumatore Lezione 5 Argomenti Premessa Vincolo di bilancio La scelta ottima del consumatore 5.1 PREESSA Nonostante le preferenze portino a desiderare quantità crescenti di beni, nella realtà gli individui non sono

Dettagli

Luigi Piroddi piroddi@elet.polimi.it

Luigi Piroddi piroddi@elet.polimi.it Automazione industriale dispense del corso 10. Reti di Petri: analisi strutturale Luigi Piroddi piroddi@elet.polimi.it Analisi strutturale Un alternativa all analisi esaustiva basata sul grafo di raggiungibilità,

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

I Modelli della Ricerca Operativa

I Modelli della Ricerca Operativa Capitolo 1 I Modelli della Ricerca Operativa 1.1 L approccio modellistico Il termine modello è di solito usato per indicare una costruzione artificiale realizzata per evidenziare proprietà specifiche di

Dettagli

Decisioni in condizioni di incertezza

Decisioni in condizioni di incertezza Decisioni in condizioni di incertezza Paolo Arcaini Roberto Cordone Programmazione in condizioni di incertezza La programmazione in condizioni di incertezza affronta problemi di decisione nei quali occorre

Dettagli

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo)

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) Se si ha un problema lineare e' possibile risolverlo in piu' modi (equivalenti ) - Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) - Trovare soluzione ottima duale (con il simplesso

Dettagli

Sommario. 1 Realizzazione del STG. Introduzione. 1 traduzione delle specifiche informali in specifiche formali (STG o

Sommario. 1 Realizzazione del STG. Introduzione. 1 traduzione delle specifiche informali in specifiche formali (STG o Sommario Sintesi di macchine a stati finiti 1 Realizzazione del ST M. avalli 2 utoma minimo di SM completamente specificate 6th June 2007 3 Ottimizzazione di SM non completamente specificate Sommario ()

Dettagli

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme.

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme. Esercizi difficili sul calcolo delle probabilità. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di, fra di esse vi sia un solo asso, di qualunque seme. Le parole a caso

Dettagli

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) [# Aii [10 pagine]] Algebre di Boole Un algebra di Boole è una struttura 1. Definizione e proprietá B =< B,,, ν, 0, 1 > in cui B è un insieme non

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

GRUPPO DI LAVORO DI PARMA

GRUPPO DI LAVORO DI PARMA ATTIVITÀ DI ANALISI QUESITI INVALSI GRUPPO DI LAVORO DI PARMA Coordinamento prof. P. VIGHI ANALISI QUESITI RELATIVI A: FASCICOLO somministrato nella 2^ classe PRIMARIA a.s. 2013-2014 FASCICOLO somministrato

Dettagli

G. Pareschi RELAZIONI. RELAZIONI DI EQUIVALENZA. 1. Definizione e terminologia

G. Pareschi RELAZIONI. RELAZIONI DI EQUIVALENZA. 1. Definizione e terminologia G. Pareschi RELAZIONI. RELAZIONI DI EQUIVALENZA. 1. Definizione e terminologia Definizione 1.1 Relazione. Dati due insiemi A e B un sottoisieme R A B è detto una relazione binaria tra A e B. Se A = B allora

Dettagli

Università degli Studi di Napoli Federico II. Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica

Università degli Studi di Napoli Federico II. Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Università degli Studi di Napoli Federico II Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Anno Accademico 2009/2010 Appunti di Calcolabilità e Complessità Lezione 9: Introduzione alle logiche

Dettagli

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0.

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0. EQUAZIONI E DISEQUAZIONI Le uguaglianze fra espressioni numeriche si chiamano equazioni. Cercare le soluzioni dell equazione vuol dire cercare quelle combinazioni delle lettere che vi compaiono che la

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

Richiami di microeconomia

Richiami di microeconomia Capitolo 5 Richiami di microeconomia 5. Le preferenze e l utilità Nell analisi microeconomica si può decidere di descrivere ogni soggetto attraverso una funzione di utilità oppure attraverso le sue preferenze.

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

Corso di elettrotecnica Materiale didattico. Cenni sui sistemi trifase

Corso di elettrotecnica Materiale didattico. Cenni sui sistemi trifase Corso di elettrotecnica Materiale didattico. Cenni sui sistemi trifase A. Laudani 19 gennaio 2007 Le reti trifase sono reti elettriche in regime sinusoidale (tutte le variabili di rete hanno andamento

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Capitolo 9 Esponenziali e logaritmi... Capitolo 0 Funzioni circolari 0. Descrizione di fenomeni periodici Tra le funzioni elementari ne esistono due atte a descrivere fenomeni che si ripetono periodicamente

Dettagli

Variabili logiche e circuiti combinatori

Variabili logiche e circuiti combinatori Variabili logiche e circuiti combinatori Si definisce variabile logica binaria una variabile che può assumere solo due valori a cui si fa corrispondere, convenzionalmente, lo stato logico 0 e lo stato

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Assicurazione e contratto assicurativo

Assicurazione e contratto assicurativo Teoria dei giochi, A.A. 2002/03 c Fioravante Patrone 1 Assicurazione e contratto assicurativo Consideriamo il problema di assicurarsi contro un sinistro. Vediamo le ragioni per cui può verificarsi il fatto

Dettagli

di informazione asimmetrica:

di informazione asimmetrica: Informazione asimmetrica In tutti i modelli che abbiamo considerato finora abbiamo assunto (implicitamente) che tutti gli agenti condividessero la stessa informazione (completa o incompleta) a proposito

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

Equilibrio bayesiano perfetto. Giochi di segnalazione

Equilibrio bayesiano perfetto. Giochi di segnalazione Equilibrio bayesiano perfetto. Giochi di segnalazione Appunti a cura di Stefano Moretti, Silvia VILLA e Fioravante PATRONE versione del 26 maggio 2006 Indice 1 Equilibrio bayesiano perfetto 2 2 Giochi

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un

Dettagli

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1 Economia Applicata ai sistemi produttivi 06.05.05 Lezione II Maria Luisa Venuta 1 Schema della lezione di oggi Argomento della lezione: il comportamento del consumatore. Gli economisti assumono che il

Dettagli

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

NUMERI E SUCCESSIONI

NUMERI E SUCCESSIONI NUMERI E SUCCESSIONI Giovanni Maria Troianiello 1 Notazioni insiemistiche. Numeri naturali, interi, razionali Notazioni insiemistiche Si sa cosa s intende quando si parla di insieme (o famiglia, o classe)

Dettagli

Introduzione. Consideriamo la classica caratteristica corrente-tensione di un diodo pn reale: I D. V γ

Introduzione. Consideriamo la classica caratteristica corrente-tensione di un diodo pn reale: I D. V γ Appunti di Elettronica Capitolo 3 Parte II Circuiti limitatori di tensione a diodi Introduzione... 1 Caratteristica di trasferimento di un circuito limitatore di tensione... 2 Osservazione... 5 Impiego

Dettagli

APPUNTI SUI METODI PERT-C.P.M.

APPUNTI SUI METODI PERT-C.P.M. APPUNTI SUI METODI PERT-C.P.M. (corso di ricerca operativa) A cura di: Antonio Scalera 1 PERT/C.P.M. I metodi Pert e C.P.M. studiano lo sviluppo di un progetto attraverso la programmazione delle attività

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari Capitolo 6 Funzioni 6. Concetto di funzione e definizioni preliminari Definizione 6. Dati due insiemi non vuoti D e C, si dice applicazione o funzione una qualsiasi legge (relazione) che associa ad ogni

Dettagli

Capitolo 3. Il comportamento del consumatore. Temi da discutere. Il comportamento del consumatore. Il comportamento del consumatore

Capitolo 3. Il comportamento del consumatore. Temi da discutere. Il comportamento del consumatore. Il comportamento del consumatore Temi da discutere Capitolo 3 Il comportamento del consumatore L utilità marginale Il comportamento del consumatore Due applicazioni che illustrano l importanza della teoria economica del consumatore sono:

Dettagli

x u v(p(x, fx) q(u, v)), e poi

x u v(p(x, fx) q(u, v)), e poi 0.1. Skolemizzazione. Ogni enunciato F (o insieme di enunciati Γ) è equisoddisfacibile ad un enunciato universale (o insieme di enunciati universali) in un linguaggio estensione del linguaggio di F (di

Dettagli

ESEMPI DI DOMANDE per la prova scritta dell esame di Microeconomia. Una sola delle cinque risposte fornite per ogni domanda è giusta.

ESEMPI DI DOMANDE per la prova scritta dell esame di Microeconomia. Una sola delle cinque risposte fornite per ogni domanda è giusta. ESEMPI DI DOMANDE per la prova scritta dell esame di Microeconomia. Una sola delle cinque risposte fornite per ogni domanda è giusta. TEORIA DEL CONSUMO prima parte (Varian, capp. 1-7) 1. Antonio compra

Dettagli

Ricerca Operativa. Claudio Arbib Universitàdi L Aquila. Problemi combinatorici (Gennaio 2006)

Ricerca Operativa. Claudio Arbib Universitàdi L Aquila. Problemi combinatorici (Gennaio 2006) Claudio Arbib Universitàdi L Aquila Ricerca Operativa Problemi combinatorici (Gennaio 2006) Sommario Problemi combinatorici Ottimizzazione combinatoria L algoritmo universale Il metodo greedy Problemi

Dettagli

Prodotto elemento per elemento, NON righe per colonne Unione: M R S

Prodotto elemento per elemento, NON righe per colonne Unione: M R S Relazioni binarie Una relazione binaria può essere rappresentata con un grafo o con una matrice di incidenza. Date due relazioni R, S A 1 A 2, la matrice di incidenza a seguito di varie operazioni si può

Dettagli

Discuteremo di. Domanda individuale e domanda di mercato. Scelta razionale

Discuteremo di. Domanda individuale e domanda di mercato. Scelta razionale Discuteremo di. La determinazione dell insieme delle alternative all interno del quale sceglie il consumatore La descrizione e la rappresentazione delle sue preferenze Come si determina la scelta ottima

Dettagli

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario.

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario. Le soluzioni del foglio 2. Esercizio Calcolare il lavoro compiuto dal campo vettoriale F = (y + 3x, 2y x) per far compiere ad una particella un giro dell ellisse 4x 2 + y 2 = 4 in senso orario... Soluzione.

Dettagli

La Massimizzazione del profitto

La Massimizzazione del profitto La Massimizzazione del profitto Studio del comportamento dell impresa, soggetto a vincoli quando si compiono scelte. Ora vedremo un modello per analizzare le scelte di quantità prodotta e come produrla.

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli