INDICAZIONI DI LAVORO E DI METODO

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INDICAZIONI DI LAVORO E DI METODO"

Transcript

1 INDICAZIONI DI LAVORO E DI METODO Individuare gli argomenti nei quali la preparazione è insufficiente o lacunosa Formulare un programma di ripasso, distribuendo uniformemente il lavoro nell'arco dei mesi estivi Rivedere la teoria relativa agli argomenti poco conosciuti, prima di eseguire gli esercizi Rivedere gli esercizi già svolti su tali argomenti Individuare i tipi di errore commessi nelle verifiche svolte durante l'anno Eseguire nuovi esercizi in livello crescente di difficoltà, utilizzando a tale scopo, oltre al libro di testo, il testo consigliato per il recupero Eseguire test di riepilogo, riportati alla fine delle varie unità didattiche sul libro di testo, per valutare il nuovo livello di preparazione raggiunto Se si utilizza il testo consigliato per il recupero, analizzare attentamente gli esercizi svolti, eventualmente ripetendoli autonomamente, prima di affrontare gli esercizi proposti. Studio della teoria ricercare sul libro il significato dei termini e dei simboli sconosciuti, annotandoli a parte sottolineare sul testo i punti fondamentali, eventualmente sintetizzandone il contenuto a margine scrivere riassunti preparare schemi di riepilogo e prospetti, per favorire la memorizzazione e il successivo ripasso

2 Esecuzione degli esercizi leggere attentamente il testo dell'esercizio, per comprendere gli argomenti teorici a cui si riferisce e le richieste richiamare alla memoria le regole teoriche da utilizzare e le proprietà controllare ogni passaggio svolto prima di passare al successivo, per individuare subito eventuali errori di distrazione o di trascrizione se l'esercizio presenta delle difficoltà: ricontrollare il testo controllare la impostazione della risoluzione controllare i singoli passaggi rivedere la teoria rivedere analoghi esercizi già svolti

3 Ministero dell istruzione, dell università e della ricerca Istituto d Istruzione Superiore Severi-Correnti IIS Severi-Correnti /1 via Alcuino Milano codice fiscale SITO WEB: codice ministeriale Istituto principale MIIS07200D Istituto associato IPIA C.Correnti MIRI Istituto associato Liceo Scientifico F.Severi MIPS07201X Milano, 30 maggio 2014 Prot. n. Art. 4 e 6 D.P.R. 416/74 Art. 3 D.P.R. 417/74 PROGRAMMA EFFETTIVAMENTE SVOLTO DAL DOCENTE Prof: Classe: Materia: 1F Matematica e Informatica Algebra: Numeri naturali, interi e razionali Richiamo operazioni e loro proprietà, in particolare calcolo potenze e relative proprietà, calcolo espressioni. Algebra: teoria insiemi Insiemi e loro rappresentazione. Sottinsiemi. Operazioni fondamentali e loro proprietà. Partizione. Prodotto cartesiano. Concetto di legge di composizione. Algebra: logica Logica degli enunciati: Operazioni con le proposizioni (congiunzione, disgiunzione, implicazione materiale, complicazione, negazione). Implicazione inversa, contraria, contronominale. Formule preposizionali. Forme equiveridiche. Proprietà operazioni logiche. Tautologie notevoli. Regole di deduzione. Logica dei predicati: Predicati. Quantificatori. Operazioni logiche. Predicati e insiemi. Condizione necessaria e sufficiente. Algebra: calcolo letterale Espressioni algebriche letterali. Monomi: caratteristiche. Operazioni con i monomi, massimo comun divisore e minimo comune multiplo, espressioni. Polinomi: caratteristiche. Operazioni con polinomi. Prodotti notevoli (quadrato di binomio, quadrato di trinomio, o polinomio, cubo di binomio, prodotto della somma di monomi per la loro differenza, potenza di binomio). Scomposizione in fattori di polinomi (raccoglimento a fattor comune, raccoglimento a fattor parziale, trinomio sviluppo del quadrato di un binomio, polinomio sviluppo del quadrato di un trinomio, binomio differenza di due quadrati, quadrinomio sviluppo del cubo di un binomio, somma o differenza di cubi, scomposizione del trinomio di 2. Minimo comune multiplo e massimo comun divisore. Frazioni algebriche e loro semplificazione. Operazioni con le frazioni algebriche. Espressioni con frazioni algebriche. Mod D2 Rev.0 del 2/2/2009 pag 1 di 2

