Capitolo 4. TRAVE AD ASSE CURVILINEO (prof. Elio Sacco) 4.1 Le equazioni dell arco Equazioni di equilibrio

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Capitolo 4. TRAVE AD ASSE CURVILINEO (prof. Elio Sacco) 4.1 Le equazioni dell arco Equazioni di equilibrio"

Transcript

1 Capitolo 4 TRAVE AD ASSE CURVILINEO (prof. Elio Sacco) 4.1 Le equaioni dell arco Equaioni di equilibrio Si consideri una trave ad asse curvilineo. Per determinare le equaioni di equilibrio si consideri il tratto di trave, di lunghea infinitesima, riportato in figura 4.1. Imponendo l equilibrio si determinano le seguenti equaioni: equilibrio alla traslaione verticale T cos dθ dθ + N sin + p +(T + dt )cos dθ +(N + dn)sindθ =0 (4.1) equilibrio alla traslaione oriontale N cos dθ dθ T sin + q +(N + dn)cos dθ (T + dt )sindθ =0 (4.) equilibrio alla rotaione à M T Rtan dθ R +q cos dθ! R (T + dt ) R tan dθ +M+dM+m=0 (4.3) 55

2 56 CAPITOLO 4. TRAVE AD ASSE CURVILINEO (PROF. ELIO SACCO) p * T B M A q * M+dM N T+dT N+dN dθ O Figura 4.1: Tratto infinitesimo di trave ad asse cuvilineo. avendo indicato con q il carico distribuito agente lungo la tangente alla trave, con p il carico distribuito radiale alla trave curva e con m le coppie distribuite. Poiché il tratto è di lunghea infinitesima,sipuòporre: cos dθ 1 sin dθ per cui le equaioni (4.1), (4.) e (4.3) diventano: dθ tan dθ (4.4) T + N dθ + p +(T + dt )+(N + dn) dθ =0 (4.5) N T dθ + q + N + dn (T + dt ) dθ =0 (4.6) M TR dθ + q (R R) (T + dt ) R dθ + M + dm + m=0 (4.7) Semplificando e trascurando gli infinitesimi di ordine superiore, si ottiene: Ndθ+ p + dt =0 (4.8) Tdθ+ q + dn =0 (4.9) T Rdθ+ dm + mrdθ=0 (4.10)

3 4.1. LE EQUAZIONI DELL ARCO 57 Dividendo tutto per e ricordando che = Rdθ, si ottengono le equaioni indefinite di equilibrio della trave ad asse curvilineo: dt + 1 R N + p =0 (4.11) dn 1 R T + q =0 (4.1) dm T + m =0 (4.13) che in forma matriciale diventano: con = d 1 R 1 0 R d d Q + f = 0 (4.14) Q = T N M f = p q m (4.15) dove rappresenta l operatore differeniale matriciale, Q il vettore delle caratteristiche della sollecitaione ed f il vettore delle fore nel sistema di riferimento locale. Si evidenia che le fore esterne hanno direione radiale e tangente la curva, che cambiano da seione a seione lungo l ascissa curvilinea della trave. Per scrivere le equaioni di equilibrio facendo riferimento a fore espresse rispetto ad un riferimento globale e fisso, si considera la tipica seione della trave ad asse curvilineo rappresentata in figura 4. e si trasformano le componenti delle fore lette nel riferimento locale (, ) in componenti nel riferimento globale (, ). Con riferimento alla figura 4. si ricava: p = p cos θ q = q sin θ p = p sin θ q = q cos θ (4.16) equindi p q m ovvero = p + q p + q m = p cos θ + q sin θ p sin θ + q cos θ m f = Rf R= = cos θ sin θ 0 sin θ cos θ cos θ sin θ 0 sin θ cos θ p q m (4.17) (4.18)

4 58 CAPITOLO 4. TRAVE AD ASSE CURVILINEO (PROF. ELIO SACCO) q * p p * q * θ * * * q * p * q * q * θ p * θ p * Figura 4.: Decomposiione delle fore nel sistema di riferimento globale. Atitolodiesempioinfigura4.3illustratounarcosoggettoacaricocirconferenialeq eradialep, determinando i valori di q e p per diversi valori dell anomalia θ: p (0) q (0) = p(0) p(0) q(0) = q(0) m(0) m(0) m(0) p (45) q (45) = p(45) q(45) = p(45) q(45) p(45) + q(45) (4.19) m(45) m(45) m(45) p (90) p(90) q(90) q (90) = q(90) = p(90) m(90) m(90) m(90) In definitiva, l equaione di equilibrio (4.14) riscritta nel riferimento globale dei carichi assume la forma: Q + Rf = 0 (4.0) 4.1. Cinematica Per quanto riguarda la cinematica della trave ad asse curvilineo, si assume che la generica seione retta resti piana a deformaione avvenuta e subisca una traslaione lungo la tangente, una traslaione lungo la normale alla curva della trave ed una rotaione, come illustrato schematicamente in figura 4.4.

