I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. Liceo Giorgione, Castelfranco 19 aprile 2016

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. Liceo Giorgione, Castelfranco 19 aprile 2016"

Transcript

1 I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica Università di Padova Liceo Giorgione, Castelfranco 19 aprile

2 Lettura interessante V. Villani, C. Bernardi, S. Zoccante, R. Porcaro, Non solo Calcoli - Domande e risposte sui perché della Matematica Springer Logica e insiemi Analisi Probabilità 2

3 CAVALIERI E FURFANTI Ambiente tipico dei test: ci sono cavalieri e furfanti, i primi dicono sempre il vero, i secondi sempre il falso. Dalle loro risposte dobbiamo trarre informazioni. Perché si prestano bene per i test? 3

4 CAVALIERI E FURFANTI Versione classica: Ad un bivio ci sono due persone: A e B. So che una è un cavaliere e l altra un furfante, ma non so quale. Dispongo di una sola domanda per sapere quale strada porta al castello. Cosa chiedo? Chiedo ad A: se chiedessi a B la strada per andare al castello, cosa mi risponderebbe? 4

5 CAVALIERI E FURFANTI Una persona dice: io sono un furfante Ci ricorda qualcosa? Se invece quella persona appartiene ad un gruppo di più persone e dice: siamo tutti furfanti, cosa possiamo concludere? 5

6 CAVALIERI E FURFANTI Di A e B sappiamo solo che sono furfanti o cavalieri. A dice: siamo due furfanti. Cosa possiamo dedurre? A e B sono entrambi furfanti. A e B sono entrambi cavalieri. A è cavaliere e B furfante. A è furfante e B cavaliere. 6

7 CAVALIERI E FURFANTI Di A e B sappiamo solo che sono furfanti o cavalieri. A dice: almeno uno di noi è cavaliere. Cosa possiamo dedurre? A e B sono entrambi furfanti. A e B sono entrambi cavalieri. A è cavaliere e B furfante. A è furfante e B cavaliere. Possibile Possibile Possibile 7

8 CAVALIERI E FURFANTI A dice: almeno uno di noi è furfante. A e B sono entrambi furfanti. A e B sono entrambi cavalieri. A è cavaliere e B furfante. A è furfante e B cavaliere. 8

9 CAVALIERI E FURFANTI A dice: almeno uno di noi è cavaliere. B dice: non è vero. A e B sono entrambi furfanti. A e B sono entrambi cavalieri. A è cavaliere e B furfante. A è furfante e B cavaliere. 9

10 CAVALIERI E FURFANTI A, B, C cavalieri o furfanti A e B dicono: «se C è furfante, allora lo sono anch io» A: «C cavaliere oppure A furfante» B: «C cavaliere oppure B furfante» 1) A cavaliere, B e C furfanti 2) A e B cavalieri e C furfante 3) A e B furfanti e C cavaliere 4) Tutti e tre cavalieri 5) Tutti e tre furfanti Perché la risposta 1) può essere scartata immediatamente? 10

11 CAVALIERI E FURFANTI A, B, C sono cavalieri o furfanti, e almeno uno è furfante A dice: siamo tutti e tre furfanti B dice: io sono cavaliere C dice: io e A siamo cavalieri A e C furfanti, B cavaliere 11

12 ALTRI ESEMPI Ad un tavolo circolare si siedono dei cavalieri e dei furfanti e ciascuno di loro afferma che la persona alla sua destra è un furfante. Cosa si può dedurne? A) Sono tutti furfanti B) Sono tutti cavalieri C) C'è un numero pari di persone D) C'è un numero dispari di persone 12

13 ALTRI ESEMPI Lo stesso tavolo di prima. Ma ciascuno di loro afferma che la persona alla sua destra è un cavaliere. Cosa si può dedurne? A) Sono tutti furfanti oppure tutti cavalieri B) Sono tutti cavalieri C) Sono tutti furfanti D) C'è un numero pari di persone 13

14 CAVALIERI E FURFANTI A dice: se io sono cavaliere, allora lo è anche B Equivale a: io sono furfante oppure B è cavaliere A e B sono entrambi furfanti A e B sono entrambi cavalieri. A è cavaliere e B furfante. A è furfante e B cavaliere. 14

15 CAVALIERI E FURFANTI A dice: io sono cavaliere se e solo se su quest isola c è l oro. Cosa possiamo concludere? A è cavaliere A è furfante Sull isola c è l oro Sull isola non c è l oro 15

16 CAVALIERI E FURFANTI A dice: io sono cavaliere se e solo se su quest isola c è l oro Io cavaliere c è l oro Io cav sse c è oro V V V V F F F V F F F V Sull isola c è l oro 16

17 CAVALIERI E FURFANTI Un viaggiatore trova due abitanti dell isola: A e B. Chiede ad A: «uno di voi è un cavaliere?» A risponde, e dalla risposta il viaggiatore sa cosa sono A e B. A e B sono entrambi furfanti A e B sono entrambi cavalieri A è cavaliere e B furfante A è furfante e B cavaliere 17

18 CAVALIERI E FURFANTI Uno di voi è cavaliere? A cavaliere B cavaliere A cav oppure B cav V V V V F V F V V F F F A risponde sì A deve aver risposto no Il viaggiatore non può sapere cosa sono A e B 18

19 INDOVINELLO Ci sono 100 persone, e almeno una di queste ha un timbro in fronte. Ognuno vede tutti gli altri e non vede sé stesso. Tutti sanno che almeno uno di loro ha il timbro in fronte. Il conduttore dice "alzi la mano chi sa di avere il timbro in fronte". Nessuno alza la mano. Ripete la richiesta e nessuno alza la mano. Così per 29 volte. Alla trentesima richiesta alzano la mano tutti e solo quelli con il timbro in fronte. Quanti sono quelli con il timbro in fronte? 19

20 INDOVINELLO Se la persona con il timbro in fronte è una sola, questa alza la mano alla prima richiesta perché vede tutti gli altri senza timbro e sa che almeno uno ha il timbro Se le persone con il timbro sono due, nessuno alza la mano alla prima richiesta, perché vede l altra con il timbro. Ma alla seconda richiesta i due con il timbro sanno che l altro non ha alzato la mano alla prima, quindi. TUTTE LE PERSONE AGISCONO RAZIONALMENTE 20

21 Principio di induzione verifico che la proprietà P vale per n0 (passo iniziale) [spesso n0 è 0 o 1] dimostro che: per ogni n n0 (se P vale per n, allora P vale per n+1) (passo induttivo) concludo che P vale per ogni n n0 21

22 Principio di induzione l uguaglianza è verificata per n=1 22

23 Aneddoto (n-1) + n n + (n-1) n+1 + (n+1) +. + (n+1) + (n+1) = n(n+1) 23

24 Problema dei timbri Proprietà P: se alle prime n richieste nessuno ha alzato la mano, allora i timbri sono più di n. P vale per n=1 Passo induttivo: supponiamo che P valga per un n arbitrario e dimostriamo che vale per n+1 24

25 Problema dei timbri Passo induttivo: la proprietà vale per n e nessuno ha alzato la mano fino alla (n+1)-esima richiesta Per l ipotesi induttiva sappiamo già (e le persone sanno già) che i timbri sono più di n Se i timbri fossero n+1, chi ha il timbro ne vedrebbe n, e, per il passo precedente, alzerebbe la mano. Se dunque nessuno alza la mano alla (n+1)-esima richiesta, allora i timbri sono più di n+1. 25

26 Problema dei timbri Possiamo quindi concludere che la proprietà P vale per ogni n. Dalla dimostrazione segue inoltre che, se i timbri sono n, allora le persone col timbro alzano la mano all n-esima richiesta. 26

27 Paradosso: tutti i cavalli sono dello stesso colore In un insieme con un solo cavallo, tutti i cavalli hanno lo stesso colore. Passo induttivo: gli insiemi con n cavalli hanno cavalli dello stesso colore ha cavalli tutti dello stesso colore consideriamo un nuovo cavallo ha cavalli tutti dello stesso colore 27

28 Tutti i cavalli sono dello stesso colore Quindi e hanno lo stesso colore Possiamo concludere che ha cavalli tutti dello stesso colore 28

29 GIOCO DELLE TRE SCATOLE In un gioco televisivo ci sono tre scatole. Una contiene un ricco premio, le altre non contengono niente. Il conduttore del gioco sa quale scatola contiene il premio. Il concorrente viene invitato a scegliere una scatola. Sceglie la scatola A. Almeno una delle scatole rimanenti è vuota, e il conduttore fa vedere che la scatola B è effettivamente vuota. Ora il concorrente può decidere se mantenere la scatola A o scegliere la C. Cosa gli conviene fare? 29

30 GIOCO DELLE TRE SCATOLE Per capire la soluzione, supponiamo che, anziché 3, le scatole siano100. Il giocatore ne sceglie una e il conduttore del gioco, che conosce il contenuto delle scatole, ne mostra 98 di vuote. E più probabile che la scatola con il premio sia quella scelta dal giocatore o quella rimasta delle 99? 30

31 Problemi con l infinito Già Galileo osserva che i quadrati dei numeri naturali sono «tanti quanti» i numeri naturali Ma allora non è vero che «il tutto è maggiore di una sua parte»! 31

32 Problemi con l infinito Abbiamo infinite palline numerate con i numeri naturali: 1, 2, 3,.. Il primo giorno mettiamo in una grande scatola le palline da 1 a 10, e togliamo la 1. Il secondo giorno mettiamo nella scatola le palline da 11 a 20, e togliamo la 2 Il terzo giorno mettiamo nella scatola le palline da 21 a 30, e togliamo la 3. 32

33 Problemi con l infinito Dopo infiniti giorni quante sono le palline nella scatola? Infinite, o la scatola è vuota? Osservazione 1: Il numero di palline nella scatola è crescente (ogni giorno aumenta di 9) Osservazione 2: prima o dopo ogni pallina viene tolta dalla scatola. 33

34 Problemi con l infinito 0, = 0,5 + 0,05 + 0,005 + = (1 0,5) + (1 0,95) + (1 0,995) +.. = 1+ ( 0,5 + 1) + ( 0,95 + 1) + ( 0,995 +1) +.. = 1+ 0,5 + 0,05 + 0, = 1,

35 Problemi con l infinito 0, = 1, Cosa abbiamo fatto? abbiamo applicato la proprietà associativa della somma: (5+7)+3 = 5+(7+3) ma con le somme infinite tutto cambia 35

36 Problemi con l infinito fissato un numero reale arbitrario r, possiamo cambiare l ordine di infiniti addendi in modo che la somma infinita sia r anche la commutatività della somma non vale più 36

37 Un test a risposta multipla deve avere un unica risposta esatta su quattro. Dire, tra le seguenti situazioni, quale può effettivamente verificarsi. La risposta A è equiv.e alla B, la C è equiv. a D La risposta A è equiv.e alla negazione della B, la C è equiv. alla negazione della D La risposta A è equiv.e alla B, la C è equiv. alla negazione della D La risposta A è equiv.e alla B, La negazione della C è equiv. alla negazione della D 37

38 Aldo, Giovanni e Giacomo, indagati per un reato, vengono interrogati. Aldo dichiara: Sono colpevole. Giovanni dichiara: Il colpevole è Aldo Giacomo dichiara: Non sono colpevole. La polizia sa per certo che il colpevole del reato mente, e almeno uno dei non colpevoli dice il vero. Allora, (A) Il colpevole è Aldo (B) Il colpevole è Giovanni (C) Il colpevole è Giacomo (D) non possibile determinare la risposta con certezza. 38

39 Aldo dichiara: Sono colpevole. Giovanni dichiara: Il colpevole è Aldo Giacomo dichiara: Non sono colpevole. Il colpevole del reato mente almeno uno dei non colpevoli dice il vero. Aldo non è colpevole (ma mente) Giovanni mente Giacomo dice il vero Giovanni è colpevole 39

40 Commenti al test E paradossale che Aldo dica: sono colpevole? No! Dire il falso non significa essere colpevole A colpevole A mente A mente e si dichiara colpevole A innocente Concludiamo che A è innocente Consecuzio Mirabilis: (ϕ non(ϕ)) non(ϕ) 40

41 Bob dice di adorare i gelati. I gelati sono dolci, e chi adora i gelati adora anche i limoni. Allora: (A) Bob adora tutti i dolci (B) Bob adora tutti i dolci, soprattutto se mangiati insieme ai limoni (C) Chi adora i gelati, adora i dolci (D) Bob adora i limoni 41

42 Commenti al test Bob dice di adorare i gelati. I gelati sono dolci, e chi adora i gelati adora anche i limoni. Allora: A) Bob adora tutti i dolci... NO C) Chi adora i gelati, adora i dolci... NO D) Bob adora i limoni... SI Osservazione: la seconda informazione è superflua A cosa serve? A dare credibilità alla risposte A e C 42

43 Vito e Franco dicono sempre rispettivamente il vero e il falso. Mario invece dice a volte il vero e a volte il falso. X e Y due di questi tre signori dicono rispettivamente io sono Franco e io sono Mario. Allora a) non si può sapere chi sono X e Y b) X è Mario e Y è Franco c) X è Franco e Y è Mario d) X è Mario e Y è Vito 43

44 Osservazioni: Commenti al test Osservazione utile: Vito non può essere X o Y Attenzione alla distinzione tra risposta possibile e risposta necessariamente vera 44

45 Vito e Franco dicono sempre rispettivamente il vero e il falso. Mario invece dice a volte il vero e a volte il falso. X e Y sono due di questi tre signori. Quale delle seguenti situazioni NON è logicamente possibile. a) X e Y dicono di essere Franco b) X e Y dicono di essere Mario c) X dice di essere Vito, Y dice di essere Franco d) X dice di essere Mario, Y dice di essere Franco 45

46 La negazione della frase can che abbaia non morde è A) tutti i cani che abbaiano mordono B) c è almeno un cane che abbaia e morde C) c è almeno un cane che non abbaia e morde D) c è almeno un cane che non abbaia e non morde 46

47 Osservazioni: Commenti al test can che... è un universale: tutti i cani che abbaiano non mordono Quindi la negazione sarà un esistenziale c ( c abbaia non (c morde) ) se negato diventa c non ( c abbaia non (c morde) ) c ( c abbaia e c morde ) 47

48 L affermazione «se tutti i gatti sono carnivori, allora esiste un gatto vegetariano» A) implica che non esistono gatti carnivori B) implica che non esistono gatti vegetariani C) è sempre falsa D) implica che esistono gatti vegetariani carnivoro = non vegetariano 48

49 Commenti al test «se tutti i gatti sono carnivori, allora esiste un gatto vegetariano» equivale a: «non tutti i gatti sono carnivori oppure esiste un gatto vegetariano» «esiste un gatto vegetariano oppure esiste un gatto vegetariano» 49

50 La negazione della frase tutti sono ricchi e almeno uno non è felice è A) nessuno è ricco e almeno uno è felice B) qualcuno è ricco oppure nessuno è felice C) qualcuno non è ricco oppure tutti sono felici D) esiste almeno uno non ricco e felice 50

51 Commenti al test L esercizio si presta bene alla formalizzazione Negazione di: tutti sono ricchi e almeno uno non è felice x ( x è ricco ) e y ( y non è felice) se negato diventa non( x ( x è ricco )) oppure non( y ( y non è felice)) x ( x non è ricco ) oppure y non ( y non è felice) x ( x non è ricco ) oppure y ( y è felice) 51

52 Mario dice alternativamente il vero e il falso (cioè ogni sua affermazione vera è seguita da una falsa, e viceversa). Quale delle seguenti affermazioni è attribuibile a Mario? A) La mia precedente affermazione è vera B) La mia precedente affermazione è falsa C) Questa mia affermazione è falsa D) La mia prossima affermazione sarà vera 52

53 Osservazioni: Paradosso nella risposta C Commenti al test Affermazione attribuibile : dobbiamo guardare le risposte impossibili Osservare che le risposte A e D si trattano allo stesso modo 53

54 Se alcune biciclette hanno il cambio allora A) ci sono biciclette senza cambio B) non ci sono biciclette senza cambio C) tutte le biciclette hanno il cambio D) non tutte le biciclette sono senza cambio 54

55 Commenti al test Se alcune biciclette hanno il cambio allora A) ci sono biciclette senza cambio Solito conflitto B) non ci sono biciclette senza cambio C) tutte le biciclette hanno il cambio Sono equivalenti e ovviamente sbagliate D) non tutte le biciclette sono senza cambio OK Si può osservare che ripete la prima affermazione. E grave? NO 55

56 Giovanna ha deciso che domani indosserà una maglietta e, se sarà bel tempo, questa sarà di colore verde. Se l'indomani il tempo sarà brutto, dalla decisione di Giovanna si può dedurre che (a) la maglietta potrà avere un colore qualsiasi; (b) la maglietta sarà rossa; (c) la maglietta non sarà verde; (d) nessuna delle precedenti possibilità è corretta. 56

57 Commenti al test (a) la maglietta potrà avere un colore qualsiasi; (b) la maglietta sarà rossa; (c) la maglietta non sarà verde; sono tutte situazioni possibili ma dalle premesse possiamo dedurre solo la (a) 57

58 2 Si consideri l equazione x + 2x + a = 0 e la condizione a 0 a) la condizione è necessaria, ma non sufficiente, affinché l equazione abbia due soluzioni distinte; b) la condizione è sufficiente, ma non necessaria, affinché l equazione abbia due soluzioni distinte; c) la condizione è necessaria e sufficiente affinché l equazione abbia due soluzioni distinte; d) la condizione non è né necessaria né sufficiente affinché l equazione abbia due soluzioni distinte. 58

59 Commenti al test 2 x + 2x + a = 0 a 0 la condizione è sufficiente, ma non necessaria, affinché l equazione abbia due soluzioni distinte (si intende reali) con 0 < a < 1 abbiamo ancora due sol. distinte 59

60 Si consideri l equazione x 2 + ax + 3 = 0 e la condizione a = 2 3 a) la condizione è necessaria, ma non sufficiente, affinché l equazione abbia un unica soluzione; b) la condizione è sufficiente, ma non necessaria, affinché l equazione abbia un unica soluzione; c) la condizione è necessaria e sufficiente affinché l equazione abbia un unica soluzione; d) la condizione non è né necessaria né sufficiente affinché l equazione abbia un unica soluzione. 60

61 Commenti al test 2 x + ax + 3 = 0 a = 2 3 la condizione è sufficiente, ma non necessaria, affinché l equazione abbia un unica soluzione con a = 2 3 abbiamo ancora un unica soluzione 61

62 Si consideri il triangolo ABC, la sua altezza AH, e la condizione che i triangoli ABH e ACH siano simili. a) la condizione è necessaria, ma non sufficiente, affinché ABC sia rettangolo; b) la condizione è sufficiente, ma non necessaria, affinché ABC sia rettangolo; c) la condizione è necessaria e sufficiente affinché ABC sia rettangolo; d) la condizione non è né necessaria né sufficiente affinché ABC sia rettangolo. 62

63 Commenti al test A La condizione che ABH sia simile a AHC non è sufficiente affinché ABC sia rettangolo B H C H C Il triangolo ACH è un solo segmento A B La condizione che ABH sia simile a AHC non è necessaria affinché ABC sia rettangolo 63

64 Si consideri il triangolo ABC, la sua altezza AH, e la condizione che i triangoli ABH e ACH siano simili. a) la condizione è necessaria, ma non sufficiente, affinché ABC sia rettangolo in A; b) la condizione è sufficiente, ma non necessaria, affinché ABC sia rettangolo in A; c) la condizione è necessaria e sufficiente affinché ABC sia rettangolo in A; d) la condizione non è né necessaria né sufficiente affinché ABC sia rettangolo in A. 64

65 Commenti al test A B H C La condizione che ABH sia simile a AHC è necessaria affinché ABC sia rettangolo in A 65

66 Sia X un insieme non vuoto. Quali delle seguenti affermazioni è errata? a) Se X è finito, allora ogni funzione f : X X iniettiva è anche suriettiva b) Se X è infinito, allora esiste una funzione f : X X che è suriettiva e non iniettiva c) Se esiste una funzione f : X X iniettiva e non suriettiva, allora X è infinito d) Esiste sempre almeno una funzione f : X X che è iniettiva e non suriettiva 66

67 Venti compagni di classe decidono di giocare a tennis. Ogni giorno quattro di loro si trovano sul campo per una partita in doppio, in modo tale da non ripetere mai due volte uno stesso incontro (due medesime coppie si troveranno una volta soltanto a giocare l'una contro l'altra). Dopo quanto tempo avranno giocato tutti i possibili incontri? a) Entro cinque anni scolastici b) Entro un anno scolastico c) Dopo più di 26 anni d) 100 anni non bastano 67

68 68

69 69

70 70

71 71

72 72

73 73

74 74

75 75

76 76

77 77

78 78

79 79

80 80

81 81

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova. Licei Lioy e Pigafetta, Vicenza, 20 Gennaio 2011

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova. Licei Lioy e Pigafetta, Vicenza, 20 Gennaio 2011 I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova Licei Lioy e Pigafetta, Vicenza, 20 Gennaio 2011 1 Un test problematico Sapendo che in questo test una sola risposta

Dettagli

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. I.T.I, Marzotto, Valdagno 24 febbraio 2014

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. I.T.I, Marzotto, Valdagno 24 febbraio 2014 I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica Università di Padova I.T.I, Marzotto, Valdagno 24 febbraio 2014 1 RUOLO DEI TEST Valutazione di: Conoscenze di base (syllabus) Capacità di ragionamento

Dettagli

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. Liceo Giorgione, Castelfranco Veneto 5 aprile 2016

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. Liceo Giorgione, Castelfranco Veneto 5 aprile 2016 I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica Università di Padova Liceo Giorgione, Castelfranco Veneto 5 aprile 2016 1 RUOLO DEI TEST Valutazione di: Conoscenze di base (syllabus) Capacità

Dettagli

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova. Licei Lioy e Pigafetta, Vicenza, 27 Gennaio 2011

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova. Licei Lioy e Pigafetta, Vicenza, 27 Gennaio 2011 I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica P. A. Università di Padova Licei Lioy e Pigafetta, Vicenza, 27 Gennaio 2011 1 ALTRI ESEMPI Ad un tavolo circolare si siedono dei cavalieri e

Dettagli

02 - Logica delle dimostrazioni

02 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 0 - Logica delle dimostrazioni Anno Accademico 015/016

Dettagli

(b) m è pari oppure n è pari (c) m è pari e n è dispari oppure, viceversa, m è dispari e n è pari (d) m è dispari oppure n è dispari

(b) m è pari oppure n è pari (c) m è pari e n è dispari oppure, viceversa, m è dispari e n è pari (d) m è dispari oppure n è dispari (1) Quante soluzioni reali ha l equazione 5 2x = 4(5 x 1)? (a) una (b) due (c) infinite (d) nessuna (e) non si può dire (2) Da un urna contenente 90 palline numerate se ne estraggono due, ed escono i numeri

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

L'algebra Booleana. Generalità. Definizioni

L'algebra Booleana. Generalità. Definizioni L'algebra Booleana Generalità L algebra booleana è stata sviluppata da George Boole nel 1854, ed è diventata famosa intorno al 1938 poiché permette l analisi delle reti di commutazione, i cui soli stati

Dettagli

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. Liceo Giorgione, Castelfranco 12 aprile 2016

I TEST DI LOGICA. Alberto Zanardo Dipartimento di Matematica Università di Padova. Liceo Giorgione, Castelfranco 12 aprile 2016 I TEST DI LOGICA Alberto Zanardo Dipartimento di Matematica Università di Padova Liceo Giorgione, Castelfranco 12 aprile 2016 1 Sull implicazione «se A allora B» equivale a «se non-b allora non-a» «se

Dettagli

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente

Dettagli

F 2. i = F n F n+1. i=1 F 2 1 = 1 = F 1 F 2. Per n 1, supponiamo vero per n, dimostriamo per n + 1. F 2i+1 = F 2n+2. i=0

F 2. i = F n F n+1. i=1 F 2 1 = 1 = F 1 F 2. Per n 1, supponiamo vero per n, dimostriamo per n + 1. F 2i+1 = F 2n+2. i=0 1 ESERCIZI 1 Esercizi 1.1 Fibonacci1 Dimostrare che F 2 i = F n F n+1. Dimostrazione. Per induzione su n. Per n = 1 si ha F 2 1 = 1 = F 1 F 2. Per n 1, supponiamo vero per n, dimostriamo per n + 1. n+1

Dettagli

Quesiti della seconda prova scritta per Matematica. MCD(x, y) = 10 xy = 30000

Quesiti della seconda prova scritta per Matematica. MCD(x, y) = 10 xy = 30000 Quesiti della seconda prova scritta per Matematica Problema 1. (i) Dire quante e quali sono le coppie ordinate (x, y) di numeri naturali che sono soluzioni del sistema { MCD(x, y) = 10 xy = 30000 Qui MCD(x,

Dettagli

2. Quesiti dell area scientifica e scientifico-tecnologica

2. Quesiti dell area scientifica e scientifico-tecnologica 2. Quesiti dell area scientifica e scientifico-tecnologica Logica 01 Scegliere fra le alternative proposte quella che completa la serie: a b c d e 02 Un auto percorre 20.000 km nel corso di un lungo viaggio.

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esercizi per il corso Matematica clea Daniele Ritelli anno accademico 008/009 Lezione : Numeri naturali e principio di induzione Esercizi svolti. Provare che + + + n. Provare che + + + n n(n + ) n(n +

Dettagli

d) l/2. Risposta esatta (indicare in parentesi la lettera corrispondente all alternativa esatta): (d)

d) l/2. Risposta esatta (indicare in parentesi la lettera corrispondente all alternativa esatta): (d) Su ciascuna delle facce di un cubo di lato l si appoggia una piramide retta avente come base la faccia del cubo Che altezza deve avere la piramide affinché la somma dei volumi del cubo e delle piramidi

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

Prima puntata della gara a squadre. 21 Novembre 2002

Prima puntata della gara a squadre. 21 Novembre 2002 Prima puntata della gara a squadre. 1 Novembre 00 Soluzioni. Quesito 1. Nel piano, consideriamo due cerchi di raggio 3 cm e 1 cm tangenti esternamente. Determinare l area del più piccolo insieme convesso

Dettagli

Prima lezione. Gilberto Bini. 16 Dicembre 2006

Prima lezione. Gilberto Bini. 16 Dicembre 2006 16 Dicembre 2006 Vediamo alcune nozioni di teoria ingenua degli insiemi. Vediamo alcune nozioni di teoria ingenua degli insiemi. Un insieme è una collezione di oggetti di cui possiamo specificare una proprietà

Dettagli

Figura 7: Ruota della Fortuna. Quanti sono i casi possibili? G. Sanfilippo - CdP - STAD - Lezione 2 del 12 Aprile pag. 15

Figura 7: Ruota della Fortuna. Quanti sono i casi possibili? G. Sanfilippo - CdP - STAD - Lezione 2 del 12 Aprile pag. 15 Figura 7: Ruota della Fortuna. Quanti sono i casi possibili? G. Sanfilippo - CdP - STAD - Lezione 2 del 12 Aprile 2012- pag. 15 Casi Possibili B= La lancetta indica il Blu V= La lancetta indica il Verde

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

Concetti fondamentali

Concetti fondamentali Concetti fondamentali elemento insieme sequenza tutto si riconduce a questi insieme: esempi {,3,5,7,9} insieme dei numeri dispari positivi minori di dieci {Antonio, Beatrice, Carlo, Daria} insieme dei

Dettagli

Appunti del Corso Analisi 1

Appunti del Corso Analisi 1 Appunti del Corso Analisi 1 Anno Accademico 2011-2012 Roberto Monti Versione del 5 Ottobre 2011 1 Contents Chapter 1. Cardinalità 5 1. Insiemi e funzioni. Introduzione informale 5 2. Cardinalità 7 3.

Dettagli

01 - Elementi di Teoria degli Insiemi

01 - Elementi di Teoria degli Insiemi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2015/2016

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 1 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 3.1, 3.2,

Dettagli

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16

Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana /16 Esercizi di Matematica per la prova di ammissione alla Scuola Galileiana - 015/16 Esercizio 1 Per quali valori n Z \ {0} l espressione è un numero intero positivo? (n + 5)(n + 6) 6n Soluzione. Il problema

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

SCUOLA GALILEIANA DI STUDI SUPERIORI CLASSE DI SCIENZE NATURALI ESAME DI AMMISSIONE, PROVA DI MATEMATICA 13 SETTEMBRE 2011

SCUOLA GALILEIANA DI STUDI SUPERIORI CLASSE DI SCIENZE NATURALI ESAME DI AMMISSIONE, PROVA DI MATEMATICA 13 SETTEMBRE 2011 1 SCUOLA GALILEIANA DI STUDI SUPERIORI CLASSE DI SCIENZE NATURALI ESAME DI AMMISSIONE, PROVA DI MATEMATICA 13 SETTEMBRE 011 Problema 1. Sia Z l insieme dei numeri interi. a) Sia F 100 l insieme delle funzioni

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

Algebra Lineare e Geometria. Il teorema fondamentale dell algebra. 1 Non c è un ordine totale sull insieme dei complessi

Algebra Lineare e Geometria. Il teorema fondamentale dell algebra. 1 Non c è un ordine totale sull insieme dei complessi Università di Bergamo Anno accademico 2008 2009 Primo anno di Ingegneria Algebra Lineare e Geometria Il teorema fondamentale dell algebra 1 Non c è un ordine totale sull insieme dei complessi Vogliamo

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Su alcuni paradossi in matematica e in logica (Claudio Bernardi

Su alcuni paradossi in matematica e in logica (Claudio Bernardi Paderno del Grappa, 24 agosto 2011 Su alcuni paradossi in matematica e in logica (Claudio Bernardi claudio.bernardi@uniroma1.it) La parola paradosso assume almeno tre significati: a) un'affermazione che

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE

MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI Anna TORRE Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy. E-mail: anna.torre@unipv.it 1 SOLUZIONI:

Dettagli

Insiemi di numeri reali

Insiemi di numeri reali Capitolo 1 1.1 Elementi di teoria degli insiemi Se S è una totalità di oggetti x, si dice che S è uno spazio avente gli elementi x. Se si considerano alcuni elementi di S si dice che essi costituiscono

Dettagli

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere

Dettagli

11. Misure con segno.

11. Misure con segno. 11. Misure con segno. 11.1. Misure con segno. Sia Ω un insieme non vuoto e sia A una σ-algebra in Ω. Definizione 11.1.1. (Misura con segno). Si chiama misura con segno su A ogni funzione ϕ : A R verificante

Dettagli

Sperimentazioni di Fisica I mod. A Statistica - Lezione 3

Sperimentazioni di Fisica I mod. A Statistica - Lezione 3 Sperimentazioni di Fisica I mod. A Statistica - Lezione 3 A Garfagnini, M Mazzocco, C Sada Dipartimento di Fisica G. Galilei, Università di Padova AA 2014/2015 Elementi di Teoria della Probabilità L ineliminabile

Dettagli

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CALCOLO DELLE PROBABILITA INTRODUZIONE Già 3000 anni fa gli Egizi praticavano un antenato del gioco dei dadi, che si svolgeva lanciando una pietra. Il gioco dei dadi era diffuso anche nell antica Roma,

Dettagli

Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4. uscirà il numero 9

Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4. uscirà il numero 9 Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4 o ancora: uscirà il numero 9 Possiamo dire che le previsione del tuo compagno sono la prima certa, la seconda

Dettagli

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI

ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI ALGEBRA I: ASSIOMI DI PEANO E PROPRIETÀ DEI NUMERI NATURALI 1. GLI ASSIOMI DI PEANO Come puro esercizio di stile voglio offrire una derivazione delle proprietà elementari dei numeri naturali e delle operazioni

Dettagli

NOZIONI DI LOGICA PROPOSIZIONI.

NOZIONI DI LOGICA PROPOSIZIONI. NOZIONI DI LOGICA PROPOSIZIONI. Una proposizione è un affermazione che è vera o falsa, ma non può essere contemporaneamente vera e falsa. ESEMPI Sono proposizioni : 7 è maggiore di 2 Londra è la capitale

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

NOZIONI DI LOGICA. Premessa

NOZIONI DI LOGICA. Premessa NOZIONI DI LOGICA Premessa Il compito principale della logica è quello di studiare il nesso di conseguenza logica tra proposizioni, predisponendo delle tecniche per determinare quando la verità di una

Dettagli

Linguaggio della Matematica

Linguaggio della Matematica Linguaggio della Matematica concetti primitivi: elementi fondamentali di natura intuitiva (punto, retta, insieme, elemento di un insieme,...). assiomi: enunciati, proposizioni vere a priori (gli assiomi

Dettagli

Collegio di Merito Bernardo Clesio Università di Trento

Collegio di Merito Bernardo Clesio Università di Trento Collegio di Merito Bernardo Clesio Università di Trento 23 luglio 2012 Prova per i candidati per le facoltà scientifiche Esercizio 1. Descrivere tutti i polinomi p(x) con coefficienti reali tali che per

Dettagli

UNIVERSITÀ DEGLI STUDI DI TRENTO

UNIVERSITÀ DEGLI STUDI DI TRENTO UNIVERSITÀ DEGLI STUDI DI TRENTO PROVA DI AMMISSIONE AI CORSI DI LAUREA IN Fisica Matematica Informatica Ingegneria dell Informazione e Organizzazione d Impresa, Ingegneria dell Informazione e delle Comunicazioni

Dettagli

VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI. < 2 0 < 3a + 1 < 4 1 < 3a < < 3a+1. 1 < 1 b < 2 2 < b < 1 1 < b < 2.

VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI. < 2 0 < 3a + 1 < 4 1 < 3a < < 3a+1. 1 < 1 b < 2 2 < b < 1 1 < b < 2. VI a GARA MATEMATICA CITTÀ DI PADOVA 23 MARZO 1991 SOLUZIONI 1.- 0 < 3a+1 < 2 0 < 3a + 1 < 4 1 < 3a < 3 1 2 3 1 < 1 b < 2 2 < b < 1 1 < b < 2. 1 < a < 1 3 1 < b < 2 4 < a + b < 3 e, a fortiori, 4 < a +

Dettagli

Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale è il più grande

Dettagli

Kangourou Italia Gara del 16 marzo 2017 Categoria Student Per studenti del triennio della scuola secondaria di secondo grado

Kangourou Italia Gara del 16 marzo 2017 Categoria Student Per studenti del triennio della scuola secondaria di secondo grado Kangourou Italia Gara del 16 marzo 2017 Categoria Student Per studenti del triennio della scuola secondaria di secondo grado 20 17 1. --------------------- = 2 + 0 + 1 + 7 I quesiti dal N. 1 al N. 10 valgono

Dettagli

0 Insiemi, funzioni, numeri

0 Insiemi, funzioni, numeri Giulio Cesare Barozzi, Giovanni Dore, Enrico Obrecht Elementi di analisi matematica - Volume 1 Zanichelli 0 Insiemi, funzioni, numeri Esercizi 0.1. Il linguaggio degli insiemi 0.1.1. Esercizio Poniamo

Dettagli

FUNZIONI TRA INSIEMI. Indice

FUNZIONI TRA INSIEMI. Indice FUNZIONI TRA INSIEMI LORENZO BRASCO Indice. Definizioni e risultati.. Introduzione.. Iniettività e suriettività.3. Composizione di funzioni 4.4. Funzioni inverse 5. Esercizi 5.. Esercizi svolti 5.. Altri

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

SPAZI VETTORIALI CON PRODOTTO SCALARE A =

SPAZI VETTORIALI CON PRODOTTO SCALARE A = SPAZI VETTORIALI CON PRODOTTO SCALARE Esercizi Esercizio. Nello spazio euclideo standard (R 2,, ) sia data la matrice 2 3 A = 3 2 () Determinare una base rispetto alla quale A sia la matrice di un endomorfismo

Dettagli

Versione A Libretto Test

Versione A Libretto Test LINGUAGGIO MATEMATICO DI BASE 2 Linguaggio Matematico di Base LINGUAGGIO MATEMATICO DI BASE 1. La media aritmetica di due numeri s e t è 2 3. Allora t è uguale a A. B. C. D. E. 4 2s 3 3 2s 2 4 3s 2 4 3s

Dettagli

3. Successioni di insiemi.

3. Successioni di insiemi. 3. Successioni di insiemi. Per evitare incongruenze supponiamo, in questo capitolo, che tutti gli insiemi considerati siano sottoinsiemi di un dato insieme S (l insieme ambiente ). Quando occorrerà considerare

Dettagli

1 I numeri naturali. 1.1 Gli assiomi di Peano

1 I numeri naturali. 1.1 Gli assiomi di Peano 1 I numeri naturali I numeri naturali sono il punto di partenza per la costruzione degli altri insiemi numerici: numeri interi, razionali, reali e quindi complessi, interi modulo n. Il concetto di numero

Dettagli

Dispense del corso di Algebra 1. Soluzioni di alcuni esercizi

Dispense del corso di Algebra 1. Soluzioni di alcuni esercizi Dispense del corso di Algebra 1 Soluzioni di alcuni esercizi Esercizio 1.1. 1) Vero; ) Falso; 3) V; 4) F; 5) F; 6) F (infatti: {x x Z,x < 1} {0}); 7) V. Esercizio 1.3. Se A B, allora ogni sottoinsieme

Dettagli

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati. LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b

Dettagli

Richiami teorici ed esercizi di Logica

Richiami teorici ed esercizi di Logica Facoltà di ingegneria Università della Calabria Corsi di Potenziamento Matematica e Logica A. A. 2008-2009 Richiami teorici ed esercizi di Logica Proposizioni logiche: Ogni espressione matematica alla

Dettagli

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 4 Sommario. Dimostriamo il Teorema di Completezza per il Calcolo dei Predicati del I ordine. 1. Teorema di Completezza Dimostriamo il Teorema

Dettagli

RISOLUZIONE IN LOGICA PROPOSIZIONALE. Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine

RISOLUZIONE IN LOGICA PROPOSIZIONALE. Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine RISOLUZIONE IN LOGICA PROPOSIZIONALE Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine 1. Risoluzione Definitione 1.1. Un letterale l è una variabile proposizionale (letterale

Dettagli

Linguaggio della Matematica

Linguaggio della Matematica Linguaggio della Matematica concetti primitivi: elementi fondamentali di natura intuitiva (punto, retta, insieme, elemento di un insieme,...). assiomi: enunciati, proposizioni vere a priori (gli assiomi

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Principio di induzione: esempi ed esercizi Principio di induzione: Se una proprietà P n dipendente da una variabile intera n vale per n e se, per ogni n N vale P n P n + allora P vale su tutto N Variante

Dettagli

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata

Dettagli

Il teorema di Rouché-Capelli

Il teorema di Rouché-Capelli Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un

Dettagli

PIANO CARTESIANO:EQUAZIONI

PIANO CARTESIANO:EQUAZIONI PIANO CARTESIANO:EQUAZIONI {(x,c) x R} = {(x,y) R 2 y=c} R 2 è una retta parallela all asse delle ascisse L asse delle ascisse è una retta di equazione y=0 Analogamente {(c,y) y R} = {(x,y) R 2 x=c} R

Dettagli

1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine

1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine 1 Giochi di Ehrenfeucht-Fraissé e Logica del Prim ordine In questo tipo di giochi l arena è costituita da due grafi orientati G = (V, E), G = (V, E ). Lo scopo del I giocatore è di mostrare, in un numero

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

DAI NUMERI NATURALI AI NUMERI RAZIONALI

DAI NUMERI NATURALI AI NUMERI RAZIONALI DAI NUMERI NATURALI AI NUMERI RAZIONALI 1. L insieme dei numeri naturali Nel sistema assiomatico ZF, l Assioma dell infinito stabilisce che: Esiste un insieme A, i cui elementi sono insiemi e tale che

Dettagli

Insiemi uguali? biiezione : A B bambino i libro i bambino ii libro ii bambino iii libro iii bambino iv libro iv

Insiemi uguali? biiezione : A B bambino i libro i bambino ii libro ii bambino iii libro iii bambino iv libro iv Insiemi uguali? Vogliamo occuparci del confronto di insiemi, in particolare di insiemi infiniti. Prima di potere parlare di confronto di insiemi è necessario però fare alcune precisazioni a riguardo della

Dettagli

Geometria delle similitudini

Geometria delle similitudini Istituzioni di matematiche 2 Diego Noja (diego.noja@unimib.it) 31 marzo 2009 Geometria delle similitudini CDL Scienze della Formazione Primaria Istituzioni di matematiche 2 pagina 1 CDL Scienze della Formazione

Dettagli

Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni

Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2017/2018 1 Corsi Introduttivi - a.a. 2017/2018 2 1 Logica matematica Serve

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 60 equazioni di secondo grado Esercizio 7. Scomponi + +. Soluzione. Poiché = = = < 0, l equazione associata è impossibile e il trinomio è irriducibile (tabella )..5 esercizi hi non risolve esercizi non

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 5.5 esercizi 9 Per trovare la seconda equazione ragioniamo così: la parte espropriata del primo terreno è x/00, la parte espropriata del secondo è y/00 e in totale sono stati espropriati 000 m, quindi

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R):

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R): . equivalenze e implicazioni logiche Esercizio.. Trovare le implicazioni che legano i seguenti enunciati (x, y R): () x < y, () x = y, () x y, () x y, () (x y) > 0. Osserviamo subito che (x y) > 0 equivale

Dettagli

La forma normale di Schur

La forma normale di Schur La forma normale di Schur Dario A Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi alla forma normale di Schur, alle sue proprietà e alle sue applicazioni

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo B. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo B. Codici. Scuola:... Ministero dell Istruzione dell Università e della Ricerca Istituto Nazionale per la valutazione del sistema educativo di istruzione e di formazione Rilevazione degli apprendimenti Anno Scolastico 004 005

Dettagli

3. Quante sono le coppie di numeri interi positivi (m, n) tali che m n = 2 12? (A) 2 (B) 1 (C) 3 (D) 6 (E) 4

3. Quante sono le coppie di numeri interi positivi (m, n) tali che m n = 2 12? (A) 2 (B) 1 (C) 3 (D) 6 (E) 4 T1 Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA Ministero dell Istruzione, dell Università e della Ricerca I Giochi di Archimede - Gara Biennio 23 novembre 2017 La prova è costituita da

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Esercizi sul Principio d Induzione

Esercizi sul Principio d Induzione AM110 - ESERCITAZIONI I - II - 4 OTTOBRE 01 Esercizi sul Principio d Induzione Esercizio svolto 1. Dimostrare che per ogni n 1, il numero α(n) := n 3 + 5n è divisibile per 6. Soluzione. Dimostriamolo usando

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI

STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI M. G. BUSATO STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI mgbstudio.net PAGINA INTENZIONALMENTE VUOTA SOMMARIO In questo scritto viene compiuto lo studio dettagliato

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

nota 1. Aritmetica sui numeri interi.

nota 1. Aritmetica sui numeri interi. nota 1. Aritmetica sui numeri interi. Numeri interi. Numeri primi. L algoritmo di Euclide per il calcolo del mcd. Equazioni diofantee di primo grado. Congruenze. Il Teorema Cinese del Resto. 1 0. Numeri

Dettagli

Prova scritta di Matematica Discreta e Logica del giorno 3 luglio 2017 Soluzione degli esercizi FILA D

Prova scritta di Matematica Discreta e Logica del giorno 3 luglio 2017 Soluzione degli esercizi FILA D ˆ ˆ ƒˆ ˆ ƒ ˆ ˆ Œ ˆ.. 2016-2017 Prova scritta di Matematica Discreta e Logica del giorno 3 luglio 2017 Soluzione degli esercizi FILA D Esercizio 1 Nell insieme delle coppie ordinate di numeri naturali,

Dettagli

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi Sia p 5 un numero primo. Allora, p è sempre divisibile per 4. Scriviamo p (p ) (p + ). Ora, p 5 è primo e, quindi, dispari. Dunque, p e p + sono entrambi pari. Facciamo vedere anche che uno tra p e p +

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

1.1 Coordinate sulla retta e nel piano; rette nel piano

1.1 Coordinate sulla retta e nel piano; rette nel piano 1 Sistemi lineari 11 Coordinate sulla retta e nel piano; rette nel piano Coordinate sulla retta Scelti su una retta un primo punto O (origine) ed un diverso secondo punto U (unita ), l identificazione

Dettagli

SERIE NUMERICHE FAUSTO FERRARI

SERIE NUMERICHE FAUSTO FERRARI SERIE NUMERICHE FAUSTO FERRARI Materiale propedeutico alle lezioni di Complementi di Analisi Matematica ed Elementi di Calcolo delle probabilità per il corso di Laurea in Ingegneria per la parte di Elementi

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 2 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 2 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 2 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 3.5, 3.6,

Dettagli

ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni

ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni (1) Verificare che l anello quoziente Z 5 [x]/(x 3 2) possiede divisori dello zero, e determinare tutti i suoi ideali non banali. Soluzione: Il polinomio

Dettagli

Tempo a disposizione. 90 minuti. 1 [6 punti] Dimostrare che, per ogni n N, n 1, vale la disuguaglianza:

Tempo a disposizione. 90 minuti. 1 [6 punti] Dimostrare che, per ogni n N, n 1, vale la disuguaglianza: Dipartimento di Matematica e Informatica Anno Accademico 05-06 Corso di Laurea in Informatica (L-) Prova in itinere di Matematica Discreta ( CFU) Febbraio 06 A Tempo a disposizione. 90 minuti [6 punti]

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli