Elementi. di Calcolo Combinatorio. Paola Giacconi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elementi. di Calcolo Combinatorio. Paola Giacconi"

Transcript

1 Elementi di Calcolo Combinatorio di Paola Giacconi

2 Premessa Con la Meccanica Quantistica Il concetto di probabilità è entrato a fare parte integrante della FISICA e quindi della nostra vita La visione deterministica dell'universo è svanita per sempre! Si può solo prevedere la probabilità con la quale un determinato evento si verificherà Il Calcolo Combinatorio è propedeutico al concetto di probabilità

3 Calcolo Combinatorio I numeri con il punto esclamativo Definizione di fattoriale di un numero naturale N!=N(N-1)(N-2)(N-3)...1 0!=1 1!=1

4 Coefficiente Binomiale a b 2 =a 2 b 2 2 a b a b 3 =a 3 b 3 3 a 2 b 3 a b 2... a b n = k=0 n n k a n k b k n = k n! n k! k!

5 Permutazioni Semplici Permutazioni con Ripetizioni Quanti sono gli anagrammi, non importa se abbiano o meno significato, della parola MATEMATICA o della parola FISICA? Quanti numeri di 4 cifre posso scrivere usando le cifre supponendo che essi abbiano tutte le 4 cifre differenti? Oppure quanti numeri di 5 cifre supponendo che contengano 2 volte 1? Supponendo che contengano 2 volte 3? In quanti modi si possono disporre 3 persone su 3 sedie numerate?

6 Permutazioni Semplici Pk 3 persone su 3 poltrone numerate Ci sono 3! = 6 possibilità

7 Permutazioni Semplici 5 amici in pizzeria discutono sulla disposizione dei posti con cui debbono sedersi attorno al tavolo, alla fine si accordano: ogni sera cambieranno posto!! Quante sere sono necessarie per esaurire tutte le possibilità? Permutazioni Semplici: P5 = 5!= 120 Dopo circa 4 mesi hanno esaurito tutte le possibilità!!

8 Permutazioni con Ripetizioni Pk;k k;k1, 1,.. E se tra i 5 amici ci fossero 2 gemelli monozigoti assolutamente indistingubili quanto tempo ci vorrebbe? Permutazioni con Ripetizioni: P5;2 = 5!/2!=60 Anagrammi della parola FISICA Permutazioni con ripetizione: 6!/2!=360 Anagrammi della parola MATEMATICA Permutazioni con ripetizione: P10;2,2,3 =10!/(2!3!2!)=151200

9 Definizioni Permutazioni Semplici di un insieme finito di n elementi sono tutti i possibili raggruppamenti che si possono costruire con gli n elementi considerando distinti i raggruppamenti formati da elementi disposti in ordine diverso Permutazioni con Ripezione Permutazioni con Ripezione di un insieme finito di n elementi di cui k1, k2,... uguali sono tutti i possibili raggruppamenti che si possono costruire con gli n elementi considerando distinti i raggruppamenti formati da elementi disposti in ordine diverso diviso il numero delle permutazioni degli elementi uguali.

10 Disposizioni Semplici Dn,k n>k 1elemento 2elemento... k-1 elemento n Scelte possibili n-1 Scelte possibili n-(k-2) Scelte possibili K elemento n-(k-1) Scelte possibili Le Disposizioni Semplici indicano il numero di modi nel quale si possono raggruppare n oggetti presi k a k rispettando l'ordine

11 Disposizioni Semplici Dn,k n>k In quanti modi diversi possono essere disposti su di una libreria 7 libri presi da un gruppo di 20 libri differenti? In una corsa partono 10 cavalli, quanti sono i possibili ordini di arrivo nelle prime tre postazioni? In un torneo con 16 squadre quante partite andata e ritorno si debbono disputare?

12 Disposizioni Semplici Dn,k Sappiamo che le partite di campionato sono 16x15, si giocano 240 partite. Come si procede per ottenere questo dato? Consideriamo un torneo a 5 squadre le possibili coppie sono: (1,2) (1,3) (1,4) (1,5) (2,1) (2,3) (2,4) (2,5) (3,1) (3,2) (3,4) (3,5) (4,1) (4,2) (4,3) (4,5) (5,1) (5,2) (5,3) (5,4) Cioè D5,2= 5x4 = 5 (5-2+1)= 5! / (5-2)! =5! / 3! Dn,k = n(n-1)...(n-k+1) = n! / (n-k)!

13 Disposizioni Semplici Dn,k...I libri della libreria si possono disporre in D20,7 = 20(20-1)...(20-7+1) = 20!/ (20-7)!= 20!/13!= nelle corsa dei cavalli I possibili ordini sono D10,3 = 10x9x8 = 720 Nelle Disposizioni Semplici di n < k elementi presi k a k è importante l'ordine Se n=k allora = Dn,n Pn

14 Disposizioni con Ripetizione D' D'n,k n e k qualsiasi 1elemento 2elemento... k-1 elemento K elemento n Scelte possibili n Scelte possibili n Scelte possibili n Scelte possibili

15 Disposizioni con Ripetizione D' D'n,k D ' n, k =n k Le D'n,k indica il numero di modi nel quale si possono raggruppare n oggetti presi k a k rispettando l'ordine MA ogni elemento può essere ripetuto nel gruppo k volte Quante colonne si debbono giocare al totocalcio per essere sicuri di fare 13? D ' 3,13 =3 13

16 Combinazioni Semplici Cn,k Nelle Composizioni Semplici di n elementi presi k a k NON conta l'ordine Cn,k Quindi = D / K! n,k Dn,k C n, k = n = k n! n k! k!

17 Combinazioni Semplici Cn,k In quanti modi possibili si possono estrarre 5 numeri al Lotto? C90,5 In una classe di 22 persone si debbono eleggere 2 rappresentanti in quanti modi diversi si può fare la scelta? C22,2 Nel gioco del poker ogni giocatore riceve 5 carte da un mazzo di 32. In quanti modi diversi si possono ricevere le carte? C32,5

18 Combinazion con Ripetizioni C'n,k n e k qualsiasi Le combinazioni di n oggetti di classe k sono i raggruppamenti che si possono formare con gli n elementi di un insieme Ogni gruppo ne contiene k, k gli elementi nel gruppo possono essere ripetuti Due gruppi differiscono tra loro per almeno un elemento C ' n, k = n k 1 = n k 1! k n k! k!

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO CHE COS E? Il calcolo combinatorio è un particolare ramo della matematica applicata avente come scopo la misurazione del numero di raggruppamenti diversi che si possono comporre prendendo

Dettagli

Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio

Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli

Dettagli

Combinatoria. Lezione del 04/01/2010. Stage di Terni Progetto Olimpiadi

Combinatoria. Lezione del 04/01/2010. Stage di Terni Progetto Olimpiadi Combinatoria Lezione del 04/01/2010 Stage di Terni Progetto Olimpiadi Fattoriali e Binomiali Fattoriale: n!=n*(n-1)*(n-2)* 2*1 0!=1 Binomiale (n,k)= n!/(k!(n-k)!) I binomiali formano il triangolo di tartaglia

Dettagli

Analisi. Calcolo Combinatorio. Ing. Ivano Coccorullo

Analisi. Calcolo Combinatorio. Ing. Ivano Coccorullo Analisi Ing. Ivano Coccorullo Prof. Ivano Coccorullo ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli possibili. Quando le situazioni diventano

Dettagli

Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio

Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli

Dettagli

ESERCIZI DI CALCOLO COMBINATORIO

ESERCIZI DI CALCOLO COMBINATORIO ESERCIZI DI CALCOLO COMBINATORIO (G.T.Bagni) Sintesi delle nozioni teoriche da utilizzare a) Dati n elementi e k n, si dicono disposizioni semplici di n elementi di classe k tutti i raggruppamenti ottenuti

Dettagli

Calcolo combinatorio

Calcolo combinatorio Calcolo combinatorio l calcolo combinatorio è il ramo della matematica che studia i modi per raggruppare e/o ordinare secondo date regole gli elementi di un insieme finito di oggetti. Fattoriale l prodotto

Dettagli

Combinatoria. Lezione del 16/12/2009. Stage di Treviso Progetto Olimpiadi

Combinatoria. Lezione del 16/12/2009. Stage di Treviso Progetto Olimpiadi Combinatoria Lezione del 16/12/2009 Stage di Treviso Progetto Olimpiadi Fattoriali e Binomiali Fattoriale: n!=n*(n-1)*(n-2)* 2*1 0!=1 Binomiale (n,k)= n!/(k!(n-k)!) I binomiali formano il triangolo di

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Calcolo combinatorio e delle probabilitá Quanti oggetti possiamo differenziare con delle targhe di due simboli di cui il primo é una lettera dell alfabeto italiano e il secondo

Dettagli

ESERCIZI SUL CALCOLO COMBINATORIO

ESERCIZI SUL CALCOLO COMBINATORIO ESERCIZI SUL CALCOLO COMBINATORIO A) SVILUPPARE E CALCOLARE LE SEGUENTI ESPRESSIONI : numero esercizio risoluzione 1) D 3, ) P 4 3) P 6 3 4) 3,3 P 6 5) D ' 3, 6) C 4, 7) C n, n 8) D + D' C 4, 3, 3 3, 9)

Dettagli

Elementi di Calcolo Combinatorio. Dato un insieme I n, con P n si indica il numero di tutte le possibili permutazioni semplici di I n.