5 4.1. LE EQUAZIONI DELL ARCO 59 p * (0) q * (0) p * (45) q * (45) p * (90) q * (90) Figura 4.3: Carichi circonfereniali e radiali agenti su un arco circolare a tutto sesto. p * * q t n * v * w 0 * ϕ * Figura 4.4: Cinematica della trave.

6 60 CAPITOLO 4. TRAVE AD ASSE CURVILINEO (PROF. ELIO SACCO) Il campo di spostamenti nel sistema di riferimento locale (, ) assume la forma: u = v (s) u 3 = w 0 (s)+ ϕ (s) (4.1) ovvero in forma vettoriale: u = v (s) n (s)+[w 0 (s)+ ϕ (s)] t (s) (4.) Indicando con s0 l ascissa curvilinea della fibra a distana dall asse della trave curvilinea, la derivata del campo di spostamenti rispetto a s0 vale: u,s 0 = v,s 0n + v n,s 0 +[w 0 + ϕ],s 0 t +[w 0 + ϕ] t,s 0 (4.3) Tenendo conto delle formule di Frenet 1 : l equaione (4.3) diventa: n,s 0 = 1 R t t,s 0 = 1 R n (4.4) u,s 0 = ½ v,s La deformaione si determina allora come: + Tenendo conto della relaione: ¾ R [w 0 + ϕ] n (4.5) ¾ t ½ 1 R v +[w 0 + ϕ],s 0 ε = u 3 = 1 s 0 R v + w0,s 0 + ϕ,s 0 (4.6) γ = u + u 3 s 0 = v,s R [w 0 + ϕ]+ϕ s 0 = R R s (4.7) 1 Frenet, Jean (Périgueux Périgueux 1900), etrato nella Scuola Normale Superiore nel 1840, ha studiato successivamente a Tolosa, dove scrisse la sua tesi di dottorato nel Parte della tesi contiene la teoria delle curve nello spaio e le formule ben note come Formule di Frenet. Frenet in realtà fornì solo 6 delle 9 formule; infatti Serret successivamente ha determinato le altre 3. Frenet ha pubblicato parte della tesi in Journal de Mathématiques Pures et Appliques nel 185. Frenet diventò professore a Tolosa, quindi nel 1848 si trasferì a Lione come professore di matematica, dove è stato direttore dell osservatorio astronomico, conducendo studi anche sulla meteorologia.

7 4.1. LE EQUAZIONI DELL ARCO 61 la (4.6) diventa: ε = 1 v + R R R w 0,s + ϕ,s γ = R v R,s + 1 [w R 0 + (4.8) ϕ]+ϕ Nel caso di trave ad asse rettilineo in cui il raggio di curvatura sia molto maggiore della dimensione della seione retta, i.e. R À, le equaioni di congruena (4.8) forniscono: ε = 1 R v + w 0,s + ϕ,s (4.9) γ = v,s + 1 R w 0 + ϕ La deformaione assiale, la curvatura e lo scorrimento angolare in definitiva valgono: ε 0 = 1 R v + w 0,s c = ϕ,s γ = v,s + 1 R w 0 + ϕ (4.30) che in forma matriciale diventano: con e = d 1 R 1 1 R d d e η = d (4.31) η = v w 0 ϕ d = γ ε 0 c (4.3) Introducendo il vettore degli spostamenti η, letti nel sistema di riferimento globale, come il ruotato tramite la matrice R del vettore η,siha: per cui l equaione (4.31) diventa η = R η (4.33) e R η = d (4.34) Legame costitutivo Le relaioni tra gli enti deformaione della trave (γ,ε 0,c) elecaratteristichedella sollecitaione (T,N,M) sono: T = GA s γ N = EAε 0 (4.35) M = EIc ovvero in forma matriciale: Q = Cd (4.36)

8 6 CAPITOLO 4. TRAVE AD ASSE CURVILINEO (PROF. ELIO SACCO) con C = GA s EA 0 (4.37) 0 0 EI essendo E il modulo elastico, G il modulo a taglio, A l area della seione retta, I il momento d ineria della seione retta e A s l area efficace a taglio Problema dell equilibrio elastico Il problema dell equilibrio elastico è definito dalle equaioni derivate, riportate per maggiore chiarea nel seguito. Equaioni di equilibrio (4.0) Q + Rf = 0 (4.38) Equaioni di congruena (4.34) Equaionidilegame(4.36) e R η = d (4.39) Q = Cd (4.40) L equaione della linea elastica per la trave ad asse curvilineo si ottiene sostituendo la (4.39) nella (4.40) ed il risultato nella (4.38), premoltiplicata per R T : Esempio 1 R T C e R η + f = 0 (4.41) Si considera un arco circolare a tutto sesto incastrato e soggetto ad una fora concentrata F in chiave, come illustrato in figura4.5. Vistalasimmetriadellastrutturaè possibile studiare solo la metà dell arco come mostrato in figura 4.5. Si risolve il sistema di equaioni differeniali (4.41) ponendo f = 0. Lecostantidi integraione si determinano imponendo le condiioni al contorno: T (0) = F/ w(0) = 0 ϕ(0) = 0 v(π/) = 0 w(π/) = 0 ϕ(π/) = 0

9 4.1. LE EQUAZIONI DELL ARCO 63 F F/ Figura 4.5: Arco corcolare a tutto sesto incastrato. Si considerano i seguenti dati geometrici, del materiale e di carico: seione rettangolare b =100mm, h = 100 mm; arco circolare R =865mm; moduli elastici: E =1500MPa, ν =0.; fora applicata: F = 5000 N. In figura 4.6 sono riportati i diagrammi del taglio, dello sforo normale e del momento flettente per l arco incastrato, ottenuti come soluione del problema dell equilibrio elastico. Analogamente in figura riportati i diagrammi degli spostamenti oriontali e verticali dell arco Esempio Si considera un arco circolare a tutto sesto incernierato agli estremi e con una cerniera anche in chiave. Tale schema è comunemente detto arco a tre cerniere. La struttura è soggetta anche in questo caso ad una fora concentrata F in chiave, come illustrato in figura 4.8. Come per il caso precedente, vista la simmetria della struttura è possibile studiare solo la metà dell arco come mostrato in figura 4.8. Poichè la struttura è isostatica è possibile risolvere il problema statico indipendentemente dalla cinematica. La soluione delle equaioni differeiali di equilibrio (4.8),

10 64 CAPITOLO 4. TRAVE AD ASSE CURVILINEO (PROF. ELIO SACCO) taglio sforo normale momento flettente Figura 4.6: Diagrammi del taglio, dello sforo normale e del momento flettente per l arco incastrato. spostamento verticale spostamento oriontale Figura 4.7: Diagrammi degli spostamenti oriontali e verticali dell arco.

11 4.1. LE EQUAZIONI DELL ARCO 65 F F/ Figura 4.8: Arco a tre cerniere soggetto ad una fora concentrata in chiave. (4.9) e (4.10), assume la forma: N = 1 F (cos θ +sinθ) T = 1 F (cos θ sin θ) T = 1 FR(cos θ +sinθ 1) In figura sono riportati di diagrammi del taglio, dello sforo normale e del momento flettente per R =865mm e F =5000N,

12 66 CAPITOLO 4. TRAVE AD ASSE CURVILINEO (PROF. ELIO SACCO) taglio sforo normale momento flettente Figura 4.9: Taglio, sforo normale e momento flettente per un arco circolare a tre cerniere.

Capitolo 11. TORSIONE (prof. Elio Sacco) 11.1 Sollecitazione di torsione Torsione nella sezione circolare

Capitolo 11. TORSIONE (prof. Elio Sacco) 11.1 Sollecitazione di torsione Torsione nella sezione circolare Capitolo TORSIONE (prof. Elio Sacco). Sollecitazione di torsione Si esamina il caso in cui la trave è soggetta ad una coppia torcente e 3 agente sulla base L della trave. Si utilizza il metodo seminverso

Dettagli

Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA

Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA Trave isostatica Studio della deformata con il metodo della LINEA ELASTICA Trave a mensola, di rigidezza flessionale costante pari a EI, soggetta a forza verticale agente all estremo liero. Determinare

Dettagli

4.2 Sforzo normale e flessione, (presso-flessione e tenso-flessione)

4.2 Sforzo normale e flessione, (presso-flessione e tenso-flessione) DIDTTIC DI DISEGNO E PROGETTZIONE DELLE COSTRUZIONI PROF. CRMELO MORN ING. LUR SGRBOSS MODULO QUTTRO IL PROBLEM DELL TRVE DI DE SINT VENNT (PRTE D) MTERILE DIDTTICO D UTILIZZRE IN UL (SCUOL SUPERIORE)