4 Divisione tra polinomi. Regola di Ruffini. Teorema del resto. Scomposizione dei polinomi con teorema del resto e regola Ruffini. Algebra: Equazioni 1 Identità. Equazioni ad una incognita: possibili, impossibili, indeterminate. Equazioni intere e frazionarie, numeriche o letterali. Principi di equivalenza equazioni. Equazioni equivalenti come predicati logicamente equivalenti. Risoluzione equazioni dei tipi presentati e controllo accettabilità soluzioni. Risoluzione di equazioni di grado superiore al primo se ad esso riducibili con legge annullamento prodotto. Problemi di 1 ad una incognita. Algebra: Disequazioni 1 (1 parte) Disuguaglianze e relative proprietà. Disequazioni 1 intere: principi di equivalenza. Risoluzione sistemi disequazione intere di 1 a partire concetto di insieme delle soluzioni. Algebra: relazioni e funzioni (1a parte) Predicati. Relazioni e loro proprietà. Relazioni di equivalenza e ordine. Classi di equivalenza. Ordine stretto e largo, totale e parziale. Prima introduzione funzioni. Dominio e condominio. Rappresentazione funzione nel piano cartesiano. Le funzioni della fisica: costanti, proporzionalità diretta, lineare, Grafici di funzioni lineari: riflessioni sul coefficiente angolare, rette parallele. Interpretazione grafica dell equazione di 1 e dei sistemi di 1. Algebra: Sistemi di equazioni di 1 grado Sistemi di equazioni di 1 : discussione, risoluzione con metodi sostituzione, confronto, riduzione, Cramer. Problemi di 1 a più incognite. Algebra: Statistica descrittiva Raccolta dati e vari metodi rappresentazione. Indici di posizione centrale. Indici di variabilità. Geometria Assiomi geometria euclidea. Prime definizioni. Concetto di congruenza. Confronto e operazioni tra segmenti ed angoli. Poligoni e triangoli, definizioni varie. Criteri di congruenza dei triangoli. Proprietà del triangolo isoscele. Teorema 1 e 2 dell angolo esterno. Congruenza di poligoni. Relazioni tra lati e angoli di un triangolo. Rette perpendicolari. Rette parallele. Criteri di parallelismo. Parallelismo e perpendicolarità: conseguenze. Conseguenze nei triangoli rettangoli. I parallelogrammi: proprietà, quadrilateri particolari. Teorema di Talete. Concetto di trasformazione geometrica e di invariante. Isometrie. Simmetria centrale, assiale, rotazione e traslazione e relative proprietà. Prodotto di trasformazioni. Condizioni per individuare una isometria. Informatica Preparazione dei moduli ECDL per relativi esami. Mod2 Gestione file IL DOCENTE I RAPPRESENTANTI DI CLASSE Mod D2 Rev.0 del 2/2/2009 pag 2 di 2

5 Compiti matematica classe 1F Libri di testo: Algebra Dodero Baroncini Manfredi Geometria Dodero Per Tutti Algebra Pag. Nr. Geometria pagina seguente Solo per i per i Debiti: Utilizzare gli esercizi svolti in classe ed esercizi svolti sui libri di testo Consigliato per i debiti: L esercizio matematico volume 1; Autore: Antonina Ladini; Casa Editrice: Ghisetti e Corvi

6

7 Ministero dell istruzione, dell università e della ricerca Istituto d Istruzione Superiore Severi-Correnti IIS Severi-Correnti /1 via Alcuino Milano codice fiscale SITO WEB: codice ministeriale Istituto principale MIIS07200D Istituto associato IPIA C.Correnti MIRI Istituto associato Liceo Scientifico F.Severi MIPS07201X Milano, 30 maggio 2014 Prot. n. Art. 4 e 6 D.P.R. 416/74 Art. 3 D.P.R. 417/74 PROGRAMMA EFFETTIVAMENTE SVOLTO DAL DOCENTE Prof: Classe: Materia: 2F Matematica e Informatica ALGEBRA NUMERI IRRAZIONALI E NUMERI REALI Operazioni. I RADICALI Radicali aritmetici e algebrici - operazioni - razionalizzazione. NUMERI IMMAGINARI E NUMERI COMPLESSI EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Equazioni e incomplete e complete - equazioni letterali - formula ridotta - relazioni tra le soluzioni e i coefficienti di una equazione di secondo grado - segno di un trinomio di secondo grado - equazioni parametriche - disequazioni di secondo grado intere fratte e con modulo. EQUAZIONI DI GRADO SUPERIORE AL SECONDO Equazioni e disequazioni abbassabili di grado, biquadratiche, binomie, trinomie - equazioni e disequazioni irrazionali. SISTEMI DI EQUAZIONI Sistemi di secondo grado - sistemi simmetrici - sistemi di grado superiore al secondo - sistemi a tre incognite. Mod D2 Rev.0 del 2/2/2009 pag 1 di 2

8 GEOMETRIA ANALITICA Coordinate cartesiane - funzioni e loro rappresentazione grafica - la retta - la parabola. APPLICAZIONI DELLA GEOMETRIA ANALITICA Risoluzione grafica di equazioni e disequazioni di primo e di secondo grado PROBLEMI DI SECONDO GRADO PROBABILITA Definizione classica di probabilità. Somma logica degli eventi. Prodotto logico degli eventi. GEOMETRIA LA CIRCONFERENZA Luoghi. Circonferenza e cerchio. Proprietà. Rette e circonferenze. Angoli alla circonferenza e al centro. I POLIGONI E LA CIRCONFERENZA Poligoni inscritti e circoscritti. Poligoni regolari. Punti notevoli di un triangolo. EQUIVALENZA DELLE FIGURE PIANE Definizioni e postulati - equivalenza dei parallelogrammi e dei triangoli - trasformazione dei poligoni - teoremi di Euclide e di Pitagora. LA PROPORZIONALITÀ OMOTETIE SIMILITUDINI Grandezze proporzionali. Teorema di Talete; teorema bisettrice angolo interno, teorema bisettrice angolo esterno. Similitudine e criteri relativi. Triangoli simili - poligoni simili - proprietà dei poligoni simili - confronto tra superfici di poligoni simili. Teorema secante, teorema tangente. Teoremi di Pitagora e Euclide. Sezione aurea. APPLICAZIONI DELL'ALGEBRA ALLA GEOMETRIA Relazioni relative al triangolo rettangolo, al quadrato e al triangolo equilatero - lati di un poligono regolare - area del triangolo - raggi delle circonferenze inscritte e circoscritte ad un triangolo. TRIGONOMETRIA Misura angoli in radianti. Definizione funzioni circolari. Identità fondamentali. Valori per angoli particolari. Angoli associati. INFORMATICA Prosecuzione del lavoro svolto il primo anno per la preparazione agli esami ECDL IL DOCENTE I RAPPRESENTANTI DI CLASSE Mod D2 Rev.0 del 2/2/2009 pag 2 di 2

9 Classe 2F MATEMATICA L educazione è il grande motore dello sviluppo personale. E grazie all educazione che la figlia di un contadino può diventare medico, il figlio di un minatore il capo miniera o un bambino nato in una famiglia povera il presidente di una grande nazione. Non ciò che ci viene dato, ma la capacità di valorizzare al meglio ciò che abbiamo è ciò che distingue una persona dall altra (Nelson Mandela) Indicazioni: Per i promossi a giugno: accurato mantenimento delle competenze, esercizi proposti sul quaderno da esibire a settembre; approfondimenti consigliati; proposte extra da meditare Per i rinviati a settembre: rivisitazione del programma; analisi accurata esercizi proposti sul quaderno da esibire a settembre; utilizzo eventuali libretti per il recupero consigliati Suggerimenti di lettura Furio Honsell, L'algoritmo del parcheggio, Mondadori, Enzesberger-Il mago dei numeri-einaudi

10 Suggerimento minimo (obbligatorio per rinviati); naturalmente ove la memoria non soccorre si fa qualche esercizio in più. 1. Algebra Disequazioni: pag 66 n 167,173; pag 94 n 102,103; pag 100 n46; pag 223 n 634,639; Radicali : pag 138 n 47, 56,60; pag 146 n 193,199; pag 187 n 110,119; pag 192 n 177, 172; pag 193 n 201; pag 199 n 309, 320,pag 205 n370, 363, pag 207 n 394,pag 225 n 654 Equazioni: pag 286 n 235,238; pag 300 n 375,376; pag 307 n 427,430; pag 345 n 119,139, 205; Sistemi: pag 379 n 137,163; pag 385 n 190; Disequazioni: pag 434 n 245, 273,282, 339,367,449 Equazioni irrazionali: pag 497 n 108, 113 Trigonometria: vol 1: pag 777 n 24, Geometria Problemi sotto 3. Probabilità,: Nel gioco della roulette vi sono 36 numeri più lo zero. Trovare la probabilità dell'uscita alla roulette di un numero compreso tra 5 e 9 (compresi) oppure multiplo di 10. Tre scatole A, B e C contengono lampade prodotte da una certa fabbrica di cui alcune difettose. A contiene 2000 lampade con il 5% di esse difettose, B ne contiene 500 con il 20% difettose e C ne contiene 1000 con il 10% difettose. Si sceglie una scatola a caso e si estrae a caso una lampada. Quale è la probabilità che essa sia difettosa? Qual è la probabilità che un punto scelta a caso nel quadrato, sia interno alla circonferenza inscritta? Per gli alunni che devono recuperare prima del giudizio definitivo: Antonina Latini L esercizio matematico vol 2 Ghisetti & Corvi ISBN

11

12 INDICAZIONI DI LAVORO E DI METODO Individuare gli argomenti nei quali la preparazione è insufficiente o lacunosa Formulare un programma di ripasso, distribuendo uniformemente il lavoro nell'arco dei mesi estivi Rivedere la teoria relativa agli argomenti poco conosciuti, prima di eseguire gli esercizi Rivedere gli esercizi già svolti su tali argomenti Rifare le verifiche assegnate durante l'anno Analizzare attentamente, sul libro di testo, gli esercizi svolti, eventualmente ripetendoli autonomamente, prima di affrontare gli esercizi proposti. Durante l'esecuzione degli esercizi leggere attentamente il testo dell'esercizio, per comprendere gli argomenti teorici a cui si riferisce e le richieste avvalersi di figure e grafici come strumenti di lavoro motivare razionalmente ogni passaggio curare le rappresentazioni grafiche tenere conto delle limitazioni del problema controllare la congruità del risultato quando il risultato dell'esercizio è diverso da quello del libro o comunque incongruo: ricontrollare il testo controllare l'impostazione della risoluzione controllare i singoli passaggi rivedere la teoria rivedere analoghi esercizi già svolti

13 Ministero dell istruzione, dell università e della ricerca Istituto d Istruzione Superiore Severi-Correnti IIS Severi-Correnti /1 via Alcuino Milano codice fiscale SITO WEB: codice ministeriale Istituto principale MIIS07200D Istituto associato IPIA C.Correnti MIRI Istituto associato Liceo Scientifico F.Severi MIPS07201X Milano, 30 maggio 2014 Prot. n. Art. 4 e 6 D.P.R. 416/74 Art. 3 D.P.R. 417/74 PROGRAMMA EFFETTIVAMENTE SVOLTO DAL DOCENTE Prof: Classe: Materia: 3F ed integrazione funzioni Funzioni reali, dominio, codominio, continuità, invertibilità. Analisi funzioni definite a tratti. Funzione proporzionalità diretta, funzione lineare (prime indicazioni sul significato di m, condizione di parallelismo). Funzioni con presenza valori assoluti nell'espressione analitica. Funzione quadratica: recupero conoscenze pregresse. Funzione proporzionalità inversa, funzione omografica. Funzioni irrazionali riconducibili a parti di coniche (cfr.tema coniche). Per tutte: ricerca degli zeri, utilizzo grafici per risoluzione equazioni e disequazioni, ricerca eventuale funzione inversa. Analisi grafici ottenibili dai precedenti tramite trasformazioni piane elementari. Metodi algebrici per risoluzione disequazioni Dalla f(x) lineare alla rappresentazione di qualunque retta nel piano Collegamento tema dell anno precedente: l uso del piano cartesiano; applicazione alla ricerca di luoghi piani. Collegamento anno precedente: le funzioni lineari. Rette parallele assi cartesiani. Retta per O. Retta: equazione canonica, equazione generale, equazioni parametriche. Condizione di parallelismo e di perpendicolarità. A partire dai concetti precedenti: equazione retta passante per punto P dato e di noto coefficiente angolare, coefficiente retta per due punti dati, equazione retta passante per due punti dati, distanza tra punti che appartengono alla stessa retta, distanza punto-retta, asse di un segmento, bisettrici. Fascio come combinazione lineare di due rette Circonferenza come luogo piano. Posizioni reciproche retta circonferenza o tra due circonferenze. Condizioni di tangenza. Condizioni per individuare una circonferenza. Uso del metodo dei fasci di circonferenze. Potenza di un punto rispetto ad una circonferenza. Parabola come luogo piano. Parabole con assi paralleli ai cartesiani. Condizioni di tangenza. Proprietà relative parabola. Semplici problemi di massimo o minimo connessi uso parabole. Equazioni parametriche. Fasci di parabole. Ellisse come luogo piano. Equazione canonica. Eccentricità. Condizioni tangenza. Proprietà. Ellissi riferite a rette parallele agli assi. Mod D2 Rev.0 del 2/2/2009 pag 1 di 2

14 Iperbole come luogo piano. Equazione canonica. Eccentricità. Condizione di tangenza. Proprietà. Equazione iperbole riferita a rette parallele agli assi. Iperbole equilatera riferita assi o asintoti. Funzione omografica. Risoluzione di problemi di geometria piana: confronto metodo sintetico metodo analitico. Generalità sulle coniche: equazione generale, condizioni per individuazione, coniche degeneri, fasci di coniche. Ricerca centro e asintoti Ripresa funzioni circolari e avvio trigonometria Ripasso: Archi orientati e loro misura. Funzioni circolari: nuova introduzione a partire circonferenza goniometrica, loro rappresentazione, caratteristiche. Coefficiente angolare di una retta nel piano cartesiano e tangente angolo d'inclinazione. Relazioni goniometriche fondamentali. Funzioni di archi speciali (π/6, π/4, π/3 ecc.). Relazioni tra funzioni di archi associati. Funzioni circolari inverse. Risoluzione equazioni e disequazioni elementari. Attenzione particolare alla rappresentazione di funzioni e alla risoluzione grafica di disequazioni. Formule addizione, sottrazione, moltiplicazione, bisezione. Formule per l'espressione razionale delle funzioni circolari in dipendenza da tg x 2. Risoluzione equazioni omogenee, o riconducibili alle precedenti, equazioni lineari (differenti modalità). Disequazioni, intere, fratte, irrazionali, con valori assoluti e sistemi di disequazioni. Attenzione particolare alla rappresentazione di funzioni e alla risoluzione grafica di disequazioni IL DOCENTE I RAPPRESENTANTI DI CLASSE Mod D2 Rev.0 del 2/2/2009 pag 2 di 2

15 Classe 3 D/F/G 2013/2014 Matematica L educazione è il grande motore dello sviluppo personale. E grazie all educazione che la figlia di un contadino può diventare medico, il figlio di un minatore il capo miniera o un bambino nato in una famiglia povera il presidente di una grande nazione. Non ciò che ci viene dato, ma la capacità di valorizzare al meglio ciò che abbiamo è ciò che distingue una persona dall altra (Nelson Mandela) Tornare a settembre con il ripasso fatto. Ognuno scelga esercizi q.b.: Dal libro: pag: affrontare i problemi e i test alle pagine verso l esame di stato per evidenziare sia le competenze acquisite che le conoscenze mancanti provare gli esercizi alle pagine realtà e modelli per mettersi in gioco e testare le proprie capacità di utilizzare i concetti appresi per risolvere problemi di natura pratica Per chi deve recuperare abilità: Individuare gli argomenti nei quali la preparazione è insufficiente o lacunosa Formulare un programma di ripasso, distribuendo uniformemente il lavoro nell'arco dei mesi estivi Rivedere la teoria relativa agli argomenti poco conosciuti, prima di eseguire gli esercizi Rivedere gli esercizi già svolti su tali argomenti Rifare le verifiche assegnate durante l'anno Analizzare attentamente, sul libro di testo, gli esercizi svolti, eventualmente ripetendoli autonomamente, prima di affrontare gli esercizi proposti. Durante l'esecuzione degli esercizi leggere attentamente il testo dell'esercizio, per comprendere gli argomenti teorici a cui si riferisce e le richieste avvalersi di figure e grafici come strumenti di lavoro motivare razionalmente ogni passaggio curare le rappresentazioni grafiche tenere conto delle limitazioni del problema controllare la congruità del risultato quando il risultato dell'esercizio è diverso da quello del libro o comunque incongruo: ricontrollare il testo controllare l'impostazione della risoluzione controllare i singoli passaggi rivedere la teoria rivedere analoghi esercizi già svolti Eventualmente avvalersi anche di testi per il recupero come: Canale-Facciotto-Grangia Matematica X tre Ripasso, recupero, approfondimento Matematica per triennio vol1 Loescher ISBN euro 9.05 Fornara Porta ICONE DI MATEMATICA VL 3 Loescher ISBN euro 8.75 eventualmente anche in versione mista elettronica 1 di 1

16 Ministero dell istruzione, dell università e della ricerca Istituto d Istruzione Superiore Severi-Correnti IIS Severi-Correnti /1 via Alcuino Milano codice fiscale SITO WEB: codice ministeriale Istituto principale MIIS07200D Istituto associato IPIA C.Correnti MIRI Istituto associato Liceo Scientifico F.Severi MIPS07201X Milano, 30 maggio 2014 Prot. n. Art. 4 e 6 D.P.R. 416/74 Art. 3 D.P.R. 417/74 PROGRAMMA EFFETTIVAMENTE SVOLTO DAL DOCENTE Prof: Classe: Materia: 4E Completamento trigonometria Archi orientati e loro misura. Funzioni circolari: introduzione come rapporti tra segmenti orientati, loro rappresentazione, caratteristiche. Coefficiente angolare di una retta nel piano cartesiano, tangente e angolo d'inclinazione. Relazioni goniometriche fondamentali. Funzioni di archi speciali (π/6, π/4, π/3 ecc.). Relazioni tra funzioni di archi associati. Funzioni circolari inverse. Teoremi dei triangoli rettangoli. Teoremi della corda, area triangolo, proiezioni, seni, Carnot. Risoluzione triangoli qualsiasi. Formule addizione, sottrazione, moltiplicazione, bisezione. Formule per l'espressione razionale delle funzioni circolari in dipendenza da tg x 2. Risoluzione equazioni (1,2, omogenee, o riconducibili alle precedenti, equazioni lineari (differenti modalità)). Disequazioni, intere, fratte, irrazionali, con valori assoluti e sistemi di disequazioni. Attenzione particolare alla rappresentazione di funzioni e alla risoluzione grafica di disequazioni Risoluzione triangoli qualsiasi. Applicazione teoremi a problemi di varia esponenziale e logaritmica Analisi funzioni esponenziali e logaritmiche, calcolo logaritmi e relative proprietà, equazioni e disequazioni (risoluzione analitica e grafica, deduzione di grafici). Mod D2 Rev.0 del 2/2/2009 pag 1 di 2

17 @ Riflessioni sugli insiemi numerici, loro costruzione e struttura Uso metodo dimostrativo per induzione. Il problema della ricorsione. Gli insiemi Z, Q, R. Definizione di C: forme algebrica, trigonometrica esponenziale di un numero complesso, formula di De Moivre, radice ennesima di un numero complesso, teorema fondamentale Analisi dei dati (Parte I) Calcolo combinatorio: permutazioni, disposizioni, combinazioni, determinazione del loro numero e proprietà; sviluppo della potenza di un binomio. Calcolo della probabilità: differenze tra impostazioni (classica, frequentista, soggettiva, assiomatica), probabilità totale, probabilità condizionata, probabilità composta e sue applicazioni: prove ripetute e teorema di Geometria spazio (parte 1) Concetti primitivi e assiomi. Posizioni reciproche di rette e piani. Condizione per la perpendicolarità di una retta ad un piano. Teorema tre perpendicolari. Distanze nello spazio. Diedri. Poliedri. Poliedri regolari. Solidi di rotazione. Aree principali solidi. Estensione ed equivalenza di solidi. Principio di Cavalieri. Volume sfera. Volume piramide e volume prisma stessa base e altezza. Volume principali analisi (Parte I ) Generalità funzioni, funzioni monotone, periodiche, pari e dispari. Estremi di una funzione. Campi di esistenza. Introduzione ai concetti di limiti di funzione reale di variabile reale (limite destro, sinistro, limite finito per eccesso e per difetto, limite per x che tende a ±, definizioni in termini di intorni e epsilon-delta definizione). Introduzione al significato e all'uso dei teoremi relativi alle operazioni sui limiti. Teoremi fondamentali dei limiti: unicità, confronto, permanenza del segno. Limiti di funzioni elementari. Alcune forme di indecisione e loro risoluzione. I limiti notevoli. Definizione di funzione continua in un punto ed in un intervallo. Funzione di funzione, funzione inversa, funzioni inverse delle funzioni goniometriche. Punti di discontinuità per una funzione. Asintoti. Studio del grafico probabile di una funzione. IL DOCENTE I RAPPRESENTANTI DI CLASSE Mod D2 Rev.0 del 2/2/2009 pag 2 di 2

18 Classi 4 D/E/F 2013/2014 Matematica L educazione è il grande motore dello sviluppo personale. E grazie all educazione che la figlia di un contadino può diventare medico, il figlio di un minatore il capo miniera o un bambino nato in una famiglia povera il presidente di una grande nazione. Non ciò che ci viene dato, ma la capacità di valorizzare al meglio ciò che abbiamo è ciò che distingue una persona dall altra (Nelson Mandela) Tornare a settembre con il ripasso fatto. Ognuno scelga esercizi q.b.: Dal libro: affrontare i problemi e i test alle pagine verso l esame di stato presenti ad ogni fine capitolo, per evidenziare sia le competenze acquisite che le conoscenze mancanti provare gli esercizi alle pagine realtà e modelli per mettersi in gioco e testare le proprie capacità di utilizzare i concetti appresi per risolvere problemi di natura pratica dai temi d esame reperibili in rete: anno Problemi Quesiti 2001 ord PNI ord ord PNI ord ord ord ord PNI ord PNI ord Per chi deve recuperare abilità: Individuare gli argomenti nei quali la preparazione è insufficiente o lacunosa Formulare un programma di ripasso, distribuendo uniformemente il lavoro nell'arco dei mesi estivi Rivedere la teoria relativa agli argomenti poco conosciuti, prima di eseguire gli esercizi Rivedere gli esercizi già svolti su tali argomenti Rifare le verifiche assegnate durante l'anno Analizzare attentamente, sul libro di testo, gli esercizi svolti, eventualmente ripetendoli autonomamente, prima di affrontare gli esercizi proposti. Durante l'esecuzione degli esercizi leggere attentamente il testo dell'esercizio, per comprendere gli argomenti teorici a cui si riferisce e le richieste avvalersi di figure e grafici come strumenti di lavoro motivare razionalmente ogni passaggio curare le rappresentazioni grafiche tenere conto delle limitazioni del problema controllare la congruità del risultato quando il risultato dell'esercizio è diverso da quello del libro o comunque incongruo: ricontrollare il testo controllare l'impostazione della risoluzione controllare i singoli passaggi rivedere la teoria rivedere analoghi esercizi già svolti 1 di 1

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. UdA n. 1 Titolo: Disequazioni algebriche Saper esprimere in linguaggio matematico disuguaglianze e disequazioni Risolvere problemi mediante l uso di disequazioni algebriche Le disequazioni I principi delle

Dettagli

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014)

PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) PROGRAMMA DI FISICA ( CLASSE I SEZ. E) ( anno scol. 2013/2014) Le grandezze fisiche. Metodo sperimentale di Galilei. Concetto di grandezza fisica e della sua misura. Il Sistema internazionale di Unità

Dettagli

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.

a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d. 1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015

ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA a.s. 2014/2015 NUMERI. SPAZIO E FIGURE. RELAZIONI, FUNZIONI, MISURE, DATI E PREVISIONI Le sociali e ISTITUTO COMPRENSIVO N 1 LANCIANO - SCUOLA SECONDARIA DI PRIMO GRADO CURRICOLO VERTICALE - Classe Prima MATEMATICA procedure

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2002 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARCHIMEDE 4/ 97 ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA In un

Dettagli

POLITECNICO DI BARI REGOLAMENTO TEST DI AMMISSIONE

POLITECNICO DI BARI REGOLAMENTO TEST DI AMMISSIONE POLITECNICO DI BARI REGOLAMENTO TEST DI AMMISSIONE IMMATRICOLAZIONI AL PRIMO ANNO DEI CORSI DI LAUREA TRIENNA- LI IN INGEGNERIA DEL POLITECNICO DI BARI - A.A. 2015/2016 Sommario REGOLAMENTO TEST DI AMMISSIONE...

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO

SIMULAZIONE DI PROVA D ESAME CORSO DI ORDINAMENTO SIMULAZINE DI PRVA D ESAME CRS DI RDINAMENT Risolvi uno dei due problemi e 5 dei quesiti del questionario. PRBLEMA Considera la famiglia di funzioni k ln f k () se k se e la funzione g() ln se. se. Determina

Dettagli

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2012 seconda prova scritta per il liceo scientifico di ordinamento RTICL rchimede 4 esame di stato seconda prova scritta per il liceo scientifico di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario PRBLEM Siano f e g le funzioni

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem)

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Raccolta di Esercizi di Matematica Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Contenuti: 8-1. L ordine Algebrico delle Operazioni 8-2. Problemi sulle Percentuali 8-3. Le Forme Standard e Point-Slope

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

I numeri relativi. Il calcolo letterale

I numeri relativi. Il calcolo letterale Indice Il numero unità I numeri relativi VIII Indice L insieme R Gli insiemi Z e Q Confronto di numeri relativi Le operazioni fondamentali in Z e Q 0 L addizione 0 La sottrazione La somma algebrica La

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Maturità Scientifica PNI, sessione ordinaria 2000-2001

Maturità Scientifica PNI, sessione ordinaria 2000-2001 Matematica per la nuova maturità scientifica A. Bernardo M. Pedone Maturità Scientifica PNI, sessione ordinaria 000-00 Problema Sia AB un segmento di lunghezza a e il suo punto medio. Fissato un conveniente

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2010 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO Archimede ESAME DI STATO SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. Sia ABCD un quadrato di

Dettagli

LA MATEMATICA PER LE ALTRE DISCIPLINE. Prerequisiti e sviluppi universitari G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R.

LA MATEMATICA PER LE ALTRE DISCIPLINE. Prerequisiti e sviluppi universitari G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R. LA MATEMATICA PER LE ALTRE DISCIPLINE Prerequisiti e sviluppi universitari a cura di G. ACCASCINA, G. ANICHINI, G. ANZELLOTTI, F. ROSSO, V. VILLANI, R. ZAN Unione Matematica Italiana 2006 Ho continuato

Dettagli

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π

a) Si descriva, internamente al triangolo, con centro in B e raggio x, l arco di circonferenza di π π PROBLEMA Il triangolo rettangolo ABC ha l ipotenusa AB = a e l angolo CAB =. a) Si descriva, internamente al triangolo, con centro in B e raggio, l arco di circonferenza di estremi P e Q rispettivamente

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FUNZIONI ALESSANDRO BOCCONI Indice 1 Le funzioni nel discreto 3 1.1 Le funzioni nel discreto.................................. 3 1.1.1 La rappresentazione grafica............................

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

TIMSS 2007 Quadro di riferimento di matematica. dal volume: "TIMSS 2007 Assessment Frameworks"

TIMSS 2007 Quadro di riferimento di matematica. dal volume: TIMSS 2007 Assessment Frameworks Capitolo Uno TIMSS 2007 Quadro di riferimento di matematica dal volume: "TIMSS 2007 Assessment Frameworks" a cura di Anna Maria Caputo, Cristiano Zicchi Copyright 2005 IEA International Association for

Dettagli

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ;

Risposta: L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; 1. Un triangolo ha area 3 e due lati che misurano 2 e 3. Qual è la misura del terzo lato? : L area del triangolo è dove sono le misure di due lati e è l ampiezza dell angolo tra essi compreso ; nel nostro

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Formule trigonometriche

Formule trigonometriche Formule trigonometriche C. Enrico F. Bonaldi 1 Formule trigonometriche In trigonometria esistono delle formule fondamentali che permettono di calcolare le funzioni goniometriche della somma di due angoli

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO

SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO SCOMPOSIZIONE IN FATTORI DI UN POLINOMIO Così come avviene per i numeri ( 180 = 5 ), la scomposizione in fattori di un polinomio è la trasformazione di un polinomio in un prodotto di più polinomi irriducibili

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

STUDIO DEL SEGNO DI UNA FUNZIONE

STUDIO DEL SEGNO DI UNA FUNZIONE STUDIO DEL SEGNO DI UNA FUNZIONE Quando si studia una funzione! " #$%&' (funzione reale di variabile reale) è fondamentale conoscere il segno, in altre parole sapere per quali valori di &( #$%&'$è positiva,

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Scuola primaria: obiettivi al termine della classe 5

Scuola primaria: obiettivi al termine della classe 5 Competenza: partecipare e interagire con gli altri in diverse situazioni comunicative Scuola Infanzia : 3 anni Obiettivi di *Esprime e comunica agli altri emozioni, sentimenti, pensieri attraverso il linguaggio

Dettagli

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas

FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas FUNZIONI REALI DI VARIABILE REALE e CONTINUITA Roberto Argiolas.8.6.. - -.5.5 -. In questa dispensa ricordiamo la classificazione delle funzioni elementari e il dominio di esistenza delle stesse. Inoltre

Dettagli

B9. Equazioni di grado superiore al secondo

B9. Equazioni di grado superiore al secondo B9. Equazioni di grado superiore al secondo Le equazioni di terzo grado hanno una, due o tre soluzioni, risolvibili algebricamente con formule molto più complesse di quelle dell equazione di secondo grado.

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO. Si chiama funzione lineare (o funzione affine) una funzione del tipo = +

FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO. Si chiama funzione lineare (o funzione affine) una funzione del tipo = + FUNZIONI LINEARI. FUNZIONE VALORE ASSOLUTO Si chiama funzione lineare (o funzione affine) una funzione del tipo = + dove m e q sono numeri reali fissati. Il grafico di tale funzione è una retta, di cui

Dettagli

Le Geometrie non euclidee

Le Geometrie non euclidee Le Geometrie non euclidee Un introduzione elementare Riccardo Dossena Liceo Scientifico G. Novello Codogno (LO) 12 marzo 2015 Euclide di Alessandria Euclide (circa 300 a.c.) Euclide di Alessandria 1 Epoca:

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc.

1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. Classi Numeriche 1 1 Numeri Complessi, Formula di Eulero, Decomposizioni Notevoli,... ecc. In questo breve capitolo richiamiamo le definizioni delle classi numeriche fondamentali, già note al lettore,

Dettagli

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO

4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,

Dettagli

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α?

Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? QUESITO 1 Nel triangolo disegnato a lato, qual è la misura, in gradi e primi sessagesimali, di α? Applicando il Teorema dei seni si può determinare il valore di senza indeterminazione, in quanto dalla

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA

Istituto Istruzione Superiore Liceo Scientifico Ghilarza Anno Scolastico 2013/2014 PROGRAMMA DI MATEMATICA E FISICA PROGRAMMA DI MATEMATICA E FISICA Classe VA scientifico MATEMATICA MODULO 1 ESPONENZIALI E LOGARITMI 1. Potenze con esponente reale; 2. La funzione esponenziale: proprietà e grafico; 3. Definizione di logaritmo;

Dettagli

F U N Z I O N I. E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC "DERIVE")

F U N Z I O N I. E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC DERIVE) F U N Z I O N I E LORO RAPPRESENTAZIONE GRAFICA di Carmine De Fusco 1 (ANCHE CON IL PROGRAMMA PER PC "DERIVE") I N D I C E Funzioni...pag. 2 Funzioni del tipo = Kx... 4 Funzioni crescenti e decrescenti...10

Dettagli

Limiti e forme indeterminate

Limiti e forme indeterminate Limiti e forme indeterminate Edizioni H ALPHA LORENZO ROI c Edizioni H ALPHA. Ottobre 04. H L immagine frattale di copertina rappresenta un particolare dell insieme di Mandelbrot centrato nel punto.5378303507,

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Programmazione Generale. Matematica e Complementi. Classi: 2 Biennio Quarta. Istituto Tecnico Tecnologico Basilio Focaccia Salerno

Programmazione Generale. Matematica e Complementi. Classi: 2 Biennio Quarta. Istituto Tecnico Tecnologico Basilio Focaccia Salerno Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Generale Matematica e Complementi Classi: 2 Biennio Quarta I Docenti della Disciplina Salerno, lì 12 settembre 2014 Finalità della Disciplina

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it

Terne pitagoriche e teorema di Pitagora, numeri e triangoli. Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it 3 4 5 Terne pitagoriche e teorema di Pitagora, numeri e triangoli Riccardo Ricci: Dipartimento di Matematica U.Dini ricci@math.unif.it Qualche osservazione preliminare sul Teorema di Pitagora e le terne

Dettagli

A CHE COSA SERVE LA PROVA DI AMMISSIONE

A CHE COSA SERVE LA PROVA DI AMMISSIONE INDICE A che cosa serve la prova di ammissione pag. I Come è strutturata la prova III Come rispondere al questionario V Indicazioni sulle principali conoscenze richieste XII Testo della prova del 4 settembre

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio.

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio. Appunti di Analisi Matematica Docente:Fabio Camilli SAPIENZA, Università di Roma A.A. 4/5 http://www.dmmm.uniroma.it/~fabio.camilli/ (Versione del 9 luglio 5) Note scritte in collaborazione con il prof.

Dettagli

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i

NUMERI COMPLESSI. Esercizi svolti., e) i 34, f) i 7. 10 i NUMERI COMPLESSI Esercizi svolti 1. Calcolare le seguenti potenze di i: a) i, b) i, c) i 4, d) 1 i, e) i 4, f) i 7. Semplificare le seguenti espressioni: a) ( i) i(1 ( 1 i), b) ( + i)( i) 5 + 1 ) 10 i,

Dettagli

Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009

Che cosa e come valutano le prove di matematica e con quali risultati. nell A.S. 2008 2009 Che cosa e come valutano le prove di matematica e con quali risultati nell A.S. 2008 2009 Presentazione a cura di Roberta Michelini Casalpusterlengo, 8 gennaio 2010 http://www.invalsi.it/esamidistato0809/

Dettagli

Costruzioni con riga e compasso. Fabio Stumbo Dipartimento di Matematica Università di Ferrara Ferrara, I f.stumbo@unife.it

Costruzioni con riga e compasso. Fabio Stumbo Dipartimento di Matematica Università di Ferrara Ferrara, I f.stumbo@unife.it ostruzioni con riga e compasso Fabio Stumbo Dipartimento di Matematica Università di Ferrara Ferrara, I f.stumbo@unife.it INDIE 2 Indice 1 Note storiche 3 2 ostruzioni fondamentali 8 2.1 Definizione e

Dettagli

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0)

Numeri Complessi R 2. P = (x P,y P ) x P. z = (x,y) y P (0,0) Numeri Complessi Un numero complesso z può essere definito come una coppia ordinata (x,y) di numeri reali x e y. L insieme dei numeri complessi è denotato con C e può essere identificato con il piano cartesiano

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del

GLI ASSI CULTURALI. Allegato 1 - Gli assi culturali. Nota. rimessa all autonomia didattica del docente e alla programmazione collegiale del GLI ASSI CULTURALI Nota rimessa all autonomia didattica del docente e alla programmazione collegiale del La normativa italiana dal 2007 13 L Asse dei linguaggi un adeguato utilizzo delle tecnologie dell

Dettagli

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009

ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali. www.vincenzoscudero.it novembre 2009 ESERCIZI SVOLTI Ricerca del dominio di funzioni razionali fratte e irrazionali v.scudero www.vincenzoscudero.it novembre 009 1 1 Funzioni algebriche fratte 1.1 Esercizio svolto y = x 1 x 11x + 10 (generalizzazione)

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Unità Didattica N 28 Punti notevoli di un triangolo

Unità Didattica N 28 Punti notevoli di un triangolo 68 Unità Didattica N 8 Punti notevoli di un triangolo Unità Didattica N 8 Punti notevoli di un triangolo 0) ircocentro 0) Incentro 03) Baricentro 04) Ortocentro Pagina 68 di 73 Unità Didattica N 8 Punti

Dettagli

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue: CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Lo studio di unzione Ing. Alessandro Pochì Appunti di analisi Matematica per la Classe VD (a.s. 011/01) Schema generale per lo studio di una unzione Premessa Per Studio unzione si intende, generalmente,

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Appunti di Algebra Lineare

Appunti di Algebra Lineare Appunti di Algebra Lineare Indice 1 I vettori geometrici. 1 1.1 Introduzione................................... 1 1. Somma e prodotto per uno scalare....................... 1 1.3 Combinazioni lineari e

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

Appunti e generalità sulle funzioni reali di variabili reali.

Appunti e generalità sulle funzioni reali di variabili reali. Appunti e generalità sulle funzioni reali di variabili reali. Premessa Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Le origini delle coniche: da Euclide ad Apollonio

Le origini delle coniche: da Euclide ad Apollonio Corso di Storia ed epistemologia della matematica Prof. Lucio Benaglia Le origini delle coniche: da Euclide ad Apollonio Specializzando: Stefano Adriani Matricola 56152 Relatore: prof. Lucio Benaglia Anno

Dettagli

In base alla definizione di limite, la definizione di continuità può essere data come segue:

In base alla definizione di limite, la definizione di continuità può essere data come segue: Def. Sia f una funzione a valori reali definita in un intervallo I (itato o ilitato) e sia un punto interno all intervallo I. Si dice che f è continua nel punto se: ( )= ( ) Una funzione f è continua in

Dettagli

ITALIANO - ASCOLTARE E PARLARE

ITALIANO - ASCOLTARE E PARLARE O B I E T T I V I M I N I M I P E R L A S C U O L A P R I M A R I A E S E C O N D A R I A D I P R I M O G R A D O ITALIANO - ASCOLTARE E PARLARE Ascoltare e comprendere semplici consegne operative Comprendere

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli