Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa"

Transcript

1 Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

2 Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione numerica intera di primo grado in una sola incognita È noto che risolvere algebricamente un equazione numerica intera di primo grado nell incognita, della forma a = b, con a,b R e a 0, significa individuare l unico valore reale che la soddisfa ovvero che, sostituito all incognita, la trasforma in un uguaglianza numerica b vera: =. a Risolvere graficamente in un piano cartesiano un equazione numerica intera di primo grado nell incognita, della forma a = b, con a, b R e a 0, significa individuare e rap- b =, quindi a presentare nel piano cartesiano gli infiniti punti della retta di equazione: parallela all asse. Se b = 0, l equazione diventa = 0 che, com è noto, rappresenta l asse. Risolvere graficamente in un piano cartesiano un equazione numerica intera di primo grado nell incognita, della forma a = b, con a, b R e a 0, significa individuare e rappresentare nel piano cartesiano gli infiniti punti della retta corrispondente di equazione: b =, quindi parallela all asse. a Se b = 0, l equazione diventa = 0 che, com è noto, rappresenta l asse. Risoluzione grafica di un equazione numerica intera di primo grado in due incognite Un equazione numerica intera di primo grado in due incognite, dopo aver eseguito le operazioni e ridotto i termini simili eventualmente presenti, può essere ricondotta alla forma a + b + c = 0, con a, b, c R. Dal punto di vista algebrico, un equazione numerica intera di primo grado in due incognite, della forma: a + b + c = 0, con a, b R 0, se non è impossibile in R, ammette infinite soluzioni ovvero esistono infinite coppie di numeri che la verificano. Risolvere graficamente in un piano cartesiano un equazione numerica intera di primo grado in due incognite, della forma a + b + c = 0, con a, b R 0 e c R, significa individuare e rappresentare nel piano cartesiano gli infiniti punti (aventi per coordinate le coppie di numeri reali soluzioni dell equazione) appartenenti alla retta del piano cartesiano avente equazione implicita: a + b + c = 0.

3 Funzioni quadratiche È noto che, quando a ciascun numero appartenente a un sottoinsieme D dell insieme R viene associato uno e un solo numero reale, si dice che è definita una funzione reale di variabile reale f sull insieme D. La funzione avente per dominio R e così definita: f: a a + b + c con a, b, c R a 0, ovvero la funzione che a associa f() = a + b + c, prende il nome di funzione quadratica. DEFINIZIONE La funzione quadratica è la funzione avente dominio D = R ed equazione: = a + b + c, con a R 0 e b, c R. La rappresentazione grafica di una funzione quadratica in un piano cartesiano è una curva che prende il nome di parabola. Essa è l insieme di tutti i punti del piano aventi coordinate (; a + b + c). Le coordinate dei punti della parabola si ottengono assegnando a dei valori reali arbitrari e ricavando, per ciascuno di essi, i corrispondenti valori di. CASI PARTICOLARI Se a = 0, b 0 e c 0, l equazione f() = a + b + c assume la forma f() = b + c che rappresenta l equazione della funzione affine. Se a = 0, b 0 e c = 0, l equazione f() = a + b + c assume la forma f() = b che rappresenta l equazione della funzione lineare. Se a 0, b = 0 e c = 0, l equazione f() = a + b + c assume la forma f() = a che rappresenta l equazione della funzione della proporzionalità diretta al quadrato. f() = + + è una funzione quadratica. La seguente tabella illustra i valori assunti da = f() al variare di nell insieme D = {,,8,9} = esempio = è una funzione di proporzionalità diretta al quadrato. La seguente tabella illustra i valori assunti da = f() al variare di nell insieme D = {,,,,,8,} Dalla tabella si evince facilmente che, se raddoppia, quadruplica, ovvero diventa = volte più grande; se triplica, diventa = 9 volte più grande; se quadruplica, diventa = volte più grande,.

4 Dall equazione di una funzione quadratica al grafico di una parabola La rappresentazione grafica di una funzione quadratica di equazione: = a + b + c in un piano cartesiano è una parabola. Per tracciare una parabola nel piano cartesiano, è necessario conoscere e quindi congiungere un congruo numero di suoi punti. Cercare le coordinate di tali punti significa individuare un certo numero di coppie di numeri e che si ottengono dall equazione della funzione quadratica (associata alla parabola) assegnando a dei valori reali e ricavando, per ciascuno di essi, i corrispondenti valori di. È possibile esaminare i seguenti casi: caso : a 0, b 0 e c 0; caso : a = 0, b 0 e c 0; caso : a = 0, b 0 e c = 0; caso : a 0, b = 0 e c = 0. Caso : a 0, b 0 e c 0 È utile tener presenti alcune proprietà che caratterizzano la parabola e che saranno studiate in modo approfondito nei prossimi anni scolastici. Una parabola di equazione = a + b + c è dotata di un asse di simmetria parallelo all asse, di equazione b = a Preso un punto qualsiasi della parabola, il suo simmetrico rispetto all asse di simmetria è un punto della parabola. Se il coefficiente del termine di secondo grado è positivo, a > 0, la parabola rivolge la sua concavità verso l alto; se a < 0, la parabola rivolge la sua concavità verso il basso. La parabola e il suo asse di simmetria hanno un punto V in comune, detto vertice della parabola. Le sue coordinate b b V ; a si individuano risolvendo il sistema tra l equazione della parabola e l equazione dell asse di simmetria: = a + b+ c b = a Se la parabola rivolge la sua concavità verso l alto, l ordinata del suo vertice corrisponde al valore minimo che la funzione quadratica può assumere; se la parabola rivolge la sua concavità verso il basso, l ordinata del suo vertice corrisponde al valore massimo che la funzione quadratica può assumere. ac a