Dettagli

7. Integrazione delle funzioni di più variabili (II)

7. Integrazione delle funzioni di più variabili (II) 7. Integraione delle funioni di più variabili (II) http://eulero.ing.unibo.it/~baroi/scam/scam-tr.7b.pdf 7.5 Area del parallelogramma costruito su due vettori. Volume del parallelepipedo costruito su tre

Dettagli

1 Equilibrio statico nei corpi deformabili

1 Equilibrio statico nei corpi deformabili Equilibrio statico nei corpi deformabili Poiché i materiali reali non possono considerarsi rigidi, dobbiamo immaginare che le forze esterne creino altre forze interne che tendono ad allungare (comprimere)

Dettagli

Le deformazioni nelle travi rettilinee inflesse

Le deformazioni nelle travi rettilinee inflesse 2 Le deformazioni nelle travi rettilinee inflesse Tema 2.1 Per la struttura riportata in figura 2.1 determinare l espressione analitica delle funzioni di rotazione ed abbassamento, integrando le equazioni

Dettagli

Esercizi di Analisi Matematica L-B

Esercizi di Analisi Matematica L-B Esercii di Analisi Matematica L-B Marco Alessandrini Gennaio-Maro 7 Indice Funioni di più variabili reali. Calcolo differeniale........................................... Ricerca di massimi e minimi.......................................

Dettagli

Linea elastica, scalata per la rappresentazione grafica

Linea elastica, scalata per la rappresentazione grafica Esercizio N.1 a trave a mensola ha sezione trasversale costante e porta un carico F nella sua estremità libera. Determinare l euazione della linea elastica, lo spostamento e la rotazione in. Ricordiamo

Dettagli

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale Esercizio N.1 Un asta di acciaio è lunga 2.2 m e non può allungarsi più di 1.2 mm quando le si applica un carico di 8.5 kn. Sapendo che E = 200 GPa, determinare: (a) il più piccolo diametro dell asta che

Dettagli

Sommario 1 VOLUME CAPITOLO 1 - Matrici 1 VOLUME CAPITOLO 3 - Geometria delle masse 1 VOLUME CAPITOLO 2 - Notazione indiciale

Sommario 1 VOLUME CAPITOLO 1 - Matrici 1 VOLUME CAPITOLO 3 - Geometria delle masse 1 VOLUME CAPITOLO 2 - Notazione indiciale Sommario CAPITOLO 1 - Matrici...! Definizione! Matrici di tipo particolare Definizioni relative-! Definizioni ed operazioni fondamentali! Somma di matrici (o differenza)! Prodotto di due matrici! Prodotti

Dettagli

Indice I vettori Geometria delle masse

Indice I vettori Geometria delle masse Indice 1 I vettori 1 1.1 Vettori: definizioni................................ 1 1.2 Componenti scalare e vettoriale di un vettore secondo una retta orientata. 2 1.3 Operazioni di somma, differenza tra

Dettagli

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEDE DI VIA FATTORI CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica erasmo@galois.it DEFINIZIONI Definizione. Dicesi parabola il luogo

Dettagli

SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 27/06/2005 Tema G : allievo

SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 27/06/2005 Tema G : allievo SCIENZA DELLE COSTRUZIONI: GES L - Z 2 a PROVA 27/06/2005 Tema G : allievo EI, ma deformabile termicamente; le variazioni termiche nei 2 tratti sono opposte di segno, nulle entrambe lungo la linea d'assi.

Dettagli

ELEMENTI MONODIMENSIONALI : TRAVE

ELEMENTI MONODIMENSIONALI : TRAVE ELEMENTI MONODIMENSIONALI : TRAVE La trave è un elemento strutturale con una dimensione predominante sulle altre due. baricentro G sezione trasversale linea d asse rappresentazione schematica 1 ELEMENTI

Dettagli

9 Travature elastiche

9 Travature elastiche 9 Travature elastiche 9 Travature elastiche La teoria delle travi fin qui introdotta ha consentito di determinare la soluzione statica per strutture staticamente determinate; tuttavia le sole equazioni

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Cinematica Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a.

Dettagli

Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico

Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico 5 Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico Tema 5.1 Si consideri un corpo continuo libero nello spazio, di forma parallelepipedica e di dimensioni a

Dettagli

= + G è il noto modulo di elasticità tangenziale. Le relazioni inverse delle (1-2) sono le seguenti:

= + G è il noto modulo di elasticità tangenziale. Le relazioni inverse delle (1-2) sono le seguenti: . