I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. Liceo Giorgione, Castelfranco 12 aprile 2016

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. Liceo Giorgione, Castelfranco 12 aprile 2016"

Transcript

1 I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica Università di Padova Liceo Giorgione, Castelfranco 12 aprile

2 Sull implicazione «se A allora B» equivale a «se non-b allora non-a» «se A allora B» equivale a «non-a oppure B» Un implicazione è vera se e solo se ha antecedente falso oppure conseguente vero Da «se A allora B» e «non-a» non possiamo dedurre niente 2

3 ESEMPIO Si supponga che: chi vince la lotteria smette di lavorare e chi smette di lavorare ingrassa. Quale delle seguenti ulteriori affermazioni ci permette di concludere che Mario non ha smesso di lavorare? A Mario piace lavorare. Mario non ha vinto la lotteria. Mario non è ingrassato. Mario non ha vinto la lotteria ed è ingrassato. 3

4 formalizzazione se V allora S se S allora I vogliamo concludere non(s) non(i) implica non(s) Mario non è ingrassato. 4

5 ESEMPIO Sapendo che tutti gli uomini sono bipedi e mortali e Socrate è mortale, possiamo concludere che a) Socrate è un uomo. b) Socrate è bipede. c) Se Socrate è bipede, allora è un uomo. d) Se Socrate è un uomo, allora è bipede. Osservazione: non abbiamo usato l ipotesi che Socrate sia mortale 5

6 ESEMPIO Quale delle seguenti affermazioni implica che Socrate non è un bipede mortale? a) Se Socrate è un uomo, allora non è mortale. b) Se Socrate è un uomo, allora non è bipede. c) Se Socrate è bipede, allora non è mortale. d) Se Socrate è bipede, allora è mortale. Osservazione: le risposte a e b sono folcloristiche. Perché? 6

7 ESEMPIO c) Se Socrate è bipede, allora non è mortale. d) Se Socrate è bipede, allora è mortale. Quale implica che Socrate non è un bipede mortale? Osservazione. Socrate non è un bipede mortale è la negazione di un e : non ( S è bipede e S è mortale) che equivale a S non è bipede oppure S non è mortale se quindi S è bipede allora... 7

8 ESEMPIO Affinché sia possibile confutare l affermazione quando passa un tornado per Roma, tutti gli abitanti si chiudono in casa è necessario: a) che qualche abitante di Roma ami il rischio b) che per Roma non passino tornado c) che qualche casa di Roma sia poco robusta d) che per Roma passi un tornado 8

9 DEDUZIONI VUOTE Il sabato sera Mario va al cinema oppure in discoteca; sabato scorso Mario aveva una gamba rotta; sabato scorso davano film che Mario aveva già visto. Possiamo concludere logicamente che sabato scorso Mario è rimasto a casa Mario è andato in discoteca, ma non ha ballato Mario è andato al cinema, ma si è annoiato Mario è andato al cinema o in discoteca 9

10 DEDUZIONI VUOTE FORMALIZZAZIONE A A è una formula sempre vera Se A è vera... Se A è falsa... 10

11 UN PO DI LOGICA esiste ( ), per ogni ( ) esiste x con una certa proprietà non esclude che tutti gli x tale abbiano quella proprietà non x tale che... equivale a x non... non x... equivale a x tale che non... x... equivale a non x non... x... equivale a non x non... 11

12 ALTRI ESEMPI Non è vero che in ogni albergo ci sono stanze senza bagno. Questo significa che A) Esiste un albergo in cui c'è una stanza che ha il bagno B) In ogni albergo tutte le stanze hanno il bagno C) Ogni albergo ha il bagno in tutte le stanze D) Esiste un albergo in cui tutte le stanze hanno il bagno 12

13 ALTRI ESEMPI Non è vero che in ogni albergo ci sono stanze senza bagno. Non è vero: A s (s non ha il bagno) A non è vero: s (s non ha il bagno) A s non è vero: (s non ha il bagno) A s (s ha il bagno) Esiste un albergo in cui tutte le stanze hanno il bagno 13

14 ALTRI ESEMPI Qual è la negazione dell affermazione ogni uomo è calvo oppure non ha i baffi? a) Ogni uomo non è calvo oppure ha i baffi. b) Ogni uomo non è calvo e ha i baffi. c) Esistono uomini che hanno i baffi e non sono calvi. d) Esistono uomini calvi e senza baffi. Possiamo escludere subito a) e b). Perché? 14

15 ALTRO ESEMPIO In Italia c'è una persona x tale che se tale persona vota per il partito P allora tutti votano per il partito P. Cosa si può dire di tale affermazione? x [ x vota P implica y ( y vota P)] x [ x NON vota P oppure y ( y vota P)] AFFERMAZIONE VERA 15

16 ALTRO ESEMPIO In Italia c'è una persona x tale che se tale persona vota per il partito P allora tutti votano per il partito P. Supponiamo sia falsa non ( x [ x vota P implica y ( y vota P)]) x non [x vota P implica y ( y vota P)] x [x vota P e non( y ( y vota P))] x [x vota P e y ( y non vota P))] Affermazione falsa 16

17 Da un test per medicina Se i bugiardi sono disonesti e i bugiardi sono uomini allora A). B) alcuni uomini sono disonesti C). D). 17

18 Commenti al test Se (tutti) i bugiardi sono disonesti e (tutti) i bugiardi sono uomini allora alcuni uomini sono disonesti e se vivessimo in un mondo dove non ci sono bugiardi? 18

19 Commenti al test Se (tutti) i bugiardi sono disonesti e (tutti) i bugiardi sono uomini allora alcuni uomini sono disonesti se tutti gli uomini con tre teste mangiano chiodi e tutti gli uomini con tre teste sono uomini allora alcuni uomini mangiano chiodi Le due deduzioni hanno la stessa struttura 19

20 Commenti al test Se (tutti) i bugiardi sono disonesti e (tutti) i bugiardi sono uomini allora alcuni uomini sono disonesti Quale ulteriore ipotesi serve per rendere vera la deduzione? l ipotesi che esistono dei bugiardi 20

21 ALTRI ESEMPI In un test a risposte multiple ci sono quattro scelte possibili: (a), (b), (c) e (d), ed esattamente una delle quattro è corretta. Sappiamo che (b) vale se e solo se non vale (d) e se non vale (b) allora vale (a) oppure vale (c) Quale è la risposta esatta? (d) o (b) è esatta Se (d) fosse esatta, allora lo sarebbe anche (a) o (c) La risposta esatta è la (b) 21

22 FORMALIZZAZIONE (b) vale se e solo se non vale (d) se non vale (b) allora vale (a) oppure vale (c) (b) non(d) non(b) (d) non(b) (a) oppure (c) (d) (a) oppure (c) 22

23 Necessario e sufficiente E sufficiente che piova per cinque giorni affinché il Bacchiglione straripi Se piove per cinque giorni allora il Bacchiglione straripa E necessario che piova per cinque giorni affinché il Bacchiglione straripi Se non piove per cinque giorni allora il Bacchiglione non straripa 23

24 Necessario e sufficiente E sufficiente che piova per cinque giorni affinché il Bacchiglione straripi Ha piovuto per cinque giorni. Cosa posso concludere? Il Bacchiglione è straripato. Cosa posso concludere? 24

25 Necessario e sufficiente E necessario che piova per cinque giorni affinché il Bacchiglione straripi Ha piovuto per cinque giorni. Cosa posso concludere? Il Bacchiglione è straripato. Cosa posso concludere? 25

26 Necessario e sufficiente La condizione A è sufficiente affinché valga la condizione B La condizione A è necessaria affinché valga la condizione B Se A B e B A allora A B A B non A non B B A La condizione A è necessaria e sufficiente affinché valga la condizione B 26

27 Necessario e sufficiente La condizione A è sufficiente affinché valga la condizione B equivale a La condizione B è necessaria affinché valga la condizione A 27

28 Necessario e sufficiente AVERE QUATTRO LATI UGUALI è condizione... per essere un quadrato? necessaria sufficiente necessaria e sufficiente è necessario che P abbia quattro lati uguali affinché sia un quadrato 28

29 Necessario e sufficiente è necessario che P abbia quattro lati uguali affinché sia un quadrato Qual è l implicazione corrispondente? P quadrato P ha quattro lati uguali P ha quattro lati uguali P quadrato P quadrato P ha quattro lati uguali 29

30 Necessario e sufficiente ESSERE UN QUADRATO è condizione... per avere tutti i lati uguali? necessaria sufficiente necessaria e sufficiente è sufficiente che P che sia un quadrato affinché abbia quattro lati uguali 30

31 Necessario e sufficiente è sufficiente che P che sia un quadrato affinché abbia quattro lati uguali Qual è l implicazione corrispondente? P quadrato P ha quattro lati uguali P ha quattro lati uguali P quadrato P quadrato P ha quattro lati uguali 31

32 Necessario e sufficiente è sufficiente che P che sia un quadrato affinché abbia quattro lati uguali è necessario che P abbia quattro lati uguali affinché sia un quadrato 32

33 Necessario e sufficiente AVERE DUE ANGOLI UGUALI è condizione... per essere un triangolo isoscele? necessaria sufficiente necessaria e sufficiente è necessario e sufficiente che il triangolo T abbia due angoli uguali affinché sia un triangolo isoscele 33

34 Necessario e sufficiente è necessario e sufficiente che il triangolo T abbia due angoli uguali affinché sia un triangolo isoscele Qual è l implicazione corrispondente? T isoscele T ha due angoli uguali T ha due angoli uguali T isoscele T isoscele T ha due angoli uguali 34

35 Necessario e sufficiente Se c è il sole vado al mare (S M) L esserci il sole è condizione... affinché io vada al mare Risposta: sufficiente Perché non è necessaria? 35

36 Necessario e sufficiente Avere il quadrato sull ipotenusa uguale alla somma dei quadrati sui cateti è condizione... affinché il triangolo sia rettangolo necessaria sufficiente necessaria e sufficiente 36

37 Necessario e sufficiente Avere tutti i lati uguali è condizione... affinché un poligono sia regolare Avere tutti gli angoli uguali è condizione... affinché un poligono sia regolare Avere tutti i lati e gli angoli uguali è condizione... affinché un poligono sia regolare 37

38 Necessario e sufficiente Quale tra le seguenti affermazioni, riferite ad un triangolo, è FALSA? a) essere equilatero è condizione sufficiente per essere isoscele; b) non essere isoscele è condizione sufficiente per non essere equilatero; c) essere isoscele è condizione necessaria per essere equilatero; d) essere equilatero è condizione necessaria per essere isoscele. 38

39 Necessario e sufficiente Uno studente dice: «Se sono promosso, mi comprano uno scooter» e «Se mio padre ha uno scatto di carriera, mi comprano uno scooter» 39

40 Necessario e sufficiente a) L essere promosso è condizione necessaria affinché lo studente abbia lo scooter; b) Lo scatto di carriere del padre e condizione necessaria affinché lo studente abbia lo scooter; c) L'essere promosso e condizione sufficiente affinché lo studente abbia lo scooter; d) Lo scatto di carriera del padre e condizione sufficiente affinché lo studente abbia lo scooter; e) E necessario che lo studente sia promosso e il padre abbia uno scatto di carriera affinché lo studente abbia lo scooter. No No Sì Sì No 40

41 Necessario e sufficiente Il regolamento per l'assegnazione di un premio stabilisce che: «Riceveranno il premio gli studenti che sono promossi con una media superiore a 8 oppure hanno voti tutti superiori a 8 in matematica» media > 8 oppure voti > 8 in matematica 41

42 Necessario e sufficiente a) Avere la media superiore a 8 è condizione sufficiente Sì per avere il premio; b) Avere la media superiore a 8 è condizione necessaria No per avere il premio; c) Non riceve il premio chi e promosso con una media No superiore a 8 e ha anche voti tutti superiori a 8 in matematica; d) Condizione necessaria e sufficiente per avere il premio No è essere promossi con una media superiore a 8 e avere voti tutti superiori a 8 in matematica; e) Per avere il premio è sufficiente essere promossi con Sì una media superiore a 8 e avere voti tutti superiori a 8 in matematica 42

43 Necessario e sufficiente Il regolamento per l'assegnazione di un premio stabilisce che: «Riceveranno il premio gli studenti che sono promossi con una media superiore a 8 e hanno voti tutti superiori a 8 in matematica» media > 8 e voti > 8 in matematica 43

44 Necessario e sufficiente a) Avere la media superiore a 8 è condizione sufficiente per avere il premio; b) Avere la media superiore a 8 è condizione necessaria per avere il premio; c) Condizione necessaria è sufficiente per avere il premio è essere promossi con una media superiore a 8 e avere voti tutti superiori a 8 in matematica; d) Per avere il premio è sufficiente essere promossi con una media superiore a 8 e avere voti tutti superiori a 8 in matematica No Sì Sì Sì 44

45 Russell: critica al sillogismo Ipotesi: Tutti gli uomini sono mortali e Socrate è un uomo. Conclusione: Socrate è mortale Come siamo arrivati a formulare l ipotesi tutti gli uomini sono mortali? Abbiamo controllato tutti gli uomini? Ma in tal caso... Oppure siamo arrivati induttivamente alla conclusione. Ma in tal caso... 45

46 Deduzioni induttive Tutti gli uomini sono mortali In Giappone i treni arrivano in orario Se mi alzo alle sette arrivo a scuola in orario 46

47 Deduzioni induttive Tutti quelli che hanno una certa malattia della pelle, hanno subito una scottatura nei primi tre anni di vita. Mio figlio si è scottato a due anni. Posso concludere quacosa? Tutti quelli che hanno una certa malattia della pelle hanno bevuto almeno un caffè negli ultimi cinque anni. 47

48 Deduzioni induttive L 80 % degli studenti di matematica proviene da un liceo. Vuol dire che la maggioranza dei liceali poi fa matematica? 48

49 INTELLIGENZA ARTIFICIALE Ricerca di una logica vicina al senso comune Sono sul marciapiede, davanti alle strisce pedonali, e voglio attraversare. Una macchina si ferma. Io attraverso. Se cerco di avere la dimostrazione logica che quella macchina non ripartirà all improvviso, resto lì per sempre. 49

50 Ancora Intelligenza Artificiale Deduzioni basata sulla generalità, alta frequenza, ecc. Logiche a più valori: grado di verità Il grado di verità di «la macchia non mi investe» è più alto del grado di «la macchina mi investe». Quindi attraverso. Logiche fuzzy 50

51 Ancora Intelligenza Artificiale Deduzioni rivedibili (cambio idea) Ho ricevuto l informazione che un matto si diverte a far finta di fermarsi, per poi investire il pedone. Questa ulteriore informazione mi fa cambiare idea: il grado di verità di «la macchina mi investe» diventa più grande di «la macchina non mi investe». Non attraverso 51

52 Ancora Intelligenza Artificiale Logiche monotòne e non monotòne Ipotesi: ABC è isoscele Dimostro che ABC ha gli angoli alla base uguali Ipotesi: ABC è isoscele e rettangolo Dimostro ancora che ABC ha gli angoli alla base uguali 52

53 Ancora Intelligenza Artificiale Logiche monotòne e non monotòne Ipotesi: la macchina rallenta, è quasi ferma,... Decido di attraversare la strada Ipotesi: la macchina rallenta, è quasi ferma,... e inoltre so che un matto. Decido di non attraversare la strada 53

54 Un test problematico Sapendo che in questo test una sola risposta è giusta, dire di quale si tratta. a) La risposta d) è giusta. b) La risposta b) è sbagliata. c) La risposta c) è giusta. d) La risposta a) è giusta. Attenzione alla risposta b! 54

55 Affermazioni problematiche Mario dice: sto mentendo. Dice il vero o il falso? Se dice il vero..., se dice il falso... Paradosso (o antinomia) Attenzione alla versione divulgativa: Epidemide, cretese, dice: tutti i cretesi sono bugiardi E semplicemente falsa 55

56 Antinomia del mentitore Mario dice: sto mentendo. Altre versioni Coccodrillo Barbiere (Russell) Ponte (don Chisciotte) 56

57 Antinomia di Russell R è l insieme di tutti gli insiemi che non appartengono a sé stessi R appartiene a R? Se R appartiene a R allora R appartiene a sé stesso, e quindi... Se R non appartiene a R allora R non appartiene a sé stesso, e quindi... X ( X R se e solo se X X ) R R se e solo se R R Autoriferimento 57

58 Teorema di Cantor Per ogni insieme X non esiste nessuna funzione suriettiva da X su X Per assurdo: f suriettiva da X su X C = { x X : x f(x) } x0 C x0 f(x0) = C x0 C = f(x0) x0 C C = f(x0) Autoriferimento 58

59 Numeri definibili Con delle frasi possiamo definire dei numeri: La distanza minima in cm tra la terra e la luna Il numero di pecore attualmente in Italia, elevato al cubo Il numero di pulci nell esercito di Giulio Cesare quando ha detto alea jacta est 59

60 Numeri definibili Usando meno di 100 lettere possiamo definire un insieme finito di numeri Esistono numeri che non possiamo definire con meno di 100 lettere. Consideriamo quindi Il più piccolo numero che non possiamo definire con meno di 100 lettere. Dov è l autoriferimento? 60

61 Altro paradosso Sostitutività degli identici Giovanni = padre di Mario Ieri ho visto Giovanni Ieri ho visto il padre di Mario Giorgione = Zorzi da Castelfranco Ieri ho visto Giorgione Ieri ho visto Zorzi da Castelfranco 61

62 Altro paradosso Sostitutività degli identici Giorgione = Zorzi da Castelfranco Giorgione era chiamato così per la sua corporatura Zorzi da Castelfranco era chiamato così per la sua corporatura 62

63 Altro paradosso Sostitutività degli identici Stella del mattino = Stella della sera (= Venere) La stella della sera si chiamo così perché è la prima che si vede di sera La stella del mattino si chiamo così perché è la prima che si vede di sera 63

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova. Licei Lioy e Pigafetta, Vicenza, 20 Gennaio 2011

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova. Licei Lioy e Pigafetta, Vicenza, 20 Gennaio 2011 I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova Licei Lioy e Pigafetta, Vicenza, 20 Gennaio 2011 1 Un test problematico Sapendo che in questo test una sola risposta

Dettagli

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova. Licei Lioy e Pigafetta, Vicenza, 27 Gennaio 2011

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova. Licei Lioy e Pigafetta, Vicenza, 27 Gennaio 2011 I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova Licei Lioy e Pigafetta, Vicenza, 27 Gennaio 2011 1 ALTRI ESEMPI Ad un tavolo circolare si siedono dei cavalieri e

Dettagli

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. I.T.I, Marzotto, Valdagno 24 febbraio 2014

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. I.T.I, Marzotto, Valdagno 24 febbraio 2014 I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica Università di Padova I.T.I, Marzotto, Valdagno 24 febbraio 2014 1 RUOLO DEI TEST Valutazione di: Conoscenze di base (syllabus) Capacità di ragionamento

Dettagli

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. Liceo Giorgione, Castelfranco Veneto 5 aprile 2016

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. Liceo Giorgione, Castelfranco Veneto 5 aprile 2016 I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica Università di Padova Liceo Giorgione, Castelfranco Veneto 5 aprile 2016 1 RUOLO DEI TEST Valutazione di: Conoscenze di base (syllabus) Capacità

Dettagli

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. Liceo Giorgione, Castelfranco 19 aprile 2016

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. Liceo Giorgione, Castelfranco 19 aprile 2016 I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica Università di Padova Liceo Giorgione, Castelfranco 19 aprile 2016 1 Lettura interessante V. Villani, C. Bernardi, S. Zoccante, R. Porcaro, Non

Dettagli

d) l/2. Risposta esatta (indicare in parentesi la lettera corrispondente all alternativa esatta): (d)

d) l/2. Risposta esatta (indicare in parentesi la lettera corrispondente all alternativa esatta): (d) Su ciascuna delle facce di un cubo di lato l si appoggia una piramide retta avente come base la faccia del cubo Che altezza deve avere la piramide affinché la somma dei volumi del cubo e delle piramidi

Dettagli

Richiami teorici ed esercizi di Logica

Richiami teorici ed esercizi di Logica Facoltà di ingegneria Università della Calabria Corsi di Potenziamento Matematica e Logica A. A. 2008-2009 Richiami teorici ed esercizi di Logica Proposizioni logiche: Ogni espressione matematica alla

Dettagli

(b) m è pari oppure n è pari (c) m è pari e n è dispari oppure, viceversa, m è dispari e n è pari (d) m è dispari oppure n è dispari

(b) m è pari oppure n è pari (c) m è pari e n è dispari oppure, viceversa, m è dispari e n è pari (d) m è dispari oppure n è dispari (1) Quante soluzioni reali ha l equazione 5 2x = 4(5 x 1)? (a) una (b) due (c) infinite (d) nessuna (e) non si può dire (2) Da un urna contenente 90 palline numerate se ne estraggono due, ed escono i numeri

Dettagli

02 - Logica delle dimostrazioni

02 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 0 - Logica delle dimostrazioni Anno Accademico 015/016

Dettagli

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Elementi di Logica

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Elementi di Logica settembre 008 Elementi di Logica 1. Nozioni preliminari La logica studia come funziona il pensiero e il ragionamento espresso attraverso degli enunciati Il ragionamento è un sistema di enunciati che permette

Dettagli

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente

Dettagli

2. Quesiti dell area scientifica e scientifico-tecnologica

2. Quesiti dell area scientifica e scientifico-tecnologica 2. Quesiti dell area scientifica e scientifico-tecnologica Logica 01 Scegliere fra le alternative proposte quella che completa la serie: a b c d e 02 Un auto percorre 20.000 km nel corso di un lungo viaggio.

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

L'algebra Booleana. Generalità. Definizioni

L'algebra Booleana. Generalità. Definizioni L'algebra Booleana Generalità L algebra booleana è stata sviluppata da George Boole nel 1854, ed è diventata famosa intorno al 1938 poiché permette l analisi delle reti di commutazione, i cui soli stati

Dettagli

LA LOGICA ESERCIZI. Indica quali, fra le seguenti frasi, sono proposizioni logiche e attribuisci a queste ultime il relativo valore di verità.

LA LOGICA ESERCIZI. Indica quali, fra le seguenti frasi, sono proposizioni logiche e attribuisci a queste ultime il relativo valore di verità. LA LOGICA 1. Le proposizioni logiche ESERCIZI Indica quali, fra le seguenti frasi, sono proposizioni logiche e attribuisci a queste ultime il relativo valore di verità. 1 A «1 1 è uguale a 5»; «Non si

Dettagli

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli.

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli. I TRIANGOLI Il triangolo è un poligono formato da tre angoli o vertici e da tre lati. Il triangolo è la forma geometrica con il minor numero di lati perché tre è il numero minimo di lati con cui si può

Dettagli

Cenni di logica. Hynek Kovarik. Università di Brescia. Analisi Matematica A

Cenni di logica. Hynek Kovarik. Università di Brescia. Analisi Matematica A Cenni di logica Hynek Kovarik Università di Brescia Analisi Matematica A Hynek Kovarik (Università di Brescia) Cenni di logica Analisi Matematica A 1 / 21 Scopo: introdurre nozioni di logica & terminologia

Dettagli

Fondamenti di Informatica 2, Linguaggi e Complessità : Logica I Parte Lucidi di M.Schaerf e A.Marchetti Spaccamela

Fondamenti di Informatica 2, Linguaggi e Complessità : Logica I Parte Lucidi di M.Schaerf e A.Marchetti Spaccamela Fondamenti di Informatica 2 Linguaggi e Complessità : Logica I Parte Lucidi di M.Schaerf e A.Marchetti Spaccamela Fondamenti di Informatica 2: Logica Indice degli argomenti Introduzione: Motivazioni, Prove,

Dettagli

Esercizi di logica discussi in due esercitazioni di novembre Molti sono esercizi tratti dai compiti di esame degli scorsi anni.

Esercizi di logica discussi in due esercitazioni di novembre Molti sono esercizi tratti dai compiti di esame degli scorsi anni. Esercizi di logica discussi in due esercitazioni di novembre 2015. Molti sono esercizi tratti dai compiti di esame degli scorsi anni. Disegnare il circuito (con blocchi E, OPPURE e NON che corrisponde

Dettagli

6. La disequazione A. per nessun x R;

6. La disequazione A. per nessun x R; Università degli Studi di Perugia - Facoltà di Ingegneria Terzo test d ingresso A.A. 0/0-6 Dicembre 0. Quale delle seguenti affermazioni è corretta? A. la funzione y = x è monotona crescente; B. le funzioni

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa

Dettagli

POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni.

POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni. POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni. Il problema dell altezza. Clara Colombo Bozzolo, Carla Alberti,, Patrizia Dova Nucleo di Ricerca in Didattica della Matematica Direttore

Dettagli

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Raccolta di problemi di geometra piana sul teorema di Pitagora applicato ai triangolo con angoli di 45, 30 e 60

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 60 equazioni di secondo grado Esercizio 7. Scomponi + +. Soluzione. Poiché = = = < 0, l equazione associata è impossibile e il trinomio è irriducibile (tabella )..5 esercizi hi non risolve esercizi non

Dettagli

Cosa dobbiamo già conoscere?

Cosa dobbiamo già conoscere? Cosa dobbiamo già conoscere? Come opera la matematica: dagli ai teoremi. Che cosa è una funzione, il suo dominio e il suo codominio. Che cosa significa n j=1 A j dove A j sono insiemi. Che cosa significa

Dettagli

Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180.

Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. 1 Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. Come giustificare questo fatto? Con delle prove sperimentali, ad esempio.

Dettagli

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli

Dettagli

Prof. Roberto Capone. Negazioni e deduzioni

Prof. Roberto Capone. Negazioni e deduzioni Prof. Roberto Capone Negazioni e deduzioni Negazioni Tutti fanno qualcosa; Tutti sono qualcosa Qualcuno non fa qualcosa; Almeno uno non è qualcosa Tutti gli italiani sono intelligenti Almeno un Italiano

Dettagli

Nozioni di logica matematica

Nozioni di logica matematica MINISTERO DELL ISTRUZIONE, DELL UNIVERSITA E DELLA RICERCA LICEO STATALE P. E. IMBRIANI Linguistico - Scientifico - Scientifico delle Scienze Applicate Via S. Pescatori, 155 83100 Avellino Tel. (2 linee)

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

Un po di logica. Christian Ferrari. Laboratorio di matematica

Un po di logica. Christian Ferrari. Laboratorio di matematica Un po di logica Christian Ferrari Laboratorio di matematica 1 Introduzione La logica è la disciplina che studia le condizioni di correttezza del ragionamento. Il suo scopo è quindi quello di elaborare

Dettagli

Logica proposizionale

Logica proposizionale Fondamenti di Informatica per la Sicurezza a.a. 2008/09 Logica proposizionale Stefano Ferrari UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI TECNOLOGIE DELL INFORMAZIONE Stefano Ferrari Università degli

Dettagli

3. Logica. Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune...

3. Logica. Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune... Capitolo 3. Logica 3. Logica Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune... sei una persona priva di logica è logico comportarsi cosí fai l

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Logica per la Programmazione Corso di Laurea in INFORMATICA a.a. 2016/17

Logica per la Programmazione Corso di Laurea in INFORMATICA a.a. 2016/17 Logica per la Programmazione Corso di Laurea in INFORMATICA a.a. 2016/17 Andrea Corradini e Francesca Levi Dipartimento di Informatica E-mail: andrea@di.unipi.it, francesca.levi@unipi.it A. Corradini e

Dettagli

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione

Dettagli

Proprietà di un triangolo

Proprietà di un triangolo Poligono con tre lati e tre angoli. Proprietà di un triangolo In un triangolo : I lati e i vertici sono consecutivi fra loro; La somma degli angoli interni è 180 ; La somma degli angoli esterni è 360 Ciascun

Dettagli

Logica e teoria degli insiemi

Logica e teoria degli insiemi Introduzione Le ricerche booleane L insieme delle parti La logica è la disciplina che studia le regole del ragionamento, per poter costruire oggetti e relazioni di senso compiuto... Date delle frasi di

Dettagli

Geometria euclidea. Alessio del Vigna

Geometria euclidea. Alessio del Vigna Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,

Dettagli

Logica di Base. Docente: Francesca Benanti. 27 Gennaio 2007

Logica di Base. Docente: Francesca Benanti. 27 Gennaio 2007 Logica di Base Docente: Francesca Benanti 27 Gennaio 2007 1 Logica Formale La logica è la disciplina filosofica che studia le forme del ragionamento corretto. Da Aristotele al secolo scorso la logica è

Dettagli

Ricordando che: = si ha:

Ricordando che: = si ha: Logica matematica Esempi 1. Stailisci il grado di verità delle seguenti proposizioni logiche: :" è h 2 è " :"5 è 2 3 è 6" :" è h : è è " :" h h " :" h è " :" è, è " F 2. Data la proposizione p:" " la sua

Dettagli

F 2. i = F n F n+1. i=1 F 2 1 = 1 = F 1 F 2. Per n 1, supponiamo vero per n, dimostriamo per n + 1. F 2i+1 = F 2n+2. i=0

F 2. i = F n F n+1. i=1 F 2 1 = 1 = F 1 F 2. Per n 1, supponiamo vero per n, dimostriamo per n + 1. F 2i+1 = F 2n+2. i=0 1 ESERCIZI 1 Esercizi 1.1 Fibonacci1 Dimostrare che F 2 i = F n F n+1. Dimostrazione. Per induzione su n. Per n = 1 si ha F 2 1 = 1 = F 1 F 2. Per n 1, supponiamo vero per n, dimostriamo per n + 1. n+1

Dettagli

Progetto Olimpiadi di Matematica 2000

Progetto Olimpiadi di Matematica 2000 UNIONE MATEMATICA ITALIANA SCUOLA NORMALE SUPERIORE DI PISA Progetto Olimpiadi di Matematica 2000 GARA di SECONDO LIVELLO 21 febbraio 2001 1) Non sfogliare questo fascicoletto finché l insegnante non ti

Dettagli

MATEMATICA DI BASE. 1. Il numero ( 3. è uguale a: A 3 5 B 3 5 [*] C D. 2. L espressione A B 3 C 1 3 [*] D 3 16

MATEMATICA DI BASE. 1. Il numero ( 3. è uguale a: A 3 5 B 3 5 [*] C D. 2. L espressione A B 3 C 1 3 [*] D 3 16 MTEMTI I SE. Il numero ( ) 0 è uguale a 5 5 [*] 20 0 2. L espressione è uguale a: 2 2 6 [*] 6. Sono dati i numeri reali a = 5 0, b = 90, c = 2 5. Quale delle seguenti è vera? c < a < b a < b < c c < b

Dettagli

Consolidamento conoscenze. 1. Scrivi l enunciato del teorema di Pitagora. In ogni.

Consolidamento conoscenze. 1. Scrivi l enunciato del teorema di Pitagora. In ogni. onsolidamento conoscenze 1. Scrivi l enunciato del teorema di Pitagora. In ogni.. Siano c, e i rispettivamente i cateti e l ipotenusa di un triangolo rettangolo, quale delle seguenti scritture esprime

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero dell Istruzione dell Università e della Ricerca Istituto Nazionale per la valutazione del sistema educativo di istruzione e di formazione Rilevazione degli apprendimenti Anno Scolastico 004 005

Dettagli

Proposizioni. 1) Tra le seguenti frasi riconoscere le proposizioni, e stabilirne poi il valore di verità:

Proposizioni. 1) Tra le seguenti frasi riconoscere le proposizioni, e stabilirne poi il valore di verità: Si ricorda: - L'oggetto della logica sono le proposizioni, o enunciati (i due termini sono sinonimi); - Una proposizione è una espressione dotata di senso compiuto alla quale si può attribuire in modo

Dettagli

UNIVERSITÀ DEGLI STUDI DI CATANIA DIPARTIMENTO DI MATEMATICA ED INFORMATICA PROGETTO MAT.ITA

UNIVERSITÀ DEGLI STUDI DI CATANIA DIPARTIMENTO DI MATEMATICA ED INFORMATICA PROGETTO MAT.ITA UNIVERSITÀ DEGLI STUDI DI CATANIA DIPARTIMENTO DI MATEMATICA ED INFORMATICA PROGETTO MAT.ITA Potenziamento delle competenze logico-matematiche per gli studenti delle scuole secondarie di II grado e prevenzione

Dettagli

MATEMATICA: Compiti delle vacanze Estate 2015

MATEMATICA: Compiti delle vacanze Estate 2015 MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto

Dettagli

LA GEOMETRIA DELLO SPAZIO

LA GEOMETRIA DELLO SPAZIO LA GEOMETRIA ELLO SPAZIO 1 alcola l area e il perimetro del triangolo individuato dai punti A ; 0; 4, ; 1; 5 e 0; ;. ( ) ( ) ( ) 9 ; + 6 Stabilisci se il punto A ( 1;1; ) appartiene all intersezione dei

Dettagli

Kangourou Italia Gara del 16 marzo 2017 Categoria Student Per studenti del triennio della scuola secondaria di secondo grado

Kangourou Italia Gara del 16 marzo 2017 Categoria Student Per studenti del triennio della scuola secondaria di secondo grado Kangourou Italia Gara del 16 marzo 2017 Categoria Student Per studenti del triennio della scuola secondaria di secondo grado 20 17 1. --------------------- = 2 + 0 + 1 + 7 I quesiti dal N. 1 al N. 10 valgono

Dettagli

Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni

Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2017/2018 1 Corsi Introduttivi - a.a. 2017/2018 2 1 Logica matematica Serve

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

(l'uguaglianza degli angoli indica il parallelismo delle rette)

(l'uguaglianza degli angoli indica il parallelismo delle rette) SESTA LEZIONE-teoria delle parallele Riprendiamo la discussione del teorema degli angoli alterni interni. Questo teorema è alla base della teoria delle parallele. Da esso discendono i criteri di parallelismo.

Dettagli

Logica proposizionale

Logica proposizionale Logica proposizionale Linguaggio comune Nel linguaggio comune si utilizzano spesso frasi imprecise o ambigue Esempio Un americano muore di melanoma ogni ora! Assurdo: significa che c è un americano (sfortunato)

Dettagli

RISOLUZIONE IN LOGICA PROPOSIZIONALE. Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine

RISOLUZIONE IN LOGICA PROPOSIZIONALE. Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine RISOLUZIONE IN LOGICA PROPOSIZIONALE Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine 1. Risoluzione Definitione 1.1. Un letterale l è una variabile proposizionale (letterale

Dettagli

Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale è il più grande

Dettagli

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R):

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R): . equivalenze e implicazioni logiche Esercizio.. Trovare le implicazioni che legano i seguenti enunciati (x, y R): () x < y, () x = y, () x y, () x y, () (x y) > 0. Osserviamo subito che (x y) > 0 equivale

Dettagli

Liceo Scientifico Statale ALBERT EINSTEIN Milano

Liceo Scientifico Statale ALBERT EINSTEIN Milano Liceo Scientifico Statale ALBERT EINSTEIN Milano A.S. 200/20 TEST DII IINGRESSO MATEMATIICA CLLASSII PRIIME ALUNNO/A: (COGNOME) (NOME) CLASSE: SCUOLA DI PROVENIENZA: AVVERTENZE: Hai 60 minuti di tempo;

Dettagli

Alunno/a. Esercitazione in preparazione alla PROVA d ESAME. Buon Lavoro Prof.ssa Elena Spera

Alunno/a. Esercitazione in preparazione alla PROVA d ESAME. Buon Lavoro Prof.ssa Elena Spera Esercitazione in preparazione alla PROVA d ESAME Alunno/a Classe III.. 2008 Buon Lavoro Prof.ssa Elena Spera 1. Quale percentuale della figura è colorata? A. 80 % B. 50 % A. 45 % D. 40 % Osservando bene

Dettagli

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Il Principio di induzione matematica è una tecnica di dimostrazione che permette la dimostrazione simultanea di infinite affermazioni.

Dettagli

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata

Dettagli

PROVA DI MATEMATICA. Scuola Primaria. Classe Quinta. Rilevazione degli apprendimenti. Anno Scolastico

PROVA DI MATEMATICA. Scuola Primaria. Classe Quinta. Rilevazione degli apprendimenti. Anno Scolastico Ministero dell Istruzione dell Università e della Ricerca Rilevazione degli apprendimenti Anno Scolastico 2008 2009 PROVA DI MATEMATICA Scuola Primaria Classe Quinta Spazio per l etichetta autoadesiva

Dettagli

RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 ESEMPIO 36 E UN QUADRATO PERFETTO:

RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 ESEMPIO 36 E UN QUADRATO PERFETTO: RADICE È L OPERAZIONE INVERSA DELLA POTENZA RADICE: 6 RADICANDO: 36 RADICALE: INDICE: 2 I NUMERI LA CUI RADICE QUADRATA E UN NUMERO NATURALE SI DICONO QUADRATI PERFETTI ESEMPIO 36 E UN QUADRATO PERFETTO:

Dettagli

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni Cenni di logica matematica e di teoria degli insiemi CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni 1 1 Logica matematica Corsi Introduttivi - a.a. 2016/2017 2 Serve

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio 9 novembre 008 Griglia delle risposte

Dettagli

1 Richiami di logica matematica

1 Richiami di logica matematica Geometria e Topologia I 7 marzo 2005 1 1 Richiami di logica matematica Definire cos è un enunciato, una proposizione (elemento primitivo della logica delle proposizioni). La definizione è data in termini

Dettagli

NOZIONI DI LOGICA PROPOSIZIONI.

NOZIONI DI LOGICA PROPOSIZIONI. NOZIONI DI LOGICA PROPOSIZIONI. Una proposizione è un affermazione che è vera o falsa, ma non può essere contemporaneamente vera e falsa. ESEMPI Sono proposizioni : 7 è maggiore di 2 Londra è la capitale

Dettagli

Kangourou della Matematica 2012 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio Quesiti

Kangourou della Matematica 2012 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio Quesiti Kangourou della Matematica 0 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio 0 Quesiti. umeri di quest anno Quanti numeri interi positivi n sono tali che entrambi i numeri n 0 e n + 0 siano

Dettagli

Elementi di Logica Teoria degli insiemi

Elementi di Logica Teoria degli insiemi Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento Elementi di Logica Teoria degli insiemi Proff. A. Albanese E. Mangino Dipartimento di Matematica e Fisica E. De Giorgi - Università

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze

Dettagli

NOZIONI DI LOGICA. Premessa

NOZIONI DI LOGICA. Premessa NOZIONI DI LOGICA Premessa Il compito principale della logica è quello di studiare il nesso di conseguenza logica tra proposizioni, predisponendo delle tecniche per determinare quando la verità di una

Dettagli

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa.

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. IL TEOREMA DI PITAGORA Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. ENUNCIATO: la somma dei quadrati costruiti sui

Dettagli

3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3.

3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3. 1 2 Fondamenti e didattica della matematica B 5 marzo 2007 Geometria delle similitudini Marina Bertolini (marina.bertolini@mat.unimi.it) Dipartimento di Matematica F.Enriques Università degli Studi di

Dettagli

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare:

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare: Matematica La matematica rappresenta una delle materie di base dei vari indirizzi del nostro Istituto e, anche se non sarà approfondita come in un liceo scientifico, prevede comunque lo studio di tutte

Dettagli

Le sezioni piane del cubo

Le sezioni piane del cubo Le sezioni piane del cubo Versione provvisoria 11 dicembre 006 1 Simmetrie del cubo e sezioni speciali Sezioni speciali si presentano in corrispondenza di piani perpendicolari agli assi di simmetria del

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

Facoltà di Ingegneria Università di Pisa

Facoltà di Ingegneria Università di Pisa Facoltà di Ingegneria Università di Pisa Esame Debiti Formativi del 19/12/2005 1. 100 6 =... (A) 10 64 (B) 10 6 (C) 10 12 (D) 10 7 2. cos(120 ) + cos(60 ) =... (A) cos(60 ) (B) cos(180 ) (C) 0 (D) 1. log

Dettagli

Elementi di Geometria euclidea

Elementi di Geometria euclidea Proporzionalità tra grandezze Date quattro grandezze A, B, C e D, le prime due omogenee tra loro così come le ultime due, queste formano una proporzione se il rapporto delle prime due è uguale al rapporto

Dettagli

Versione di Controllo

Versione di Controllo Università degli Studi di Trento test di ammissione ai corsi di laurea in Fisica - Matematica - Informatica Ingegneria dell Informazione e Organizzazione d Impresa Ingegneria dell Informazione e delle

Dettagli

Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni.

Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Elementi di logica SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Quantificatori: elementi fondamentali del linguaggio matematico. quantificatore

Dettagli

1 I solidi a superficie curva

1 I solidi a superficie curva 1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una

Dettagli

FUNZIONI GONIOMETRICHE Prof. E. Modica

FUNZIONI GONIOMETRICHE Prof. E. Modica FUNZIONI GONIOMETRICHE Prof. E. Modica erasmo@galois.it DEFINIZIONE DELLE FUNZIONI GONIOMETRICHE Consideriamo un triangolo A rettangolo in B e sia α l angolo acuto di vertice A. Successivamente, consideriamo

Dettagli

L1 L2 L3 L4 L5 L6. Esercizio. [1] ha infinite soluzioni [2] non ha soluzioni [3] ha esattamente due soluzioni

L1 L2 L3 L4 L5 L6. Esercizio. [1] ha infinite soluzioni [2] non ha soluzioni [3] ha esattamente due soluzioni La disequazione x x + 1 0 [1] ha infinite soluzioni [] non ha soluzioni [3] ha esattamente due soluzioni [4] nessuna delle precedenti possibilità è corretta Introduciamo la funzione f : R R definita da

Dettagli

184 Capitolo 6. Logica di base

184 Capitolo 6. Logica di base 184 Capitolo 6. Logica di base 6.5 Esercizi 6.5.1 Esercizi dei singoli paragrafi 6.1 - Le proposizioni 6.1. Quali delle seguenti frasi sono proposizioni logiche? a ) I matematici sono intelligenti; b )

Dettagli

Consolidamento Conoscenze

Consolidamento Conoscenze onsolidamento onoscenze 1. Scrivi l enunciato del teorema di Pitagora. In ogni triangolo rettangolo il quadrato costruito sull ipotenusa è equivalente alla somma dei quadrati costruiti sui due cateti..

Dettagli

Gara a squadre di matematica per le scuole medie 16 Dicembre 2016

Gara a squadre di matematica per le scuole medie 16 Dicembre 2016 Gara a squadre di matematica per le scuole medie 16 Dicembre 2016 Istruzioni Le risposte ai problemi sono dei numeri interi compresi tra 0 e 9999. Se il risultato di un problema è più grande di 9999 scrivere

Dettagli

I Triangoli e i criteri di congruenza

I Triangoli e i criteri di congruenza I Triangoli e i criteri di congruenza 1 Le caratteristiche di un triangolo Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni I punti

Dettagli

VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI. < 2 0 < 3a + 1 < 4 1 < 3a < < 3a+1. 1 < 1 b < 2 2 < b < 1 1 < b < 2.

VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI. < 2 0 < 3a + 1 < 4 1 < 3a < < 3a+1. 1 < 1 b < 2 2 < b < 1 1 < b < 2. VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI 1.- 0 < 3a+1 < 2 0 < 3a + 1 < 4 1 < 3a < 3 1 2 3 1 < 1 b < 2 2 < b < 1 1 < b < 2. 1 < a < 1 3 1 < b < 2 4 < a + b < 3 e, a fortiori, 4 < a +

Dettagli

Prof. Roberto Capone. Nozioni di logica matematica

Prof. Roberto Capone. Nozioni di logica matematica Prof. Roberto Capone Nozioni di logica matematica Premesse In matematica non è ammesso un linguaggio ambiguo. Le parole chiave di questo linguaggio sono soltanto sette: Connettivi Non E O Se. allora Se

Dettagli

Scheda per il recupero 16 TRIANGOLI

Scheda per il recupero 16 TRIANGOLI Ripasso Scheda per il recupero ongruenza nei triangoli Triangoli e criteri di congruenza TRINGOLI lassificazione rispetto ai lati Un triangolo si dice: isoscele se ha due lati congruenti; equilatero se

Dettagli

1 MISURA DEI SEGMENTI

1 MISURA DEI SEGMENTI 1 MISUR DEI SEGMENTI 1 MISUR DEI SEGMENTI 1.1 La classe dei segmenti Nell insieme S formato da tutti i segmenti contenuti in un piano introduciamo le seguenti operazioni: Confronto di segmenti: dati due

Dettagli

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso Propedeutico - METS A.A. 2013/2014 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor,

Dettagli

METODI MATEMATICI PER L INFORMATICA

METODI MATEMATICI PER L INFORMATICA METODI MATEMATICI PER L INFORMATICA Tutorato Lezione 2 17/03/2016 Corso per matricole congrue a 1 Docente: Margherita Napoli Tutor: Amedeo Leo Applicazioni della logica proposizionale La logica ha una

Dettagli

si usa in geometria per definire due figure uguali per forma ma non per dimensioni.

si usa in geometria per definire due figure uguali per forma ma non per dimensioni. FIGURE PIANE EQUIESTESE Due figure piane si definiscono equivalenti (o equiestese) se hanno la stessa superficie, la stessa estensione cioè la stessa area. OSSERVA CHE 1- Due figure congruenti saranno

Dettagli

Syllabus: argomenti di Matematica delle prove di valutazione

Syllabus: argomenti di Matematica delle prove di valutazione Syllabus: argomenti di Matematica delle prove di valutazione abcdef... ABC (senza calcolatrici, senza palmari, senza telefonini... ) Gli Argomenti A. Numeri frazioni e numeri decimali massimo comun divisore,

Dettagli

Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati;

Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Implicazione logica. Equivalenza logica; Condizione necessaria,

Dettagli

L ESTRAZIONE DELLA RADICE ( QUADRATA N-ESIMA).( Testo /119) x

L ESTRAZIONE DELLA RADICE ( QUADRATA N-ESIMA).( Testo /119) x L ESTRAZIONE DELLA RADICE ( QUADRATA N-ESIMA).( Testo 51-53 /119) 1) Il concetto della radice di un numero. a) Concetto numerico. 3 = ;l operazione inversa è : qual è quel numero il cui quadrato è 9? Matematicamente

Dettagli