5 Le coordinate dell eventuale punto di intersezione tra una parabola e l asse sono (0; c) e si determinano risolvendo il sistema tra l equazione della parabola e l equazione dell asse : = a + b+ c = 0 Asse di simmetria V Vertice V a > 0 Concavità verso l alto Vertice a < 0 Concavità verso il basso Caso : a = 0, b 0 e c 0 Se a = 0, b 0 e c 0, l equazione: f() = a + b + c assume la forma: f() = b + c, che rappresenta l equazione della funzione affine e a essa, com è noto, corrisponde una retta nel piano cartesiano. Caso : a = 0, b 0 e c = 0 Se a = 0, b 0 e c = 0, l equazione f() = a + b + c assume la forma f() = b, che rappresenta l equazione della funzione lineare e a essa, com è noto, corrisponde una retta passante per l origine del piano cartesiano. Caso : a 0, b = 0 e c = 0 Se a 0, b = 0 e c = 0, l equazione f() = a + b + c assume la forma f() = a, che rappresenta l equazione della funzione della proporzionalità diretta al quadrato e a essa corrisponde una parabola avente il vertice nell origine del piano cartesiano e l asse per asse di simmetria. Individuare le coordinate del vertice, l equazione dell asse di simmetria e la concavità delle parabole che corrispondono alle seguenti equazioni: = +. All equazione assegnata corrisponde nel piano cartesiano una parabola che rivolge la sua concavità verso l alto, che ha vertice nel punto: V ; e asse di simmetria di equazione: =. esempio

6 = + +. All equazione assegnata corrisponde nel piano cartesiano una parabola che rivolge la sua concavità verso il basso, che ha vertice nel punto: V 9 ; e asse di simmetria di equazione: =. Tracciare il grafico della funzione di equazione: f() = 9. Tenendo conto di quanto già studiato riguardo alla funzione modulo, la funzione di equazione: f() = 9 è così definita: 9 se 9 0 f( ) = + 9 se 9 < 0 f( ) 9 se = + 9 se < < Il grafico della funzione di equazione f() = 9 è quindi dato: dal tratto del grafico della parabola di equazione = 9 (che rivolge la sua concavità verso la direzione positiva dell asse ) appartenente al semipiano positivo dell asse e corrispondente alle appartenenti all insieme (, ] [, + ); dal tratto della parabola di equazione = 9 (che rivolge la sua concavità verso la direzione negativa dell asse ) corrispondente alle appartenenti all insieme (, ) riportato al di sopra dell asse delle.

7 Funzioni a tratti Le funzioni a tratti sono definite mediante espressioni diverse su sottoinsiemi diversi del dominio. La precisazione a tratti è legata alla rappresentazione grafica nel piano cartesiano che si realizza, infatti, mediante tratti, anche non continui. Funzione parte intera Si prenda in considerazione la funzione parte intera f: R a R così definita:, se è intero f( ) = al più grande intero relativo minore di, se non è intero La funzione parte intera è una funzione a tratti, infatti il suo grafico è formato da tanti segmenti appartenenti a rette parallele all asse delle ascisse, ciascuno di lunghezza, a ciascuno dei quali non appartiene ciascun estremo destro (infatti, se per esempio, < è =, ma per = è = ). 0 Funzione a tratti parte intera Si prenda in considerazione la funzione f: [0, ] a R così definita: esempio Il dominio della funzione è l insieme: [0, ]. Dalla definizione della funzione assegnata, si deduce che il suo codominio è l insieme: [0, ]. Il grafico della funzione è formato: in [0, ] dal tratto del grafico della retta di equazione = ; in (, ] dal tratto del grafico della retta di equazione = ; in (, ] dal tratto del grafico della retta di equazione =. se 0 f( )= se < se < 0

8 La funzione modulo È noto cosa si intende per valore assoluto o modulo di un numero intero relativo p: p se p > 0 p = p se p < 0 0 se p = 0 Il modulo di un numero reale p lascia quindi invariato il segno del numero p se p è positivo, cambia segno a p se p è negativo, è nullo se p è nullo. Nella rappresentazione dei numeri sulla retta reale, il modulo di p rappresenta la distanza tra l origine e il punto associato a p sulla retta reale. Si prenda ora in esame la funzione modulo, di equazione: f() = e così definita: se 0 f( )= se < 0 Il suo dominio è l insieme R dei numeri reali: D = R. Per definizione, poiché il modulo di un numero è nullo o positivo, si deduce che il codominio della funzione modulo è costituito dai numeri reali non negativi: f(d) = { R: 0} = = [0, + ). La funzione modulo è una funzione a tratti, infatti il suo grafico è dato: in [0, + ), dal tratto della bisettrice del primo e terzo quadrante, di equazione = e appartenente al primo quadrante; in (, 0), dal tratto della bisettrice del secondo e quarto quadrante, di equazione = e appartenente al secondo quadrante Tracciare il grafico della funzione di equazione f() = +. Per definizione si ha: esempio + se se f( ) = f( ) = se + < 0 se < Il dominio è l insieme R dei numeri reali: D = R.

9 Poiché il modulo di un numero è nullo o positivo, si deduce che il codominio della funzione assegnata è costituito dai numeri reali non negativi: f(d) = { R: 0{ = [0, + ). La funzione è a tratti, infatti la sua rappresentazione grafica è data: in [, + ), dal tratto della retta di equazione = + e appartenente al semipiano positivo dell asse ; in (, ), dal tratto della retta di equazione = e appartenente al semipiano positivo dell asse La funzione segno Si prenda in esame la funzione segno, detta anche funzione signum, così definita: se < 0 f( )= 0 se = 0 se > 0 Il suo dominio è l insieme R dei numeri reali: D = R. Dalla definizione si deduce che il codominio della funzione modulo è costituito dai numeri reali, 0 e : f(d) = {, 0, }. La funzione segno è una funzione a tratti, infatti la sua rappresentazione grafica è data: dal tratto, appartenente al primo quadrante, della retta passante per il punto (0; ) e parallela all asse ; dal punto origine del piano cartesiano; dal tratto, appartenente al terzo quadrante, della retta passante per il punto (0; ) e parallela all asse

10 Funzione di proporzionalità inversa Si prenda in considerazione la funzione di equazione: n =, n R 0 Dall esame dell equazione, si evince che al crescere (o al decrescere) di, decresce n n (o cresce) allo stesso modo anche =. Per tale motivo, la funzione di equazione =, n R 0,è anche detta funzione di proporzionalità inversa di coefficiente di proporzionalità n. Essa è una funzione avente per dominio l insieme dei numeri reali privato dello zero: D = R {0}. La funzione di proporzionalità inversa corrisponde nel piano cartesiano a una curva particolare che prende il nome di iperbole equilatera riferita al centro e ai propri asintoti. Se n > 0, la curva è situata nel primo e terzo quadrante; se n < 0, nel secondo e nel quarto quadrante. Le due parti di cui è costituita l iperbole prendono il nome di rami. Gli assi e non sono assi di simmetria per l iperbole. L iperbole è inoltre simmetrica rispetto all origine O del piano cartesiano. D 0 E 0 E 0 0 D I punti E e D (nelle due rappresentazioni) sono i vertici dell iperbole equilatera. Essi si determinano intersecando l iperbole con la bisettrice del primo e del terzo quadrante, se n > 0; con la bisettrice del secondo e quarto quadrante, se n < 0. La bisettrice a cui appartengono i vertici prende il nome di asse traverso dell iperbole equilatera. Gli assi rappresentano gli asintoti dell iperbole equilatera.

11 esempio Completare la seguente tabella, che si riferisce all equazione di una funzione di proporzionalità inversa, e rappresentare nel piano la corrispondente iperbole: = Per completare la tabella è necessario sostituire a, contenuto nell equazione valori contenuti nella prima riga: =, i = = = Per rappresentare in un piano cartesiano l iperbole di equazione =, è necessario individuare i vertici dell iperbole: essi sono i punti di intersezione dell iperbole con la bisettrice del primo e del terzo quadrante (perché n = è un numero positivo), di equazione =. Le loro coordinate, ( ; ) e ( ; ), si determinano risolvendo il sistema costituito dall equazione dell iperbole e dall equazione della bisettrice ovvero il seguente sistema: = = Il grafico dell iperbole di equazione = è il seguente: E D

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Il sistema di riferimento cartesiano

Il sistema di riferimento cartesiano 1 Il sistema di riferimento cartesiano Un sistema di riferimento cartesiano si compone di due semirette orientate, tra loro perpendicolari, dette assi cartesiani. L asse delle ascisse (o delle x), è quello

Dettagli

CONVITTO NAZIONALE MARIA LUIGIA. Programma svolto. Definizione di funzione tra insiemi numerici. Definizione di funzioni reali a variabile reale

CONVITTO NAZIONALE MARIA LUIGIA. Programma svolto. Definizione di funzione tra insiemi numerici. Definizione di funzioni reali a variabile reale CONVITTO NAZIONALE MARIA LUIGIA Classe 3B Liceo Scientifico Anno scolastico 2011-2012 Docente: prof.ssa Paola Perego Disciplina: Matematica MODULO 1 : Funzioni Programma svolto ARGOMENTO CONOSCENZE/CONTENUTI

Dettagli

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 016/017 Prof.ssa Migliaccio Gabriella CLASSE III Gli esercizi vanno svolti e consegnati, anche su un quaderno, il giorno dell esame per il

Dettagli

In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1.

In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1. L iperbole L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. Come si evince del grafico, la differenza delle distanze

Dettagli

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1 Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. A x 1. x. x 3..y 1.y.y 3 B C.y 5 x 4..y

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Funzioni elementari. Tutorial di Barberis Paola - agg grafici con GEOGebra - software open source

Funzioni elementari. Tutorial di Barberis Paola - agg grafici con GEOGebra - software open source Funzioni elementari Proporzionalità diretta e inversa Retta, funzione identità e funzione costante Parabola, funzione quadratica e cubica Funzione omografica Funzione esponenziale e logaritmica Funzioni

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO. a. s CLASSE 3Cs. Insegnante: prof.ssa Franca TORCHIA Disciplina: MATEMATICA

PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO. a. s CLASSE 3Cs. Insegnante: prof.ssa Franca TORCHIA Disciplina: MATEMATICA PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO a s 07-08 CLASSE Cs Insegnante: profssa Franca TORCHIA Disciplina: MATEMATICA PROGRAMMA SVOLTO EQUAZIONI E DISEQUAZIONI - Disequazioni e princìpi di equivalenza

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte La Retta. Qual è l equazione della retta in forma nel piano cartesiano? L equazione della generica retta nel piano cartesiano in forma esplicita è y mx q, mentre

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

RETTA NEL PIANO CARTESIANO

RETTA NEL PIANO CARTESIANO RETTA NEL PIANO CARTESIANO Def: una funzione matematica del tipo rappresenta nel piano cartesiano una RETTA. Quindi l EQUAZIONE DI UNA RETTA in forma generica è sempre della forma: COEFFICIENTE ANGOLARE:

Dettagli

RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1

RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1 RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI Angela Donatiello 1 Una funzione del tipo f() = m + q, con m e q numeri reali, è una FUNZIONE LINEARE. Il numero q è detto INTERCETTA o ORDINATA ALL ORIGINE,

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali

Dettagli

Coordinate Cartesiane

Coordinate Cartesiane - - Coordinate Cartesiane Su di una retta r consideriamo un punto, detto origine, un verso positivo indicato con una freccia ed un segmento unitario U. In questo caso la retta r dicesi asse delle ascisse

Dettagli

Il coefficiente angolare è 3/2 mentre Q ha coordinate (0;0). La retta passa per l origine.

Il coefficiente angolare è 3/2 mentre Q ha coordinate (0;0). La retta passa per l origine. SOLUZIONI ESERCIZI GEOMETRIA ANALITICA ) y Il coefficiente angolare è mentre Q ha coordinate (0;) ) y E necessario passare alla forma esplicita della retta y Il coefficiente angolare è mentre Q ha coordinate

Dettagli

Indice degli argomenti: I numeri naturali

Indice degli argomenti: I numeri naturali Indice degli argomenti: I numeri naturali Le potenze La divisibilità I numeri razionali Rappresentazione razionale dei decimali I numeri reali relativi Approfondimento: il piano cartesiano pag. pag. pag.

Dettagli

ax 2 +bx+c è anche il trinomio che compare al I membro nelle equazioni di

ax 2 +bx+c è anche il trinomio che compare al I membro nelle equazioni di PARABOLA La parabola si ottiene intersecando un cono con un piano come nella figura sotto. L equazione della parabola è f(x) = ax 2 +bx+c ax 2 +bx+c è anche il trinomio che compare al I membro nelle equazioni

Dettagli

Compito di matematica Classe III ASA 23 aprile 2015

Compito di matematica Classe III ASA 23 aprile 2015 Compito di matematica Classe III ASA 3 aprile 015 A. Descrivere mediante un opportuno sistema di disequazioni nelle variabili x e y la parte di piano colorata: A1 A A1: y 1 x + x 1 4 x y 0 A: x 4 + y 9

Dettagli

LA RETTA

LA RETTA EQUAZIONE DEL Ogni equazione di I grado in due variabili x e y rappresenta nel piano cartesiano una retta, per cui si dice che a x + b y + c = 0 è l equazione di una retta in forma implicita. OSSERVAZIONE:

Dettagli

Il punto di intersezione degli assi coordinati prende il nome di origine O degli assi

Il punto di intersezione degli assi coordinati prende il nome di origine O degli assi GEOMETRIA ANALITICA PIANO CARTESIANO Ad ogni punto P del piano corrisponde una coppia di numeri sugli assi cartesiani. La coppia di numeri che indichiamo con (x,) prendono il nome di coordinate cartesiane

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

Appunti di geometria analitica: Parte n.1 Retta,circonferenza,parabola

Appunti di geometria analitica: Parte n.1 Retta,circonferenza,parabola Premessa: Prepararsi al test per l ammissione all università NON significa provare e riprovare i quesiti che si trovano sui vari siti o libretti ma: fare un primo generale ripasso di ogni argomento citato

Dettagli

Appunti per la classe terza. Geometria Analitica

Appunti per la classe terza. Geometria Analitica Istituto Professionale L. Lagrange Torino A.S. 008-009 Appunti per la classe terza Geometria Analitica Autore: Di Liscia Francesca Indice 1 Piano cartesiano 1.1 Punto medio......................................

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA GEOMETRIA ANALITICA NEL PIANO Dr. Erasmo Modica erasmo@galois.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema

Dettagli

Geometria analitica piana

Geometria analitica piana Geometria analitica piana 1. La geometria analitica Il metodo della geometria analitica consiste nell applicare gli strumenti dell algebra allo studio della geometria. Il legame tra enti algebrici ed enti

Dettagli

Programma di matematica classe 3 a sez. B a.s

Programma di matematica classe 3 a sez. B a.s Programma di matematica classe 3 a sez. B a.s. 2015-2016 Testo in adozione: Bergamini-Trifone-Barozzi Matematica.blu 2.0 - vol.3 Zanichelli Temi trattati nel corso dell anno scolastico: Piano Cartesiano

Dettagli

Maturità Scientifica PNI Sessione ordinaria

Maturità Scientifica PNI Sessione ordinaria Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 53 Problema Maturità Scientifica PNI Sessione ordinaria 00-00 Due numeri e hanno somma e quoziente uguali ad un numero reale a non nullo.

Dettagli

Matematica Domande di Algebra e Geometria Analitica

Matematica Domande di Algebra e Geometria Analitica Matematica Domande di Algebra e Geometria Analitica prof. Vincenzo De Felice 2015 O studianti, studiate le matematiche, e non edificate sanza fondamenti. Leonardo da Vinci (1452-1519). 1 2 Tutto per la

Dettagli

PROGRAMMA SVOLTO. Classe 1G Matematica Anno scolastico:

PROGRAMMA SVOLTO. Classe 1G Matematica Anno scolastico: Classe 1G Matematica Anno scolastico: 2018-2019 Gli insiemi numerici e le operazioni: Gli insiemi: intersezione ed unione. Gli insiemi numerici: N, Z, Q e R. Le operazioni con i numeri interi, espressioni

Dettagli

3A ALGEBRA Numeri relativi Esercizi supplementari di verifica 1 Metti una crocetta su vero (V) o falso (F) di fianco ad ogni affermazione.

3A ALGEBRA Numeri relativi Esercizi supplementari di verifica 1 Metti una crocetta su vero (V) o falso (F) di fianco ad ogni affermazione. Numeri relativi Esercizi supplementari di verifica Esercizio Metti una crocetta su vero (V) o falso (F) di fianco ad ogni affermazione. a) V F L insieme dei numeri interi relativi è un sottoinsieme dell

Dettagli

Unità Didattica N 9 : La parabola

Unità Didattica N 9 : La parabola 0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

PROGRAMMAZIONE DIDATTICA ANNUALE. Bergamini Massimo-Barozzi Graziella

PROGRAMMAZIONE DIDATTICA ANNUALE. Bergamini Massimo-Barozzi Graziella PROGRAMMAZIONE DIDATTICA ANNUALE Anno Scolastico: 2017/2018 Dipartimento (1) : MATEMATICA Coordinatore (1) : BONI CRISTINA Classe: 4HC Indirizzo: SERVIZI COMMERCIALI Ore di insegnamento settimanale: 3

Dettagli

Programma di matematica classe 3^ sez. E a.s

Programma di matematica classe 3^ sez. E a.s Programma di matematica classe 3^ sez. E a.s. 2018-2019 Testo in adozione: LA matematica a colori - EDIZIONE BLU per il secondo biennio vol.3 Autore: Leonardo Sasso Ed Petrini -------------------------------------------------------------------------

Dettagli

RELAZIONI e CORRISPONDENZE

RELAZIONI e CORRISPONDENZE RELAZIONI e CORRISPONDENZE Siano X e Y due insiemi non vuoti si chiama relazione tra X e Y un qualunque sottoinsieme del prodotto cartesiano: X x Y = {(x,y): x X, y Y} L insieme costituito dai primi (secondi)

Dettagli

Parabola ************************* La curva chiamata PARABOLA si rappresenta con la seguente funzione matematica (1)

Parabola ************************* La curva chiamata PARABOLA si rappresenta con la seguente funzione matematica (1) ttività di recupero conoscenze di ase) araola Oiettivi Saper riconoscere la funzione che esprime la conica. Saper tracciare il grafico di una paraola. Saper determinare gli elementi caratterizzanti una

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

ESERCITAZIONE 9 : FUNZIONI QUADRATICHE

ESERCITAZIONE 9 : FUNZIONI QUADRATICHE ESERCITAZIONE 9 : FUNZIONI QUADRATICHE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 4 Dicembre 2012 L espressione

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 3 Andrea Susa OPERATORE DI PRODOTTO Π 2 1 Operatore di prodotto Π Consideriamo un insieme numerico ={ =1, }. Definiamo prodotto degli elementi in, = Esempio: ={ =1, =2, =3,

Dettagli

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi Forma implicita Forma esplicita a x b y c 0 y m x q a c y x b b Esempio

Dettagli

La retta nel piano cartesiano è rappresentata da un'equazione di primo grado a due incognite del tipo : ax + by + c = 0 ( 1 ) Forma implicita

La retta nel piano cartesiano è rappresentata da un'equazione di primo grado a due incognite del tipo : ax + by + c = 0 ( 1 ) Forma implicita Prof. Marco La Fata La Retta nel piano Cartesiano La retta nel piano cartesiano è rappresentata da un'equazione di primo grado a due incognite del tipo : a + b + c = 0 ( ) Forma implicita Questa è in forma

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data Pag. di PROGRAMMA SVOLTO. Docente : Varano Franco Antonio.

ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data Pag. di PROGRAMMA SVOLTO. Docente : Varano Franco Antonio. Materia: Matematica. Docente : Varano Franco Antonio. Classe : 3 C Liceo Scientifico, opzione Scienze Applicate. ATTIVITA CONTENUTI PERIODO / DURATA LE ISOMETRIE. LE FUNZIONI. LA RETTA. Le isometrie, la

Dettagli

Il grafico di una funzione reale a due variabili è un sottoinsieme del prodotto cartesiano :

Il grafico di una funzione reale a due variabili è un sottoinsieme del prodotto cartesiano : ANALISI ESERCITAZIONE DEL 5/10/010 DOMINIO DI UNA FUNZIONE Sia A. Una funzione f : A è una legge di composizione che associa ad ogni elemento di A uno e un solo numero reale. L insieme A è detto dominio

Dettagli

Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE SECONDA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE

Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE SECONDA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE LICEO LAURA BASSI - BOLOGNA Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE SECONDA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE MATEMATICA ARGOMENTI: EQUAZIONI

Dettagli

http://www.appuntielettro.altervista.org Possiamo associare a ogni punto di una retta orientata un numero reale Il piano cartesiano associamo a ogni punto del piano una coppia di numeri reali Un piano

Dettagli

GEOMETRIA ANALITICA: LE CONICHE

GEOMETRIA ANALITICA: LE CONICHE DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale

Dettagli

Tali quantità o caratteristiche essenziali di un fenomeno possono essere qualitative o quantitative e vengono dette variabili.

Tali quantità o caratteristiche essenziali di un fenomeno possono essere qualitative o quantitative e vengono dette variabili. OBIETTIVO DELLA RICERCA SCIENTIFICA MODELLO DEL FENOMENO NATURALE stabilire se esistono relazioni tra le quantità che si ritengono essenziali per la descrizione di un fenomeno. è una costruzione ideale

Dettagli

La parabola. 0) ti senti preparato sull argomento? si no abbastanza poco. 0) ti senti preparato sull argomento? si no abbastanza poco

La parabola. 0) ti senti preparato sull argomento? si no abbastanza poco. 0) ti senti preparato sull argomento? si no abbastanza poco Contesto: Geometria analitica - Attività di recupero PRIMA 0) ti senti preparato sull argomento? si no abbastanza poco La parabola DOPO 0) ti senti preparato sull argomento? si no abbastanza poco 1)In

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

Anno Scolastico:

Anno Scolastico: LICEO SCIENTIFICO DI STATO "G. BATTAGLINI" TARANTO PROGRAMMA DI MATEMATICA svolto nella Classe III Sezione A. Anno Scolastico: 2012-2013. Docente: Francesco Pantano. 1. Disequazioni. Richiami sulle disequazioni

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

PROGRAMMA DI MATEMATICA

PROGRAMMA DI MATEMATICA A.S. 2015/2016 ALGEBRA - Equazioni letterali fratte PROGRAMMA DI MATEMATICA - Disequazioni di 1 grado ad una incognita intere e frazionarie - Sistemi di disequazioni di 1 o grado in una incognita - Sistemi

Dettagli

SYLLABUS DI GEOMETRIA ANALITICA 3A DON BOSCO

SYLLABUS DI GEOMETRIA ANALITICA 3A DON BOSCO SYLLABUS DI GEOMETRIA ANALITICA 3A DON BOSCO 2014-15 Si precisa che, con questo syllabus, l intenzione non è quella di ridurre l apprendimento della matematica allo studio mnemonico di una serie di procedure.

Dettagli

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT 1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo

Dettagli

PROGRAMMA FINALE A.S. 2016/2017

PROGRAMMA FINALE A.S. 2016/2017 PROGRAMMA FINALE A.S. 2016/2017 MATERIA CLASSE INDIRIZZO DOCENTE LIBRO DI TESTO Matematica III SCIENTIFICO Ermanno Giuseppe FRABOTTA Leonardo Sasso - La Matematica a Colori - BLU - Vol 3 Blu - Petrini

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica L IPERBOLE INTRODUZIONE L iperbole fa parte di un insieme di curve (circonferenza, parabola, ellisse) chiamate coniche, perché si possono

Dettagli

VERIFICA DI MATEMATICA. Classe 3P 02/10/2018

VERIFICA DI MATEMATICA. Classe 3P 02/10/2018 Non utilizzare matita e bianchetto. Classe 3P 02/10/2018 Il punteggio viene attribuito in base alla correttezza e alla completezza nella risoluzione dei quesiti, al metodo risolutivo adottato e alle caratteristiche

Dettagli

LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI

LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI Via Toscana, 20 28100 NOVARA 0321 465480/458381 0321 465143 lsantone@liceoantonelli.novara.it http://www.liceoantonelli.novara.it C.F.80014880035 Cod.Mecc.

Dettagli

CLASSI: TerzeMateria: MATEMATICA e COMPLEMENTIOre settimanali previste: 4

CLASSI: TerzeMateria: MATEMATICA e COMPLEMENTIOre settimanali previste: 4 CLASSI: TerzeMateria: MATEMATICA e COMPLEMENTIOre settimanali previste: 4 modulo Titolo Modulo Titolo unità didattiche Ore previste Periodo Competenze Modulo 1 RACCORDO CON IL BIENNIO EQUAZIONI (SISTEMI)

Dettagli

ITI M.FARADAY Programmazione Modulare a.s Matematica

ITI M.FARADAY Programmazione Modulare a.s Matematica CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4 Matematica modulo Titolo Modulo Titolo unità didattiche del modulo Ore previste Periodo mensile Competenze MODULO 1 RACCORDO

Dettagli

GEOMETRIA ANALITICA

GEOMETRIA ANALITICA GEOMETRIA ANALITICA matematica@blogscuola.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un

Dettagli

CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4

CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4 CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4 N. modulo Titolo Modulo Titolo unità didattiche del modulo Ore previste Periodo mensile Competenze 1 Raccordo con il biennio

Dettagli

Parabole (per studenti del biennio)

Parabole (per studenti del biennio) Parabole (per studenti del biennio) - - - 5 - - Equazione della parabola con vertice in O(0,0) : = a 5 - - - Equazione della parabola con vertice in V( 0,0) : = a 0 - - - 5 - Equazione della parabola con

Dettagli

Coniche - risposte 1.9

Coniche - risposte 1.9 Coniche - risposte. CAMBI DI COORDINATE ) ) cosπ/) sinπ/). a. Rotazione di π/, la matrice di rotazione è = sinπ/) cosπ/) ) ) ) X = Y X = Quindi le formule sono: cioè: Y = X e inversamente Y = = Y X = b.

Dettagli

Tutti gli esercizi della verifica di Ottobre più altri

Tutti gli esercizi della verifica di Ottobre più altri 1) Nell equazione generica della retta y = mx + q, che cosa rappresenta q? 2) Scrivere l equazione della retta che passa per il punto A(0;4) e perpendicolare a quella di equazione y = 1 3 x 5 ; b. tracciare

Dettagli

FUNZIONI E GRAFICI. tempo (anni)

FUNZIONI E GRAFICI. tempo (anni) FUNZIONI E GRAFICI In questa sezione si dà il significato intuitivo di funzione, si stabiliscono definizioni e terminologia, si descrive come una funzione può essere rappresentata graficamente e come se

Dettagli

Introduzione. Test d ingresso

Introduzione. Test d ingresso Indice Introduzione Test d ingresso v vii 1 Insiemi e numeri 1 1.1 Insiemi... 1 1.2 Operazionicongliinsiemi... 3 1.3 Insieminumerici,operazioni... 7 1.4 Potenze... 11 1.5 Intervalli... 12 1.6 Valoreassolutoedistanza...

Dettagli

ITI M.FARADAY PROGRAMMAZIONE DIDATTICA a.s CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4.

ITI M.FARADAY PROGRAMMAZIONE DIDATTICA a.s CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4. CLASSI: TERZE Materia: MATEMATICA e COMPLEMENTI Ore settimanali previste: 4 Matematica MACRO UNITÀ PREREQUISITI TITOLO UNITÀ DI APPRENDIMENTO COMPETENZE PREVISTE PERIODO RACCORDO CON IL BIENNIO U.D.A.1:

Dettagli

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura VERIFICHE TERZA C a.s. 2010 2011 1) Sono assegnati i punti A(0; 10) B(8; - 6) C(0; 0). Rappresentali. a) Verifica che il triangolo ABC è isoscele e calcola la sua area b) Tra i punti P che hanno ordinata

Dettagli

Disequazioni razionali (in una variabile)

Disequazioni razionali (in una variabile) 5 settembre 8 Disequazioni razionali (in una variabile) Forma normale: f f f < f > Disequazioni razionali intere Nelle disequazioni razionali intere la funzione f è un polinomio. Disequazioni di grado

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

GEOMETRIA ANALITICA : FORMULARIO. y 2. + y 1

GEOMETRIA ANALITICA : FORMULARIO. y 2. + y 1 GEOMETRIA ANALITICA : FORMULARIO + x 1 Punto medio d'un segmento, y + y 1 Distanza tra due punti ( - x 1 ) + (y - y 1 ) Condizione di appartenenza di un punto P (x p ;y p ) ad una curva di equazione f(x,y)

Dettagli

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI ANNO SCOLASTICO 2017 /2018 A026 MATEMATICA

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI ANNO SCOLASTICO 2017 /2018 A026 MATEMATICA ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI ISTITUTO PROFESSIONALE DI ENOGASTRONOMIA E OSPITALITA ALBERGHIERA CON I PERCORSI: ACCOGLIENZA TURISTICA, CUCINA, SALA-BAR ISTITUTO TECNICO PER IL TURISMO Sede Amministrativa:

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

L EQUAZIONE DI UNA RETTA CAPITOLO 3. IL PIANO CARTESIANO E LA RETTA

L EQUAZIONE DI UNA RETTA CAPITOLO 3. IL PIANO CARTESIANO E LA RETTA L EQUAZIONE DI UNA RETTA CAPITOLO 3. IL PIANO CARTESIANO E LA RETTA L EQUAZIONE DI UNA RETTA 2 /20 1. LE EQUAZIONI LINEARI DI DUE VARIABILI Un equazione lineare in due variabili x e y è un equazione di

Dettagli

Istituto Kandinsky Anno Scolastico Programma di MATEMATICA - Classi Prime

Istituto Kandinsky Anno Scolastico Programma di MATEMATICA - Classi Prime Istituto Kandinsky Anno Scolastico 2011-2012 Programma di MATEMATICA - Classi Prime Insieme dei numeri naturali. Le operazioni in N: addizione, sottrazione, moltiplicazione e divisione. Legge di composizione

Dettagli

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE 1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo

Dettagli

IIS D ORIA - UFC PROGRAMMAZIONE DI DIPARTIMENTO INDIRIZZO TECNICO ECONOMICO PER IL TURISMO MATERIA MATEMATICA ANNO DI CORSO CLASSE TERZA

IIS D ORIA - UFC PROGRAMMAZIONE DI DIPARTIMENTO INDIRIZZO TECNICO ECONOMICO PER IL TURISMO MATERIA MATEMATICA ANNO DI CORSO CLASSE TERZA INDICE DELLE UFC N. DENOMINAZIONE 1 PIANO CARTESIANO E RETTA 2 DISEQUAZIONI DI 1 E 2 GRADO E SISTEMI DI 1 GRADO 3 CONICHE: PARABOLA E DISEQUAZIONI DI 2 GRADO, ELLISSE E IPERBOLE 4 FUNZIONI ESPONENZIALI

Dettagli

Liceo Scientifico Statale A. Einstein

Liceo Scientifico Statale A. Einstein . PROGRAMMA SVOLTO DAL DOCENTE DI MATEMATICA Prof.ssa Alessandra Desogus a.s. 2015/16 3^ F Libro di testo adottato : L.Sasso La matematica a colori (vol.3) (edizione blu) Ripasso Equazioni di vario tipo

Dettagli

Sistemi di equazioni di secondo grado

Sistemi di equazioni di secondo grado 1 Sistemi di equazioni di secondo grado Risoluzione algebrica Riprendiamo alcune nozioni che abbiamo già trattato in seconda, parlando dei sistemi di equazioni di primo grado: Una soluzione di un'equazione

Dettagli

Esercizi di Matematica. Studio di Funzioni

Esercizi di Matematica. Studio di Funzioni Esercizi di Matematica Studio di Funzioni CONSIDERAZIONI GENERALI Ad ogni funzione corrisponde un grafico, quindi studiare una funzione significa determinare il suo grafico. Per le conoscenze fin qui acquisite,

Dettagli

FUNZIONI E PROPORIZONALITA

FUNZIONI E PROPORIZONALITA FUNZIONI E PROPORIZONALITA una grandezza si dice COSTANTE se mantiene sempre lo stesso valore. Esempi: la capacità di un recipiente, l altezza di una torre, la lunghezza di una strada, una grandezza si

Dettagli

Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni

Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni Funzioni: definizioni e tipi Definizione di funzione Dati due insiemi non vuoti A e B, si dice funzione o applicazione da A a B una relazione che associa ad ogni elemento dell insieme A uno ed un solo

Dettagli

RIPASSO DI MATEMATICA

RIPASSO DI MATEMATICA RIPASSO DI MATEMATICA PER LA FISICA LA MATEMATICA È UNO STRUMENTO CHE PERMETTE LA FORMALIZZAZIONE DELLE SUE LEGGI (tramite le formule si può determinare l evoluzione del fenomeno) I NUMERI I NUMERI POSSONO

Dettagli

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A GAT

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A GAT 1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A GAT Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo

Dettagli

Introduzione alla II edizione. Introduzione. Test d ingresso

Introduzione alla II edizione. Introduzione. Test d ingresso Indice Introduzione alla II edizione Introduzione Test d ingresso v vii ix 1 Insiemi e numeri 1 1.1 Insiemi... 1 1.2 Operazionicongliinsiemi... 3 1.3 Insieminumerici,operazioni... 7 1.4 Potenze... 11 1.5

Dettagli

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco LA PARABOLA La parabola è il luogo geometrico dei punti del piano equidistanti da un punto fisso F detto fuoco e da una retta fissa detta direttrice. Parabola con asse di simmetria coincidente con l asse

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

LE CONICHE. CIRCONFERENZA ELLISSE PARABOLA IPERBOLE Un po di storia. Con materiale liberamente scaricabile da Internet.

LE CONICHE. CIRCONFERENZA ELLISSE PARABOLA IPERBOLE Un po di storia. Con materiale liberamente scaricabile da Internet. LE CONICHE CIRCONFERENZA ELLISSE PARABOLA IPERBOLE Un po di storia Con materiale liberamente scaricabile da Internet www.domenicoperrone.net 1 Prima di iniziare lo studio delle coniche facciamo dei richiami

Dettagli