Controllo di Robot Industriali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Controllo di Robot Industriali"

Transcript

1 CONTROLLO DI ROBOT INDUSTRIALI Laurea Magistrale in Ingegneria Meccatronica CONTROLLO DI ROBOT INDUSTRIALI SISTEMI LINEARI Ing. Tel. e-ail: Trasforazioni lineari Dati ue spazi vettoriali V e W, una trasforazione lineare T è una funzione T:V W che goe elle seguenti proprietà:. T(v v )T(v )T(v ) v,v V. T(α v)αt(v) v V e α R Una volta fissate una base in V e una base in W, è possibile rappresentare una funzione lineare con una atrice; sia A tale atrice, allora: La rappresentazione A ella trasforazione T non è unica. Cabiano le basi i V e W cabia la atrice che rappresenta la trasforazione lineare. Sistei Lineari -- Pag.

2 Trasforazioni Lineari L Iagine i una trasforazione lineare T è il sottospazio vettoriale efinito a: I(A) A Sistei Lineari -- Trasforazioni Lineari Il Kernel i una trasforazione lineare T è il sottospazio vettoriale efinito a: A Ker(A) Sistei Lineari -- Pag.

3 Sistei lineari tepo invarianti (LTI) Un sistea inaico si ice lineare tepo invariante (LTI) se:. E un sistea regolare e tepo invariante. La funzione i transizione ello stato φ è lineare rispetto allo stato e rispetto all ingresso. La funzione i uscita è lineare rispetto allo stato e all ingresso. Sistei Lineari -- Sistei lineari tepo invarianti (LTI) Il fatto che la funzione i transizione ello stato e la funzione i uscita sia lineare negli argoenti e u e che il sistea sia tepo invariante, significa che, una volta fissata una base in X e U, è possibile rappresentare il sistea coe: A( Bu( y( C( Du( E possibile eurre iportanti caratteristiche el sistea alle proprietà elle atrici A, B, C e D. Sistei Lineari -- 6 Pag.

4 Rappresentazione ei sistei lineari A, B, C e D sono atrici costanti. Nel caso i un sistea con n stati, ingressi e p uscite, tali atrici hanno i seguenti noi e la seguente struttura: Matrice i stato: t a A M an L L a a n M nn Matrice Quarata Matrice i ingresso: b B M bn L L b b M n Sistei Lineari -- 7 Rappresentazione ei sistei lineari Matrice i uscita: C c L c n M M c p L c pn Matrice i ingresso-uscita: D M p L L M p Sistei Lineari -- 8 Pag.

5 Soluzione ella funzione i stato Problea: Data l euazione che escrive l evoluzione ello stato i un sistea inaico, trovare il oviento ello stato ( associato a un certo stato iniziale () Occorre risolvere un euazione ifferenziale che può essere non lineare e che ipene esplicitaente al tepo. Non esiste una soluzione generale al problea. Sistei Lineari -- 9 Soluzione ella funzione i stato E possibile risolvere il problea per certe classi i sistei, coe per esepio uella ei sistei lineari tepo invarianti. L euazione Leuazione che consierereo sarà uini: Sistei Lineari -- Pag.

6 Soluzione ella funzione i stato per sistei LTI Consieriao pria il caso i un sistea LTI autonoo (cioè con funzione i ingresso nulla): Analogaente al caso scalare, la soluzione ell euazione è: At ( t ) e Ma cosa significa fare l esponenziale i una atrice? Sistei Lineari -- Soluzione ella funzione i stato per sistei LTI L esponenziale è efinibile eiante la sua espansione in serie: Analogaente, è possibile efinire l esponenziale i una atrice coe: Sistei Lineari -- Pag. 6

7 Soluzione ella funzione i stato per sistei LTI Consieriao ora il caso più generale: La soluzione ell euazione è ata alla cosietta forula i Lagrange : Sistei Lineari -- Moviento Libero e oviento forzato l f t At A( t τ ) l e f e Bu( τ ) τ Moviento Libero Dipeno SOLO allo stato iniziale Non ipene all ingresso Rappresenta l evoluzione el sistea ovuta alle proprie conizioni iniziali Moviento orzato Dipeno SOLO all ingresso Non ipene allo stato iniziale Rappresenta l evoluzione el sistea ovuta alle sollecitazioni esterne Sistei Lineari -- Pag. 7

8 Uscita Libera e Uscita forzata y C( Du( C C Du( y y l f l f yl Cl y f C f Du( Uscita Libera Dipeno SOLO allo stato iniziale Non ipene all ingresso Rappresenta l uscita el sistea ovuta alle proprie conizioni iniziali Uscita orzata Dipeno SOLO all ingresso Non ipene allo stato iniziale Rappresenta l evoluzione ell uscita ovuta alle sollecitazioni esterne Sistei Lineari -- Esepio Circuito Elettrico A R E u R y C B Sistei Lineari -- 6 Pag. 8

9 Esepio Circuito Elettrico Sia la funzione i stato che la funzione uscita sono lineari nello stato e nell ingresso, uini il sistea è lineare. In particolare il sistea ha stato, ingresso e uscita e, uini, le atrici A, B, C e D saranno tutte X, cioè scalari. Le euazioni che oellano il sistea sono: a( bu( y( c( u( ove a C( R b R ) C( R R ) c R R R R R R Sistei Lineari -- 7 Esepio Sistea Meccanico k b u y Sistei Lineari -- 8 Pag. 9

10 Esepio Sistea Meccanico Sia la funzione i stato che la funzione uscita sono lineari nello stato e nell ingresso, uini il sistea è lineare. In particolare il sistea ha stato, ingresso e uscita e, uini, la atrice A( sarà, B( sarà, C( sarà e D( sarà. Le euazioni che oellano il sistea lineare sono:. ( A ( B C D Sistei Lineari -- 9 Esepio Robot Cartesiano,,,,,, ( ) ( ) g Si consierino coe uscite el sistea sono le posizioni ei giunti e Sistei Lineari -- Pag.

11 Pag. Esepio Esepio Robot Cartesiano Robot Cartesiano Il oello generico i un robot è ato all euazione ifferenziale vettoriale Nel nostro caso: ) ( M ), ( C Sistei Lineari -- La struttura risulta olto seplificata g g ) ( ) ( D Esepio Esepio Robot Cartesiano Robot Cartesiano Un robot cartesiano è un sistea lineare. Poneno Le euazioni che escrivono il sistea possono essere riscritte coe: 6 6 Sistei Lineari g

12 Pag. Esepio Esepio Robot Cartesiano Robot Cartesiano A B y y y g C Sistei Lineari -- La struttura isaccoppiata el robot cartesiano fa sì che esso sia oellabile coe un sistea lineare. Ci sono ingressi: tre che possono essere controllati (,, ) entre l altro è un ingresso esterno su cui non possiao intervenire. Principio i sovrapposizione egli effetti Principio i sovrapposizione egli effetti Teorea: Dato un sistea lineare, siano e y il oviento ello stato e l uscita generati all ingresso u a partire allo stato () e, rispettivaente, e y il oviento ello stato e l uscita generati all ingresso u a partire allo stato (). Allora, per ogni coppia i scalari α e β, il oviento ello stato e l uscita y generati a a partire allo stato Sistei Lineari -- sono

13 Principio i sovrapposizione egli effetti Il principio i sovrapposizione egli effetti è i grane iportanza perché consente i calcolare il oviento (e l uscita) generato a più cause (cioè a coppie stato iniziale-ingresso) coe la soa pesata ei singoli effetti provocati a ciascuna causa. La iostrazione el teorea è una conseguenza ella linearità elle funzioni i transizione ello stato e ella funzione i uscita. Sistei Lineari -- Esepio: Principio i sovrapposizione egli effetti k b u Applicano una forza costante la assa si fera in una posizione in cui la forza elastica e generata alla olla euilibria la forza applicata u. Kg k N / b Ns / () Sistei Lineari -- 6 Pag.

14 Esepio: Principio i sovrapposizione egli effetti Caso : e (-k(: il sistea è lineare. () u N () u N... y (. y ( Sistei Lineari -- 7 Esepio: Principio i sovrapposizione egli effetti () u N.. y (... Sistei Lineari -- 8 Pag.

15 Esepio: Principio i sovrapposizione egli effetti Il sistea è lineare e, uini, vale il principio i sovrapposizione egli effetti. Infatti, l anaento ell uscita corrisponente a (t ) e u N è ato alla soa ell anaento elle uscite in corrisponenza a () () eu N e () eu N N. Infatti: ( ) () () u u () u () e, uini y y y Sistei Lineari -- 9 Esepio: Principio i sovrapposizione egli effetti Caso : e (-k (: il sistea NON è lineare. Le euazioni che escrivono il sistea sono: Non sono euazioni lineari Sistei Lineari -- Pag.

16 Esepio: Principio i sovrapposizione egli effetti () u N () u N... y (. y ( Sistei Lineari -- Esepio: Principio i sovrapposizione egli effetti () u N.. y (... Sistei Lineari -- Pag. 6

17 Esepio: Principio i sovrapposizione egli effetti Il sistea non è lineare e, uini, non vale il principio i sovrapposizione egli effetti. Infatti, nonostante: ( ) () () u u () u () si ha che y ( t ) y ( t ) y ( t ) Il principio i sovrapposizione egli effetti vale solo per i sistei lineari. Sistei Lineari -- CONTROLLO DI ROBOT INDUSTRIALI Laurea Magistrale in Ingegneria Meccatronica CONTROLLO DI ROBOT INDUSTRIALI SISTEMI LINEARI Ing. Tel. e-ail: cristian.secchi@uniore.it Pag. 7

CONTROLLO DI ROBOT INDUSTRIALI SISTEMI LINEARI

CONTROLLO DI ROBOT INDUSTRIALI SISTEMI LINEARI CONTROLLO DI ROBOT INDUSTRIALI Laurea Magistrale in Ingegneria Meccatronica CONTROLLO DI ROBOT INDUSTRIALI SISTEMI LINEARI Ing. Tel. e-ail: cristian.secchi@uniore.it http://www.isi.uniore.it/mebers/csecchi

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

(a) Sull anello 1 agiscono la forza peso P = mg, diretta verso il basso, e la forza F 21 esercitata dall anello 2, diretta verso l alto, per cui:

(a) Sull anello 1 agiscono la forza peso P = mg, diretta verso il basso, e la forza F 21 esercitata dall anello 2, diretta verso l alto, per cui: Esercitazione n 5 ISICA SPERIMENALE I (Prof. Gabriele ava) A.A. / (C.L. Ing. Ei.) Dinaica. Una catena costituita a cinque anelli, ciascuno i assa = g, viene sollevata in verticale con una accelerazione

Dettagli

Z asse orizzontale privo d attrito (asse di rotazione); O punto del corpo (perno) appartenente all asse di rotazione; C centro di massa del corpo.

Z asse orizzontale privo d attrito (asse di rotazione); O punto del corpo (perno) appartenente all asse di rotazione; C centro di massa del corpo. IL PENDOLO ISICO Penolo fisico (o coposto): qualsiasi corpo rigio che, sotto l azione ella gravità, può oscillare lieraente attorno a un asse orizzontale passante per un punto iverso al suo centro i assa.