Elementi di Calcolo Combinatorio. Dato un insieme I n, con P n si indica il numero di tutte le possibili permutazioni semplici di I n. 1 Elementi di Calcolo Combinatorio Def.: Dato un insieme I n, con P n si indica il numero di tutte le possibili permutazioni semplici di I n. ( n 1)... 3 2 1 P n n In quanti modi diversi si possono disporre

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Calcolo combinatorio Ines Campa Probabilità e Statistica - Esercitazioni

Dettagli

Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento

Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento Calcolo Combinatorio Prof. A. Albanese Dipartimento di Matematica e Fisica E. De Giorgi - Università del Salento Disposizioni

Dettagli

IL CALCOLO COMBINATORIO:

IL CALCOLO COMBINATORIO: 1 IL CALCOLO COMBINATORIO: l arte di contare Il calcolo combinatorio permette di stabilire, ad esempio, quanti sono gli anagrammi di una parola, in quanti modi si possono sedere dieci amici attorno a un

Dettagli

Elementi di Analisi Combinatoria

Elementi di Analisi Combinatoria Elementi di Analisi Combinatoria Angelica Malaspina Dipartimento di Matematica, Informatica ed Economia Università degli Studi della Basilicata, Italy angelica.malaspina@unibas.it Lo studio dei vari raggruppamenti

Dettagli

COMBINATORIA E PROBABILITA

COMBINATORIA E PROBABILITA Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO COMBINATORIA E PROBABILITA CALCOLO COMBINATORIO Il Calcolo Combinatorio è lo studio dei

Dettagli

RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO C = =10

RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO C = =10 RISOLUZIONE ESERCIZI SUL CALCOLO COMBINATORIO A) SVILUARE E CALCOLARE LE SEGUENTI ESRESSIONI : numero esercizio risoluzione 1) D 3, 2 3 2 6 2) 4 3) 6 3 4! 4 3 24 6! 6 5 4 3 120 3! 3 4) 3,3 6 6! 6 5 4 3

Dettagli

ESERCITAZIONI CALCOLO COMBINATORIO

ESERCITAZIONI CALCOLO COMBINATORIO ESERCITAZIONI CALCOLO COMBINATORIO Esercizio 1 (C) La Quinella all ippodromo del luogo consiste nell indicare i cavalli che si classificheranno primo e secondo in una corsa senza riguardo all ordine. Se

Dettagli

Cenni di analisi combinatoria

Cenni di analisi combinatoria Cenni di analisi combinatoria In molti problemi concreti di teoria della probabilità e, in particolare, nell ambito della interpretazione classica occorre calcolare quanti sono gli esiti che compongono

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Introduzione. 1.Palline e Scatole Distinguibili

Introduzione. 1.Palline e Scatole Distinguibili Introduzione L argomento è semplice, quasi infantile: abbiamo a disposizione un certo numero di palline da disporre in un insieme di scatole e ci chiediamo quanti modi ci sono per farlo. Affronteremo il

Dettagli

Esercitazione n. 1 del 05/04/2016 Docente: Bruno Gobbi

Esercitazione n. 1 del 05/04/2016 Docente: Bruno Gobbi Esercitazione n. 1 del 05/04/2016 Docente: Bruno Gobbi CALCOLO COMBINATORIO DISPOSIZIONI PERMUTAZIONI COMBINAZIONI Probabilità Esercitazione n. 1 Pagina 1 1) In quanti modi 8 persone possono sedersi su

Dettagli

Calcolo delle Probabilità Soluzioni 2. Calcolo combinatorio

Calcolo delle Probabilità Soluzioni 2. Calcolo combinatorio ISTITUZIONI DI STATISTICA A. A. 2007/2008 Marco Minozzo e Annamaria Guolo Laurea in Economia del Commercio Internazionale Laurea in Economia e Amministrazione delle Imprese Università degli Studi di Verona

Dettagli

PROBABILITÁ e CALCOLO COMBINATORIO

PROBABILITÁ e CALCOLO COMBINATORIO PROBABILITÁ e CALCOLO COMBINATORIO Prof. Enrico Terrone A. S: 2008/09 Probabilità e calcolo combinatorio Abbiamo visto la definizione classica di probabilità: probabilità dell evento = (casi favorevoli)

Dettagli

Analizziamo ora alcuni esempi, al fine di acquisire quel un metodo di ragionamento tipico dell intera teoria della probabilità.

Analizziamo ora alcuni esempi, al fine di acquisire quel un metodo di ragionamento tipico dell intera teoria della probabilità. 1 Il calcolo delle probabilità nasce dalla necessità di prevedere l incerto. Inizialmente si sviluppò principalmente per dare risposte a quesiti riguardanti i giochi d azzardo (dadi, carte, ), ove il realizzarsi

Dettagli

CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica

CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica ) Un urna contiene 0 palline numerate da a 0. Si calcoli la probabilità che: a) estraendo successivamente palline, rimettendo ogni volta la pallina estratta nell urna, si abbiano due numeri primi; b) estraendo

Dettagli

Quanti sono...? Introduzione al Calcolo Combinatorio

Quanti sono...? Introduzione al Calcolo Combinatorio Prof.ssa Garagnani Elisa ISIS Archimede Quanti sono...? Introduzione al Calcolo Combinatorio Per cominciare... aiutati con un grafo ad albero Noti 3 vincitori, in quanti modi diversi possono salire sul

Dettagli

Il calcolo combinatorio

Il calcolo combinatorio Il calcolo combinatorio Per "calcolo combinatorio" (C.C.) si intende una branca della matematica che studia i modi di raggruppare ed ordinare oggetti presi da un insieme assegnato, con l'obiettivo finale

Dettagli

Calcolo combinatorio

Calcolo combinatorio Calcolo combinatorio I l. Disposizioni semplici, permutazioni semplici, combinazioni semplici In questo numero considereremooggetti in numero finito, di natura qualsiasi e di essi studieremo particolari

Dettagli

In una scuola di ballo sono iscritte dodici donne e sette uomini. Quante sono le possibili coppie che si possono formare [84]

In una scuola di ballo sono iscritte dodici donne e sette uomini. Quante sono le possibili coppie che si possono formare [84] Abbiamo cinque palline nere numerate da 1 a 5 e tre palline bianche numerate da 1 a 3. Quante coppie di palline una 1 nera ed una bianca entrambe dispari possiamo formare? [6] 2 In una scuola di ballo

Dettagli

Calcolo Combinatorio e Probabilità

Calcolo Combinatorio e Probabilità Calcolo Combinatorio e Probabilità Andrea Galasso 1 Calcolo Combinatorio Definizione 1 Fissati n, k N, con k n, indicheremo con D n,k := n! (n k)! le disposizioni di n oggetti in k posti e con DR n,k :=

Dettagli

Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011)

Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011) Calcolo delle probabilità e calcolo combinatorio (di aolo Urbani maggio 0) efinizioni rova casuale: prova il cui esito è legato al caso. Evento casuale: evento che può verificarsi o meno a seconda del

Dettagli

0.1 Esercizi calcolo combinatorio

0.1 Esercizi calcolo combinatorio 0.1 Esercizi calcolo combinatorio Esercizio 1. Sia T l insieme dei primi 100 numeri naturali. Calcolare: 1. Il numero di sottoinsiemi A di T che contengono esattamente 8 pari.. Il numero di coppie (A,

Dettagli

.. x n k. n 1 x n 2. La differenza fra i due casi precedenti sta nella possibilità di ripetere oppure no una stessa scelta.

.. x n k. n 1 x n 2. La differenza fra i due casi precedenti sta nella possibilità di ripetere oppure no una stessa scelta. Calcolo combinatorio Problema Quante parole di 3 lettere si possono scrivere utilizzando solo le 4 lettere a, b, c, d? Soluzione: scriviamole tutte e poi le contiamo Esercizio 2 Quante sono le parole di

Dettagli

In molte applicazioni sorge il problema di sapere in quanti modi possibili si può presentare un certo fenomeno.

In molte applicazioni sorge il problema di sapere in quanti modi possibili si può presentare un certo fenomeno. Definizione Oggetto del calcolo combinatorio è quello di determinare il numero dei modi mediante i quali possono essere associati, secondo prefissate regole, gli elementi di uno stesso insieme o di più

Dettagli

combiniamo le lettere, ciascuna presa una sola volta per formare parole di n lettere;

combiniamo le lettere, ciascuna presa una sola volta per formare parole di n lettere; CALCOLO COMBINATORIO Il calcolo combinatorio si occupa di contare i raggruppamenti che si possono fare con n oggetti di un insieme finito, secondo determinate regole. Vediamo di seguito come, a seconda

Dettagli

Esercizi di Calcolo combinatorio: disposizioni

Esercizi di Calcolo combinatorio: disposizioni Calcolo combinatorio: disposizioni La Big Triple all ippodromo del luogo consiste nell indicare il corretto ordine di arrivo dei cavalli classificati tra i primi tre nella nona corsa. Se ci sono 12 cavalli

Dettagli

Esercizi di Probabilità - Matematica Applicata a. a Doriano Benedetti

Esercizi di Probabilità - Matematica Applicata a. a Doriano Benedetti Esercizi di Probabilità - Matematica Applicata a. a. 01-014 Doriano Benedetti 6 marzo 014 1 Esercizio 1 In quanti modi diversi si può vestire una persona che possiede 10 abiti, paia di scarpe e cappelli?

Dettagli

Raggruppamenti. Esercizio 1

Raggruppamenti. Esercizio 1 Raggruppamenti Nelle prossime lezioni ci occuperemo delle basi del calcolo combinatorio. Per semplicità partiremo da un esercizio e poi analizzeremo il caso generale con la definizione e la formula da

Dettagli

c 2003 by Maria Giovanna Guarguaglini.

c 2003 by Maria Giovanna Guarguaglini. c 003 by Maria Giovanna Guarguaglini. Appunti di Combinatoria Maria Giovanna Guarguaglini 6 aprile 005 Indice Capitolo 5. Introduzione........................................ 6. Palline e Scatole Distinguibili..............................

Dettagli

Nelle ipotesi del precedente esercizio, in quanti modi potrebbe essere formata la classifica finale di tutti i 20 concorrenti? [2,4.

Nelle ipotesi del precedente esercizio, in quanti modi potrebbe essere formata la classifica finale di tutti i 20 concorrenti? [2,4. CALCOLO COMBINATORIO Ad una gara partecipano 20 concorrenti; quanti terne di primi tre classificati si possono formare? (nell'ipotesi che non vi siano degli ex aequo) [6.840] Nelle ipotesi del precedente

Dettagli

Fondamenti di Statistica. Prof. V. Simoncini. Orario di Lezione: Mar Gio

Fondamenti di Statistica. Prof. V. Simoncini. Orario di Lezione: Mar Gio Fondamenti di Statistica Prof. V. Simoncini Orario di Lezione: Mar 14-16 Gio 9.00-11.00 Orario di ricevimento: per appuntamento valeria@dm.unibo.it Siti del corso: www.dm.unibo.it/ simoncin/fondamenti.html

Dettagli

Corso di probabilità e statistica

Corso di probabilità e statistica Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di probabilità e statistica (Prof.ssa L.Morato) Esercizi Parte I: probabilità classica e probabilità combinatoria,

Dettagli

Università degli Studi di Milano

Università degli Studi di Milano Università degli Studi di Milano Laurea in Sicurezza dei sistemi e delle reti informatiche Note di Matematica STEFANO FERRARI Fondamenti di informatica per la sicurezza Note di Matematica Pagina 2 di 8

Dettagli

LEZIONE 5: CALCOLO COMBINATORIO

LEZIONE 5: CALCOLO COMBINATORIO LEZIONE 5: CALCOLO COMBINATORIO e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 31 Ottobre 2012 Cos è il calcolo combinatorio?

Dettagli

Corso di preparazione ai Giochi di Archimede Calcolo combinatorio & Probabilità

Corso di preparazione ai Giochi di Archimede Calcolo combinatorio & Probabilità Corso di preparazione ai Giochi di Archimede Calcolo combinatorio & Probabilità ) Quante quaterne (x, x2, x3, x4) di numeri interi non negativi soddisfano l equazione x+x2+x3+x4=7? a) 25 b) 289 c) 40 d)

Dettagli

Il Calcolo combinatorio.

Il Calcolo combinatorio. Il Calcolo combinatorio. 1) Disporre persone. a) Andrea e Bea frequentano la stessa classe e sono vicini di banco. Sapendo che i banchi sono posizionati due a due, in quali e quanti modi possono disporsi?....

Dettagli

Matematica con elementi di statistica ESERCIZI: probabilità

Matematica con elementi di statistica ESERCIZI: probabilità Matematica con elementi di statistica ESERCIZI: probabilità Esercizi sulla Probabilità Esercizio 1. In un corso di laurea uno studente deve scegliere un esame fra 8 di matematica e un esame fra 5 di fisica.

Dettagli

9 = Soluzione. Soluzione

9 = Soluzione. Soluzione Esercizio 1 Un'urna contiene 6 palline rosse, 4 nere, 8 bianche. Si estrae una pallina; calcolare la probabilità di avere a) una pallina bianca; b) una pallina nera; e) una pallina non bianca; d) una pallina

Dettagli

APPUNTI DI CALCOLO COMBINATORIO E PROBABILITA' Corso di Matematica ed Elementi di Statistica Scienze della Natura a.a. 2014/15

APPUNTI DI CALCOLO COMBINATORIO E PROBABILITA' Corso di Matematica ed Elementi di Statistica Scienze della Natura a.a. 2014/15 APPUNTI DI CALCOLO COMBINATORIO E PROBABILITA' Corso di Matematica ed Elementi di Statistica Scienze della Natura a.a. 2014/15 Elementi di calcolo combinatorio. Primi elementi di probabilita: denizioni

Dettagli

Cenni sul calcolo combinatorio

Cenni sul calcolo combinatorio Cenni sul calcolo combinatorio Disposizioni semplici Le disposizioni semplici di n elementi distinti di classe k con kn sono tutti i gruppi di k elementi scelti fra gli n, che differiscono per almeno un

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO A cosa serve???? Wiki says: Il calcolo combinatorio studia i modi per raggruppare e/o ordinare secondo date regole gli elementi di un insieme finito di oggetti. In altre parole.

Dettagli

La probabilità del gioco o il gioco della probabilità? Dispensa probabilità e calcolo combinatorio

La probabilità del gioco o il gioco della probabilità? Dispensa probabilità e calcolo combinatorio La probabilità del gioco o il gioco della probabilità? Dispensa probabilità e calcolo combinatorio Massimo Buzzi, Lucio Alberto Monti 1 Mappe Riassuntive 1.1 Calcolo combinatorio 1.2 Probabilità 1 2 Glossario

Dettagli

Domande di teoria. Esercizi

Domande di teoria. Esercizi 1 Domande di teoria 1. Vedi pp. 131-132 2. Vedi pp. 132-134 3. Vedi p. 134 4. Vedi p. 135 5. Vedi pp. 136-142 6. Vedi pp. 138-139 7. Vedi pp. 141-142 8. Vedi pp. 143-146 9. Vedi pp. 146-148 Esercizi Esercizio

Dettagli

Binomio di Newton. Pertanto, il numero di sottoinsiemi di S, compreso il sottoinsieme vuoto ; elostessos, è dato da. = 2 n, r. (a + b) n = a r b n r,

Binomio di Newton. Pertanto, il numero di sottoinsiemi di S, compreso il sottoinsieme vuoto ; elostessos, è dato da. = 2 n, r. (a + b) n = a r b n r, Binomio di Newton Osserviamo che, volendo costruire un generico sottoinsieme I S, si deve eseguire una procedura di n passi, con alternative in ogni passo. Infatti, occorre decidere per ciascuno degli