Dettagli

Compito di febbraio 2004

Compito di febbraio 2004 Copito di febbraio 004 Una laina oogenea di assa, avente la fora di un disco di raggio da cui è stato asportato il triangolo equilatero inscritto ABC, rotola senza strisciare lungo l asse delle ascisse

Dettagli

Determinazione del momento d inerzia di un pendolo (23 febbraio 2005)

Determinazione del momento d inerzia di un pendolo (23 febbraio 2005) Deterinazione el oento inerzia i un penolo (3 febbraio 005) Consieriao un corpo esteso (vei figura seguente) che possa ruotare attorno a un asse fisso passante per il punto i sospensione PS; si iagini

Dettagli

Calcolo della massa m di un solido

Calcolo della massa m di un solido Calcolo ella assa i un solio Consieriao un solio T i assa, volue e superficie. upponiao che il corpo abbia assa voluica (ensità) ipenente alle coorinate,, i un punto P interno o sulla superficie el solio,

Dettagli

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata Meccanica Applicata Alle Macchine (Ingegneria Energetica) Elementi i Meccanica Teorica e Applicata (Scienze per l Ingegneria) Università egli Stui i oma La Sapienza Una traccia egli argomenti el Corso

Dettagli

Lavoro di una forza. Si definisce lavoro elementare della forza F agente sul punto materiale P che si sposta di dr la quantità scalare:

Lavoro di una forza. Si definisce lavoro elementare della forza F agente sul punto materiale P che si sposta di dr la quantità scalare: Laoro i una forza Consieriao un punto ateriale P in oto lungo una cura L per effetto i una forza F, sia r il ettore posizione el punto in un sistea i riferiento inerziale: in un interallo i tepo t il punto

Dettagli

Nozioni elementari di calcolo differenziale e integrale

Nozioni elementari di calcolo differenziale e integrale Nozioni elementari i calcolo ifferenziale e integrale DIPARTIMENTO DI FISICA E INFN UNIVERSITÀ DEL SALENTO a.a. 013/014 L. Renna - Dipartimento i Fisica 1 Sommario 1 Funzioni... 3 Derivate... 4 3 Integrali...

Dettagli

DERIVATE DIREZIONALI ITERATE

DERIVATE DIREZIONALI ITERATE Analisi Matematica II, Anno Accaemico 206-207. Ingegneria Eile e Architettura Vincenzo M. Tortorelli FOGLIO DI TEORIA n. 0 SVILUPPI DI TAYLOR DERIVATE DIREZIONALI ITERATE Se v R è non nullo è efinito l

Dettagli

Facoltà di Ingegneria Fisica II 2 marzo

Facoltà di Ingegneria Fisica II 2 marzo Facoltà i Ingegneria Fisica II arzo 5 7 T Valori: ε = 8.85, µ 4 = π Esercizio n. Un conensatore è costituito a ue lastre etalliche rettangolari, i area, separate a una istanza. Una età ello spazio tra

Dettagli

Studio del comportamento. Esercitazione 02

Studio del comportamento. Esercitazione 02 DINAMICA DELLE MACCHINE E DEGLI IMPIANTI ELETTRICI: Stuio el comportamento inamico i i un elettromagnete t Esercitazione Moellizzazione i un sistema i inuttori Sistema i inuttori: i è un multiporta Legame

Dettagli

Esame Scritto Fisica Generale T-B

Esame Scritto Fisica Generale T-B Esercizio 1 Esame Scritto Fisica Generale T-B (CL Ingegneria Civile) Prof. M. Sioli II Appello A.A. 015-016 - 5/01/016 Soluzioni Esercizi Due fili isolanti infiniti e carichi positivamente con ensità i

Dettagli

Sistemi di due equazioni differenziali del primo ordine a coefficienti costanti

Sistemi di due equazioni differenziali del primo ordine a coefficienti costanti Sistemi i ue equazioni ifferenziali el primo orine a coefficienti costanti Enrico Schlesinger In questo paragrafo si risolve il sistema i equazioni ifferenziali x ax + by () y cx + y ove x e y sono ue

Dettagli

Lezione 5 - Modello matematico dell attrito F S F D

Lezione 5 - Modello matematico dell attrito F S F D Lezione 5 - Modello ateatico dell attrito Il odello ateatico con cui rappresentiao quantitativaente l intensità della forza di attrito è F F S = µ S attrito statico Fattr Mg F D = µ D attrito dinaico I

Dettagli

III - Lavoro ed energia. Conservazione dell energia.

III - Lavoro ed energia. Conservazione dell energia. III - Lavoro e eneria. Conservazione ell eneria. Il lavoro W copiuto a una forza F variabile che aisce su un punto ateriale spostanolo a un punto a un punto luno una linea γ è ato a: W F l,γ ove l è lo

Dettagli

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

2. Analisi di un sistema caotico

2. Analisi di un sistema caotico . Analisi i un sistema caotico. Ricostruzione ello spazio elle fasi Il primo problema a risolvere nell analisi i un sistema caotico è la ricostruzione ello spazio elle fasi a partire a un segnale monoimensionale.

Dettagli

Esercizio (tratto dal Problema 2.6 del Mazzoldi)

Esercizio (tratto dal Problema 2.6 del Mazzoldi) 1 Esercizio (tratto dal Problea 2.6 del Mazzoldi) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica 70 N/, che si trova alla lunghezza

Dettagli

12. Teoria qualitativa

12. Teoria qualitativa 12. Teoria qualitativa Si esaminano le conizioni i regolarità per un campo vettoriale, che garantiscono esistenza e unicità ella soluzione per l equazione ifferenziale associata. La conizione i Lipschitz,

Dettagli

LAVORO DI UNA FORZA (1)

LAVORO DI UNA FORZA (1) LAVORO ED ENERGIA INTRODUZIONE L introduzione dei concetto di lavoro, energia cinetica ed energia potenziale ci perettono di affrontare i problei della dinaica in un odo nuovo In particolare enuncereo

Dettagli

Esercizi proposti di Fondamenti di Automatica - Parte 2

Esercizi proposti di Fondamenti di Automatica - Parte 2 Esercizi proposti i Fonamenti i Automatica - Parte Febbraio 5 Es. Dimostrare che le matrici A, a elementi reali, e A D, a elementi complessi, sono simili. α ω α + ω A, A ω α D α ω Es. Calcolare e A t e

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 19/02/2019

Soluzione degli esercizi dello scritto di Meccanica del 19/02/2019 Soluzione egli esercizi ello scritto i eccanica el 19/02/2019 Esercizio 1 Una guia è coposta a ue tratti curvilinei senza attrito, connessi a un tratto rettilineo orizzontale scabro BC, con coefficiente

Dettagli

B. C. D. A B C. d 2. d 1 B. C. 4. Il campo elettrico nella Regione II ha modulo A. 0 A Il campo elettrico nella Regione III è un vettore

B. C. D. A B C. d 2. d 1 B. C. 4. Il campo elettrico nella Regione II ha modulo A. 0 A Il campo elettrico nella Regione III è un vettore Facoltà i Ingegneria a prova in itinere i Fisica II 9.. Esercizio n. Tra ue piani isolanti, inefiniti e paralleli, aventi ensità i carica superficiale rispettivamente e, viene introotta una lastra metallica

Dettagli

Esercizio (tratto dal Problema 4.7 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.7 del Mazzoldi 2) 1 Esercizio (tratto dal Problea 4.7 del Mazzoldi 2) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica = 70 N/, che si trova alla lunghezza

Dettagli

TEORIA DEI SISTEMI ANALISI MODALE

TEORIA DEI SISTEMI ANALISI MODALE TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI MODALE Ing. Cristian Secchi Tel.

Dettagli

m O Esercizio (tratto dal Problema 4.29 del Mazzoldi 2)

m O Esercizio (tratto dal Problema 4.29 del Mazzoldi 2) Esercizio tratto dal Problea 4.29 del Mazzoldi 2) Un corpo di assa 0.5 Kg è agganciato ad un supporto fisso traite una olla di costante elastica 2 N/; il corpo è in quiete nel punto O di un piano orizzontale,

Dettagli

Nome, Cognome: punti totali possibili, 50 punti corrispondono alla nota massima.

Nome, Cognome: punti totali possibili, 50 punti corrispondono alla nota massima. Nome, Cognome:................................................................ 55 punti totali possibili, 5 punti corrisponono alla nota massima. 3 ottobre 23 ing. Ivan Furlan . Controllo i un oscillatore

Dettagli

PARTICELLA LIBERA IN UNA DIMENSIONE. L equazione di Schrödinger per una particella libera in una dimensione è. t (x) = 2m t.

PARTICELLA LIBERA IN UNA DIMENSIONE. L equazione di Schrödinger per una particella libera in una dimensione è. t (x) = 2m t. 4/ PARTICELLA LIBERA 09/0 PARTICELLA LIBERA IN UNA DIMENSIONE L equazione i Schröinger per una particella libera in una imensione è ) i ħ t ψ ˆp t x) = m ψ t x). Poiché Ĥ ) i πħ) exp / ħ px = p m ) i πħ)

Dettagli

I moti. Daniel Gessuti

I moti. Daniel Gessuti I oti Daniel Gessuti 1 introduzione Uno dei problei che ha interessato gli scienziati fin dall antichità e che costituisce un notevole capo d indagine della Fisica è senza dubbio quello che riguarda il

Dettagli

Elementi di Algebra Lineare. Spazio Vettoriale (lineare)

Elementi di Algebra Lineare. Spazio Vettoriale (lineare) Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi

Dettagli

Esercizi di Formulazione

Esercizi di Formulazione Politecnico di Milano, Corso di Modellistica e Siulazione Esercizi di Forulazione 1 Il sisografo 1.1 il problea di un sisografo perfettaente orizzontale coe quello rappresentato in - gura. Il odello deve

Dettagli

ESERCIZIO 1. II: conservazione energia meccanica: m1v1. m l, da cui: Da I si ricava: v1= v2, che inserito in II porta a: m m.

ESERCIZIO 1. II: conservazione energia meccanica: m1v1. m l, da cui: Da I si ricava: v1= v2, che inserito in II porta a: m m. ESERCIZIO Due asse = 5 kg e = 0 kg sono inizialente fere su un piano orizzontale liscio e appoggiate agli estrei i una olla i costante elastica k = 000 N/, antenuta copressa. A un certo istante, la olla

Dettagli

E sem pi di E serci zi e Qui z d E sam e

E sem pi di E serci zi e Qui z d E sam e E sem pi i E serci zi e Qui z E sam e Eser cit azion i i Cont r olli Au t om at ici Quiz. Il segnale x(t), antitrasformata i Laplace i X(s) = s(s+a) : è nullo per t=0 [x(0) = 0]; ha erivata nulla per t=0

Dettagli

Funzioni olomorfe e serie di potenze di una variabile complessa

Funzioni olomorfe e serie di potenze di una variabile complessa MATeXp Analisi infinitesimale Capitolo I37: Funzioni olomorfe e serie i potenze i una variabile complessa Contenuti elle sezioni a. Conizioni i monogeneità e funzioni olomorfe p.1 b. Serie i potenze e

Dettagli

I sistemi lineari. In questo capitolo verranno descritte le proprietà dei sistemi lineari stazionari continui e discreti.

I sistemi lineari. In questo capitolo verranno descritte le proprietà dei sistemi lineari stazionari continui e discreti. 3 I sistemi lineari In questo capitolo verranno escritte le proprietà ei sistemi lineari stazionari continui e iscreti 3 MOTO E RISPOSTA DEI SISTEMI LINEARI DISCRETI Si consieri un sistema lineare e stazionario

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA. q d

UNIVERSITÀ DEGLI STUDI DI PADOVA. q d Corsi i Laurea in Ingegneria Settore Informazione Problema 1 Due piani P " e P #, inefiniti, isolanti, carichi con ensità i carica uniforme positiva, sono posti nel vuoto a p/ fra i loro. Nel punto A euiistante

Dettagli

Esame di GEOMETRIA (Appello del 30 gennaio 2018)

Esame di GEOMETRIA (Appello del 30 gennaio 2018) Esame di GEOMETRIA (Appello del 3 gennaio 28) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Siano dati i sottospazi di R 4 : W = L, 4, 5 2 2. Scrivere equazioni cartesiane per W. {, U : x +

Dettagli

FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Prova scritta del 21 luglio 2008

FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Prova scritta del 21 luglio 2008 FISI per SIENZE IOLOGIHE,.. 007/008 Prova scritta del 1 luglio 008 1) Meccanica Un corpo di assa 0.4 kg poggia su un gradino d orizzontale di altezza H 1 e coprie di un tratto d 10 c una olla di costante

Dettagli

Equazioni differenziali lineari e oscillatori

Equazioni differenziali lineari e oscillatori Equazioni differenziali lineari e oscillatori A.Gaudillière 1 Equazioni differenziali lineari 1.1 Equazione oogenea Un e.d.l. è un equazione d incognita x : I E = K n I intervallo di R, K = R o C della

Dettagli

Esercizio (tratto dal Problema 2.6 del Mazzoldi)

Esercizio (tratto dal Problema 2.6 del Mazzoldi) Esercizio (tratto dal Problea 2.6 del Mazzoldi) Un punto ateriale di assa è sospeso traite un filo verticale ed è collegato al suolo da una olla, di costante elastica 70 N/, che si trova alla lunghezza

Dettagli

Una volgare introduzione alle EDO

Una volgare introduzione alle EDO Una volgare introuzione alle EDO Tiziano Penati 1 Primitive Abbiamo già incontrato un esempio semplice i equazioni ifferenziali orinarie (EDO): il calcolo i primitive. Vale la pena infatti i ricorare che

Dettagli

Esame 20 Luglio 2017

Esame 20 Luglio 2017 Esae 0 Luglio 07 Roberto Bonciani e Paolo Dore Corso di Fisica Generale Dipartiento di ateatica Università degli Studi di Roa La Sapienza Anno Accadeico 06-07 Esae - Fisica Generale I 0 Luglio 07 R. Bonciani,

Dettagli

Corso di Dinamica e Modellistica degli Inquinanti Anno 2017 Modelli di riferimento per la dispersione di inquinanti in aria

Corso di Dinamica e Modellistica degli Inquinanti Anno 2017 Modelli di riferimento per la dispersione di inquinanti in aria Corso di Dinaica e odellistica degli Inquinanti Anno 7 odelli di riferiento per la dispersione di inquinanti in aria Equazione di conservazione Consideriao un sistea di riferiento fisso centrato in corrispondenza

Dettagli

Teoria dei Sistemi Dinamici

Teoria dei Sistemi Dinamici Teoria ei Sistemi Dinamici 01GTG - 0GTG Esame el 9/01/008 Esercizio 1 Sistema meccanico (33 punti) TESTO Si consieri il sistema meccanico planare schematizzato nella Fig. 1, composto a una slitta A i massa

Dettagli

Applicazioni chimiche dell integrazione sistemi di equazioni differenziali

Applicazioni chimiche dell integrazione sistemi di equazioni differenziali Applicazioni chimiche ell integrazione sistemi i equazioni ifferenziali Cinetica i reazione con intermeio Si consieri una reazione chimica el tipo: A + 2 B C che, segueno un meccanismo a ue step, procee

Dettagli

8.4 Calcolo di tensori di inerzia

8.4 Calcolo di tensori di inerzia 1 CAPITL 8. IL CRP RIGID Infatti B I ( u) (P )(P ) [ u (P )] dτ(p ) B (P )(P ) [ u (P )] dτ(p ) B 1 + ρ(p )(P ) [ u (P )] dτ(p ) B B = 1 B I + I Analoga proprietà vale per i oenti di inerzia. 8. Calcolo

Dettagli

tel: esame orale.

tel: esame orale. ezione 1: Introuzione agli Azionaenti Elettrici - contenuti el corso TITOO DE CORSO: DOCENTE DE CORSO AZIONAENTI EETTRICI I Prof. G. Toasso e-ail: toasso@unicas.it tel: 0776-993730 Orario i riceviento

Dettagli

2. Fissato nello spazio un punto O, consideriamo lo spazio vettoriale geometrico

2. Fissato nello spazio un punto O, consideriamo lo spazio vettoriale geometrico Algebra lineare (Mateatica C.I.) 0.2.3. Fissato nello spazio un punto O, consideriao lo spazio vettoriale geoetrico S O dei vettori dello spazio con origine nel punto O. Sia π un piano passante per il

Dettagli

Legge di conservazione dell Energia Meccanica

Legge di conservazione dell Energia Meccanica 4-SBAC Fisica / ENERGIA e LAVORO Leggi ella Dinamica e spesso un problema molto complicato!!! risolverle e trovare la legge el moto r(t) Esempio Leggi i VARIAZIONE Leggi i CONSERVAZIONE energia massa carica

Dettagli

[Si può fare una dimostrazione valida per ogni scelta di u, che sfrutti solo la linearità del prodotto scalare]

[Si può fare una dimostrazione valida per ogni scelta di u, che sfrutti solo la linearità del prodotto scalare] Università di Bergamo Anno accademico 20182019 Primo anno di Ingegneria Foglio 7 Geometria e Algebra Lineare Sottospazi, basi e dimensione Esercizio 7.1. Sia u = (1, 1, 1) e si consideri il sottoinsieme

Dettagli

CORSO DI MATEMATICA 2 - LAUREA IN INGEGNERIA MECCANICA, AMBIENTE - TERRITORIO, CHIMICA-MATERIALI Padova I prova parziale TEMA n.

CORSO DI MATEMATICA 2 - LAUREA IN INGEGNERIA MECCANICA, AMBIENTE - TERRITORIO, CHIMICA-MATERIALI Padova I prova parziale TEMA n. CORSO DI MATEMATICA 2 - LAUREA IN INGEGNERIA MECCANICA AMBIENTE - TERRITORIO CHIMICA-MATERIALI Padova 10-02-06 I prova parziale TEMA n.1 Esercizio 1. Si consideri lo spazio vettoriale delle matrici M 2

Dettagli

Test di autovalutazione

Test di autovalutazione Test i autovalutazione Marco Mougno Corso i laurea in Ingegneria per l Ambiente, le Risorse e il Territorio Facoltà i Ingegneria, Università i Firenze Via S. Marta 3, 5139 Firenze, Italia email: marco.mougno@unifi.it

Dettagli

# $$ % % # & ' # $ $$ % ( # ( % % $

# $$ % % # & ' # $ $$ % ( # ( % % $ !" # $$% % # & ' # $$$% # % %$ !" # X F = f x ˆ ι F = f = f x x F x F x >, f x < F = k xιˆ F = k r F = k r r # * +*,-+. /, $! x k k x + x = pongo ω = > Equazione oraria x t = l cos ωt + φ +l -l

Dettagli

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI DEI SISTEMI LTI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

CONTROLLO DI SISTEMI ROBOTICI ANALISI MODALE

CONTROLLO DI SISTEMI ROBOTICI ANALISI MODALE CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI MODALE Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

Esame di Geometria - 9 CFU (Appello del 26 gennaio A)

Esame di Geometria - 9 CFU (Appello del 26 gennaio A) Esame di Geometria - 9 CFU (Appello del 26 gennaio 25 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. In R 3, siano dati il punto P = (, 2, 3) e la retta r : (,, ) + t(, 2), t R.. Determinare

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 07-08 7 VARIAZIOE DELLA VELOCITA accelerazione Principio d inerzia Un corpo perane nel suo stato di oto rettilineo unifore (o di quiete) a eno che non intervenga una forza esterna (I Legge di

Dettagli

Esperimentazioni di Fisica 1. Prova d esame del 22 gennaio 2019 SOLUZIONI

Esperimentazioni di Fisica 1. Prova d esame del 22 gennaio 2019 SOLUZIONI Esperimentazioni i Fisica 1 Prova esame el 22 gennaio 2019 SOLUZIONI Esp-1-Soluzioni - - Page 2 of 7 22/06/2018 1. (12 Punti) Quesito. Una misura ell accelerazione i gravità in un certo luogo è eseguita

Dettagli

Strumenti matematici. La forza intermolecolare. Introduzione al problema fisico Base di uno spazio vettoriale Serie di Fourier

Strumenti matematici. La forza intermolecolare. Introduzione al problema fisico Base di uno spazio vettoriale Serie di Fourier Struenti ateatici Struenti ateatici Introduzione al problea fisico Base di uno spazio vettoriale Serie di Fourier Serie di Taylor Nueri coplessi Stru. at. Stru. at. Forza di attrazione Forza di repulsione

Dettagli

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A.

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Geometria Canale. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 1 7 2 6 6 4 6+1 5 6+2 Totale 1+ ATTENZIONE:

Dettagli

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/12/2004

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/12/2004 Algebra Lineare. a.a. 004-05. Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/1/004 Esercizio 1. Siano V e W due spazi vettoriali e sia F : V W un isomorfismo (quindi F è lineare e

Dettagli

FORMULE 2 p 4 l formula diretta per calcolare il perimetro conoscendo il lato

FORMULE 2 p 4 l formula diretta per calcolare il perimetro conoscendo il lato Caratteristice ˆ Bˆ Cˆ Dˆ 90 ˆ Bˆ Cˆ Dˆ 60 B BC CD D C BD iagonale () IL QUDRTO lato (l) Ciascuna iagonale ivie il quarato in ue triangoli rettangoli uguali i cui cateti corrisponono ai lati el quarato

Dettagli

Oscillazioni. Definizione Moto circolare uniforme Moto armonico

Oscillazioni. Definizione Moto circolare uniforme Moto armonico Oscillazioni Definizione Moto circolare unifore Moto aronico Moto aronico e oto circolare unifore sinωt La curva a destra dello schizzo è una sinusoide. Abbiao diviso l asse x in parti uguali di angoli

Dettagli

Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica

Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica Esercizio 1. Sia f l endomorfismo di R 4 definito nel modo seguente: f(x, y, z, w) = (w,

Dettagli

T (a) La matrice associata alla trasformazione lineare T rispetto alle basi canoniche è semplicementre A = 1 1 5

T (a) La matrice associata alla trasformazione lineare T rispetto alle basi canoniche è semplicementre A = 1 1 5 8 Analogamente, T 0 = 6 4 5 4 2. (a) La matrice associata alla trasformazione lineare T rispetto alle basi canoniche è semplicementre 4 A = 5 C AB = 4 cioé la matrice dei coefficienti delle espressioni

Dettagli

PRIMA SCRITTA DEL MODULO DI

PRIMA SCRITTA DEL MODULO DI PRIMA SCRITTA DEL MODULO DI CORSO DI LAUREA IN INGEGNERIA ELETTRICA, ELETTRONICA ED INFORMATICA CORSO DI LAUREA IN INGEGNERIA BIOMEDICA 23 giugno 26 NOME: COGNOME: MATRICOLA: CFU: ESERCIZIO (8 punti) (a)

Dettagli

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A.

CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A PROVA SCRITTA DI GEOMETRIA DEL Corsi dei Proff. M. BORDONI, A. CORSO DI LAUREA IN INGEGNERIA MECCANICA A.A. - PROVA SCRITTA DI GEOMETRIA DEL -- Corsi dei Proff. M. BORDONI, A. FOSCHI Esercizio. E data l applicazione lineare L : R 4 R 3 definita dalla matrice A = 3

Dettagli

Compito di Informatica Grafica Edile Architettura 6 appello 27/07/2009. Nome e Cognome Numero di Matricola

Compito di Informatica Grafica Edile Architettura 6 appello 27/07/2009. Nome e Cognome Numero di Matricola Nome e Cognome Numero i Matricola Esercizio 1 (12 punti) Si consieri la base i ati i un ospeale riportata in figura. Ogni Operatore ha una Qualifica che può essere o meico o infermiere. Ogni operatore

Dettagli

Esercitazione 09: Forze d inerzia e oscillatore armonico

Esercitazione 09: Forze d inerzia e oscillatore armonico Meccanica e Tecnica delle Costruzioni Meccaniche Esercitazioni del corso. Periodo II Prof. Leonardo BERTINI Ing. Ciro SANTUS Esercitazione 09: Forze d inerzia e oscillatore aronico Indice 1 Moto relativo

Dettagli

GEOMETRIA. 17 FEBBRAIO ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi.

GEOMETRIA. 17 FEBBRAIO ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. GEOMETRIA 7 FEBBRAIO 2009 2 ore Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. Trascrivere i risultati dei quiz della prima parte nella tabella in questa pagina.

Dettagli

b) La velocità del centro di massa è identica prima e dopo l urto a causa della conservazione della quantità di moto del sistema: v CM = v.

b) La velocità del centro di massa è identica prima e dopo l urto a causa della conservazione della quantità di moto del sistema: v CM = v. Esercizio a) Il sistema elle ue masse è sottoposto a una risultante elle forze nulla in irezione orizzontale nell istante ell urto. Si conserva la quantità i moto in tale irezione. Assumeno come positiva

Dettagli

INTRODUZIONE ALLA TEORIA DEI MOMENTI ANGOLARI IN MECCANICA QUANTISTICA. Giampaolo Co

INTRODUZIONE ALLA TEORIA DEI MOMENTI ANGOLARI IN MECCANICA QUANTISTICA. Giampaolo Co INTRODUZIONE ALLA TEORIA DEI MOMENTI ANGOLARI IN MECCANICA QUANTISTICA Giapaolo Co Dipartiento di Fisica Università di Lecce Istituto Nazionale di Fisica Nucleare, Sez. di Lecce Introduzione Questa introduzione

Dettagli

S.Barbarino - Esercizi svolti di Campi Elettromagnetici. Esercizi svolti di Campi elettromagnetici - Anno 2012

S.Barbarino - Esercizi svolti di Campi Elettromagnetici. Esercizi svolti di Campi elettromagnetici - Anno 2012 S.Barbarino - Esercizi svolti i Campi Elettromagnetici Esercizi svolti i Campi elettromagnetici - Anno 2012 12-1) Esercizio n. 1 el 4/7/2012 Un ona elettromagnetica piana, viaggiante in aria e i frequenza

Dettagli

Prova Scritta di di Meccanica Analitica. 3 luglio Un punto di massa unitaria si muove soggetto al potenziale. V (x) = k 2 x2 + l2 2x 2 x > 0

Prova Scritta di di Meccanica Analitica. 3 luglio Un punto di massa unitaria si muove soggetto al potenziale. V (x) = k 2 x2 + l2 2x 2 x > 0 Prova Scritta di di Meccanica Analitica 3 luglio 015 Problea 1 Un punto di assa unitaria si uove soggetto al potenziale V (x) = k x + l x x > 0 a) disegnare lo spazio delle fasi e calcolare la frequenza

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

è definito in tutto il dielettrico e dipende dalla sola carica libera

è definito in tutto il dielettrico e dipende dalla sola carica libera Dielettrici I. Un conensatore a facce piane e parallele, i superficie S e istanza fra le armature, h, viene parzialmente riempito con un ielettrico lineare omogeneo i costante ielettrica.e spessore s Il

Dettagli

Esame di Geometria e Algebra Lineare

Esame di Geometria e Algebra Lineare Esame di Geometria e Algebra Lineare Esame scritto: 28 Luglio 2014 Esame orale: Cognome: Nome: Matricola: Tutte le risposte devono essere motivate. Gli esercizi vanno svolti su questi fogli, nello spazio

Dettagli

I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio.

I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio. I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio. A [8] Sono date le matrici A M 34 (IR) e b M 31 (IR) A = 1 0 2 2 0 k 1 k, b = 1

Dettagli

PROVA SCRITTA DEL MODULO INTEGRATO E DEL CORSO DI NOME: COGNOME: MATRICOLA: CFU:

PROVA SCRITTA DEL MODULO INTEGRATO E DEL CORSO DI NOME: COGNOME: MATRICOLA: CFU: PROVA SCRITTA DEL MODULO INTEGRATO E DEL CORSO DI CORSO DI LAUREA IN INGEGNERIA BIOMEDICA CORSO DI LAUREA IN INGEGNERIA ELETTRICA, ELETTRONICA E INFORMATICA 7 Febbraio 29 NOME: COGNOME: MATRICOLA: CFU:

Dettagli

Coppia differenziale con BJT e carico passivo

Coppia differenziale con BJT e carico passivo oppia ifferenziale con BJ e carico passivo tensione ifferenziale e i moo comune: v v v B1 B v M v + v B1 B risposta al segnale i moo comune G. Martines 1 oppia ifferenziale con BJ e carico passivo Saturazione

Dettagli

Fisica 2 per biotecnologie: Prova scritta 3 Febbraio 2014

Fisica 2 per biotecnologie: Prova scritta 3 Febbraio 2014 Fisica 2 per biotecnologie: Prova scritta 3 Febbraio 2014 Scrivere immeiatamente, ED IN EVIDENZA, sui ue fogli protocollo consegnati (e eventuali altri fogli richiesti) la seguente tabella: NOME :... Numero

Dettagli

Elementi di Teoria dei Sistemi

Elementi di Teoria dei Sistemi Parte 2, 1 Elementi di Teoria dei Sistemi Parte 2, 2 Sistema dinamico a tempo continuo Ingresso Uscita Parte 2, 3 Cosa significa Dinamico?? e` univocamente determinata? Se la risposta e` no Sistema dinamico

Dettagli

Determinazione della quota sul livello del mare del monte Etna

Determinazione della quota sul livello del mare del monte Etna Deterinazione ella quota sul livello el are el onte Etna a.s. 998/999 classe 5 oorinatore: Prof.. Epainona Preessa Per ottenere una isura i tutto rispetto, ci siao avvalsi ella consulenza e ella collaborazione

Dettagli

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3 Matematica II -..9 Spazio delle soluzioni di un sistema lineare omogeneo.. Consideriamo l equazione lineare omogenea nelle tre incognite x, x, x 3. x + x + 3x 3 = Possiamo risolvere l equazione ricavando

Dettagli

Fisica Generale III con Laboratorio

Fisica Generale III con Laboratorio Fisica Generale III con Laboratorio Capi elettrici e agnetici nella ateria Lezione 4 Magnetiso nella ateria Proprieta agnetiche della ateria Qualche analogia con i dielettrici: Moenti di dipolo agnetico

Dettagli

meccanica delle vibrazioni laurea magistrale ingegneria meccanica parte 4 modelli matematici per sistemi MDOF

meccanica delle vibrazioni laurea magistrale ingegneria meccanica parte 4 modelli matematici per sistemi MDOF E vietato ogni utilizzo diverso da quello inerente la preparazione dell esae del corso di @Units eccanica delle vibrazioni laurea agistrale ingegneria eccanica!! parte 4 odelli ateatici per sistei MDOF

Dettagli

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE II Sommario LEZIONE II Trasformata di Laplace Proprietà e trasformate notevoli Funzioni di trasferimento Scomposizione

Dettagli

Esercizi. u 2 + v 2. v 2 =

Esercizi. u 2 + v 2. v 2 = a. tatone corso di matematica applicata SV EX Esercizi. [Halmos p. 6] Sia U l insieme delle coppie ordinate di nmeri reali in ci siano definite le segenti leggi di composizione v U + v = α R U + v v 2

Dettagli

Compito di Fisica II per Chimica Prof. Paola LEACI e Prof. Piero RAPAGNANI

Compito di Fisica II per Chimica Prof. Paola LEACI e Prof. Piero RAPAGNANI Compito i Fisica II per Chimica 13-0-017 Prof. Paola LEACI e Prof. Piero RAPAGNANI ESERCIZIO 1 Due anelli, i raggi R 1 = 10 cm e R = 0 cm, sono isposti sullo stesso asse, come in figura, con i rispettivi

Dettagli

OLIMPIADI ITALIANE DI ASTRONOMIA 2009

OLIMPIADI ITALIANE DI ASTRONOMIA 2009 OLIPIADI ITALIANE DI ASTONOIA 9 AA INTEEIONALE SOLUZIONI DEI POBLEI Categoria SENIO Problea. Un sistea binario non risolto è ostituito una stella i luinosità ostante e una stella variabile. Se venissero

Dettagli

Analisi Matematica 1, parte B Laurea in Matematica

Analisi Matematica 1, parte B Laurea in Matematica Analisi Matematica 1, parte B Laurea in Matematica Prima settimana Sia x una variabile reale efinita in un intorno bucato i 0 in seguito x enoterà un incremento infinitesimo). Una funzione R x) si ice

Dettagli

STRUTTURE IN LEGNO II

STRUTTURE IN LEGNO II Sussii iattici per il corso i COSTRUZIONI EDILI Pro. Ing. Francesco Zanghì STRUTTURE IN LEGNO II AGGIORNAENTO 14/01/01 Corso i COSTRUZIONI EDILI Pro. Ing. Francesco Zanghì FLESSIONE SEPLICE RETTA La veriica

Dettagli

Lezione 12. Sottogruppi finiti di ordine fissato. I Teoremi di Sylow.

Lezione 12. Sottogruppi finiti di ordine fissato. I Teoremi di Sylow. Lezione 1 Prerequisiti: Lezioni, 7. ruppi di perutazioni. Riferienti ai testi: [Fd] Sezione.1; [H] Sezione.7; [PC] Sezione 5.1 Sottogruppi finiti di ordine fissato. I Teorei di Sylow. Dal Teorea di Lagrange

Dettagli

Nome Cognome Numero di matricola Coordinata posizione. Quarto compito di Fisica Generale 1 + Esercitazioni, a.a Settembre 2018

Nome Cognome Numero di matricola Coordinata posizione. Quarto compito di Fisica Generale 1 + Esercitazioni, a.a Settembre 2018 Noe Cognoe Nuero di atricola Coordinata posizione Quarto copito di isica Generale + Esercitazioni, a.a. 207-208 3 Settebre 208 ===================================================================== Preesse

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercizi ESERCIZIO (6 PUNTI) METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 4 SETTEMBRE 4 Si calcoli l integrale S = Γ Re(z) z 4 + z, con Γ = {z : z = Re iθ, θ [, π]}

Dettagli

Lezione 5 I mercati finanziari: il ruolo delle banche

Lezione 5 I mercati finanziari: il ruolo delle banche Lezione 5 I mercati finanziari: il ruolo elle banche Macroeconomia C. Petraglia Unibas 2012/13 1 Intermeiari finanziari Intermeiari finanziari : istituzioni che ricevono foni e li usano per accorare prestiti

Dettagli

1 EQUAZIONI DI MAXWELL

1 EQUAZIONI DI MAXWELL 1 EQUAZIONI DI MAXWELL Il campo elettromagnetico è un campo i forze. Può essere utile utilizzare una efinizione oparativa i campo: iciamo che in unazona ello spazio è presente un campo seèutile associare

Dettagli