Dettagli

P (A) = P (B) = P (A ^ B) = P (A _ B) = P (A _ A c B)= P ([A _ B] ^ [A c _ B c ]) =

P (A) = P (B) = P (A ^ B) = P (A _ B) = P (A _ A c B)= P ([A _ B] ^ [A c _ B c ]) = Esercizio 7 2 Un esperimento consiste nel lanciare una moneta e nell estrarre una pallina da un urna contenente 4 palline numerate da 1 a 4. Consideriamo gli eventi: A = Esce Testa, B = Si estrae la pallina

Dettagli

(5 sin x + 4 cos x)dx [9]

(5 sin x + 4 cos x)dx [9] FACOLTÀ DI SCIENZE MM. FF. NN. CORSO DI LAUREA IN SCIENZE NATURALI II Modulo di Matematica con elementi di statistica. Esercitazioni A.A. 009.00. Tutor: Mauro Soro, p.soro@tin.it Integrali definiti Risolvere

Dettagli

CALCOLO COMBINATORIO. Psicometria 1 - Lezione 5 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek

CALCOLO COMBINATORIO. Psicometria 1 - Lezione 5 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek CALCOLO COMBINATORIO Psicometria 1 - Lezione 5 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek 1 Il problema del calcolo combinatorio è stabilire in quanti modi diversi una sequenza di eventi

Dettagli

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4 CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute,

Dettagli

Giochi matematici. Olimpiadi della matematica * Giochi di Archimede 23/11/2016

Giochi matematici. Olimpiadi della matematica * Giochi di Archimede 23/11/2016 Giochi matematici Istituto Poliziano a.s. 2016/2017 Olimpiadi della matematica * Giochi di Archimede 23/11/2016 2h mattina Biennio - Triennio * Classi prime 02/02/2017 * Fase distrettuale 21/02/17 * Gara

Dettagli

PREREQUISITI MATEMATICI TEORICI DI BASE PER LA PSICOMETRIA

PREREQUISITI MATEMATICI TEORICI DI BASE PER LA PSICOMETRIA PREREQUISITI MATEMATICI TEORICI DI BASE PER LA PSICOMETRIA INTRODUZIONE ALLO STUDIO Nell ambito di un progetto di ricerca dell Università di Cagliari riguardante i prerequisiti teorici matematici di base

Dettagli

STATISTICA ESERCITAZIONE 9

STATISTICA ESERCITAZIONE 9 STATISTICA ESERCITAZIONE 9 Dott. Giuseppe Pandolfo 19 Gennaio 2015 REGOLE DI CONTEGGIO Sequenze ordinate Sequenze non ordinate Estrazioni con ripetizione Estrazioni senza ripetizione Estrazioni con ripetizione

Dettagli

Probabilita' mediante l'analisi combinatoria D n,k =Disposizioni di n oggetti a k a k (o di classe k)

Probabilita' mediante l'analisi combinatoria D n,k =Disposizioni di n oggetti a k a k (o di classe k) Probabilita' mediante l'analisi combinatoria D n,k =Disposizioni di n oggetti a k a k (o di classe k) Nel calcolo del numero di modalita' con cui si presenta un evento e' utile talvolta utilizzare le definizioni

Dettagli

PERCENTUALI. SOLUZIONE: 15 8/100 =1.2, quindi la percentuale dei morti sull intera popolazione è 1.2%

PERCENTUALI. SOLUZIONE: 15 8/100 =1.2, quindi la percentuale dei morti sull intera popolazione è 1.2% PERCENTUALI La superficie del globo terrestre è costituita da acqua (71%) e terraferma (29%). Due quinti della terraferma sono deserti o coperti di ghiaccio e un terzo è costituito da pascolo, foreste

Dettagli

VINCERE AL SUPERENALOTTO

VINCERE AL SUPERENALOTTO VINCERE AL SUPERENALOTTO Il sogno di tutti gli italiani è vincere al Superenalotto. Ma quale è l effettiva possibilità di realizzare una vincita a quel gioco? Il discorso è abbastanza semplice (si fa per

Dettagli

Statistica 2. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 2. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 2 Esercitazioni Dott. L 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

Esempio II.1.2. Esempio II.1.3. Esercizi

Esempio II.1.2. Esempio II.1.3. Esercizi Calcolo combinatorio Il calcolo combinatorio consiste nello sviluppo di nozioni e tecniche per contare i possibili ordinamenti di un insieme e le possibili scelte di sottoinsiemi di un insieme Ha numerosi

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica.

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica. Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Probabilità Ines Campa Probabilità e Statistica - Esercitazioni -

Dettagli

Laboratorio di Giochi Matematici

Laboratorio di Giochi Matematici UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI MATEMATICA ʺF. ENRIQUESʺ Progetto Lauree Scientifiche Laboratorio di Giochi Matematici (responsabile Prof. Stefania De Stefano) Incontro presso il Liceo

Dettagli

Indice. 1 Calcolo combinatorio 1

Indice. 1 Calcolo combinatorio 1 Indice 1 Calcolo combinatorio 1 2 1 Calcolo combinatorio Esercizio 1 In un mazzo da 52 carte (4 semi, 13 ranghi) in quanti modi si possono pescare in blocco 3 carte a) dello stesso seme? b) dello stesso

Dettagli

CALCOLO COMBINATORIO. Su ha che il numero degli elementi di Ω, cioè dei casi possibili, è #Ω = 6 3, mentre il numero dei casi favorevoli #E = 6.

CALCOLO COMBINATORIO. Su ha che il numero degli elementi di Ω, cioè dei casi possibili, è #Ω = 6 3, mentre il numero dei casi favorevoli #E = 6. Breve premessa CALCOLO COMBINATORIO Consideriamo un evento E e fissiamo una partizione Ω della possibilità logiche di parte delle quali l evento stesso è unione, fissiamo cioè lo spazio dei casi elementari

Dettagli

Dagli insiemi al calcolo combinatorio

Dagli insiemi al calcolo combinatorio Dagli insiemi al calcolo combinatorio Il calcolo combinatorio è una parte della matematica che si occupa di contare gli elementi di un insieme finito, ottenuto a partire da altri insiemi, dei quali si

Dettagli

IL CALCOLO DELLA PROBABILITÀ

IL CALCOLO DELLA PROBABILITÀ IL LOLO LL PROILITÀ 1 Una scatola contiene quattro dischetti rossi numerati da 1 a 4, sei dischetti verdi numerati da 1 a e cinque dischetti bianchi numerati da 1 a 5. Si estrae un dischetto. Scrivi gli

Dettagli

NOTE DI CALCOLO COMBINATORIO

NOTE DI CALCOLO COMBINATORIO NOTE DI CALCOLO COMBINATORIO VINCENZO C. NARDOZZA 1. Richiami Ricordiamo molto brevemente gli strumenti di calcolo combinatorio esaminati durante le lezioni e i risultati ottenuti. Se X n, il suo insieme

Dettagli

Cenni di calcolo combinatorio

Cenni di calcolo combinatorio Cenni di calcolo combinatorio 1 Introduzione Calcolare quanti sono i diversi modi di ordinare un insieme di oggetti è un problema interessante. Quante sigle diverse si possono fare con le tre lettere RST?

Dettagli

Calcolo combinatorio

Calcolo combinatorio Calcolo combinatorio (da un file della Prof.ssa Marchisio, con alcune modifiche e integrazioni) Calcolo combinatorio branca della matematica che studia i modi per raggruppare e/o ordinare, secondo date

Dettagli

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA IV -VE

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA IV -VE COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA IV -VE Scheda : Funzioni circolari, Equazioni e disequazioni goniometriche Risolvi la seguente equazione: sin + 4 sin cos + 5 = 0

Dettagli

ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina?

ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina? ESERCIZI PROBABILITA E CALCOLO COMBINATORIO CON RISULTATI 1. P che estraendo a caso 1 carta da un mazzo di 52 sia una regina? [4/52] 2. Estratta una Q, P che ad una seconda estrazione si presenti ancora

Dettagli

Derangement. Laboratorio di combinatorica. Marta Lucchini, II anno

Derangement. Laboratorio di combinatorica. Marta Lucchini, II anno Derangement Laboratorio di combinatorica Marta Lucchini, II anno Anno accademico 2008-2009 Introduzione Un derangement (o dismutazione) è una permutazione che non fissa alcun punto: se è il gruppo delle

Dettagli

Appunti di CALCOLO COMBINATORIO

Appunti di CALCOLO COMBINATORIO Appunti di CALCOLO COMBINATORIO Giulia Fidanza Indice Premessa Le sequenze ordinate ed il Principio Generale. Sequenze ordinate................................. Il Principio Generale del Calcolo Combinatorio................

Dettagli

Calcolo combinatorio

Calcolo combinatorio 1 Calcolo combinatorio Ricordiamo che uno spazio di probabilità (Ω, P(Ω), P) si dice uniforme se Ω è un insieme finito e si ha P(A) = A Ω, per ogni A Ω. Pertanto, il calcolo della probabilità di un evento

Dettagli

Calcolo delle Probabilità 2013/14 Foglio di esercizi 2

Calcolo delle Probabilità 2013/14 Foglio di esercizi 2 Calcolo delle Probabilità 2013/1 Foglio di esercizi 2 Calcolo combinatorio. Esercizio 1. In un mazzo di 52 carte da Poker ogni carta è identificata da un seme (cuori, quadri, fiori, picche e da un tipo

Dettagli

FINALE 30 agosto 2008

FINALE 30 agosto 2008 FINALE 30 agosto 2008 INIZIO CATEGORIA CE 1- LE SETTE CARTE (coefficiente 1) Matilde ha messo 7 carte sulla tavola una dopo l'altra. In che ordine lo ha fatto? 2 - LE GOBBE (coefficiente 2) Una carovana

Dettagli

ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE

ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE Docente titolare: Irene Crimaldi 26 novembre 2009 Es.1 Supponendo che la probabilità di nascita maschile e femminile sia la stessa, calcolare la probabilità

Dettagli

0 Insiemi, funzioni, numeri

0 Insiemi, funzioni, numeri Giulio Cesare Barozzi, Giovanni Dore, Enrico Obrecht Elementi di analisi matematica - Volume 1 Zanichelli 0 Insiemi, funzioni, numeri Esercizi 0.1. Il linguaggio degli insiemi 0.1.1. Esercizio Poniamo

Dettagli

Scheda 1: funzioni circolari, equazioni e disequazioni goniometriche

Scheda 1: funzioni circolari, equazioni e disequazioni goniometriche Scheda : funzioni circolari, equazioni e disequazioni goniometriche Risolvi la seguente equazione: sin + sin cos + 5 = 0 5 = 5 cos + sin Suggerimento dell insegnante: ricorda che ( ) Risolvi la seguente

Dettagli

Matematica e scacchi. Patrizia Previtali. Livello d'età:

Matematica e scacchi. Patrizia Previtali. Livello d'età: Matematica e scacchi Patrizia Previtali Livello d'età: Classi seconda e terza superiore Competenze in esercizio e nuclei tematici: utilizzare strumenti di rappresentazione per la modellizzazione e la risoluzione

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 05-6 P.Baldi Lista di esercizi, 8 gennaio 06. Esercizio Si sa che in una schedina

Dettagli

Figura 7: Ruota della Fortuna. Quanti sono i casi possibili? G. Sanfilippo - CdP - STAD - Lezione 2 del 12 Aprile pag. 15

Figura 7: Ruota della Fortuna. Quanti sono i casi possibili? G. Sanfilippo - CdP - STAD - Lezione 2 del 12 Aprile pag. 15 Figura 7: Ruota della Fortuna. Quanti sono i casi possibili? G. Sanfilippo - CdP - STAD - Lezione 2 del 12 Aprile 2012- pag. 15 Casi Possibili B= La lancetta indica il Blu V= La lancetta indica il Verde

Dettagli

Secondo voi, quanti fiori pianterà in tutto il signor Piantabella nel settimo anello?

Secondo voi, quanti fiori pianterà in tutto il signor Piantabella nel settimo anello? 12 o RALLY MATEMATICO TRANSALPINO - PROVA II - marzo - aprile 2004-8 a cat. ARMT.2004 p. 1 6. I FIORI DAVANTI ALLA SCUOLA (Cat. 4, 5, 6) ARMT.2004-12 - II prova Il signor Piantabella decide di sistemare

Dettagli

CUPIDO. Per giocare occorrono anche carta e penna.

CUPIDO. Per giocare occorrono anche carta e penna. CUPIDO Gioco di carte per 2 o 4 giocatori Da sempre Cupido si aggira per il mondo cercando di portare l'amore tra gli uomini e far sì che ognuno conosca la sua anima gemella. Ma le coppie perfette sono

Dettagli

ESERCIZI DI CALCOLO COMBINATORIO

ESERCIZI DI CALCOLO COMBINATORIO ESERCIZI DI CALCOLO COMBINATORIO 1. Calcolare il numero degli anagrammi che possono essere formati con le lettere della parola Amore. [120] 2. Quante partite di poker diverse possono essere giocate da

Dettagli

Multiplication. Counting

Multiplication. Counting Università LiberEtà Udine, 5 ottobre 007 Giuseppina Trifiletti In matematica una procedura si dice elegante se è sia chiara che semplice Per esempio la moltiplicazione può essere usata per risolvere molti

Dettagli

Tecniche di conteggio

Tecniche di conteggio Tecniche di conteggio 9 Ottobre 2003 Principio della somma Il numero di elementi dell unione di una famiglia di insiemi disgiunti è la somma del numero di elementi contenuti in ogni singolo insieme F =

Dettagli

Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità

Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità Università Roma Tre - Dipartimento di Matematica e Fisica 3 novembre 2016 Introduzione La probabilità nel linguaggio comune I E probabile

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/

Dettagli

Si gioca con due mazzi di carte francesi inclusi i jolly per un totale di 108 carte.

Si gioca con due mazzi di carte francesi inclusi i jolly per un totale di 108 carte. Regole del Burraco Il mazzo di carte Si gioca con due mazzi di carte francesi inclusi i jolly per un totale di 108 carte. I giocatori possono selezionare il tipo di carte (francesi standard, francesi Dal

Dettagli

L enigmistica. Francesca Giraudo matricola : Francesco Lisa matricola :

L enigmistica. Francesca Giraudo matricola : Francesco Lisa matricola : Francesca Giraudo matricola : 702717 Francesco Lisa matricola : 706874 L enigmistica Il calcolo combinatorio è una branca della matematica che studia i modi per raggruppare e/o ordinare secondo date regole

Dettagli

ESERCIZI SULLA PROBABILITA

ESERCIZI SULLA PROBABILITA PROBABILITA CLASSICA ESERCIZI SULLA PROBABILITA 1) Si estrae una carta da un mazzo di 40 carte ; calcolare la probabilità che la carta sia: a. una figura; b. una carta di danari; c. un asso. 2) Un urna

Dettagli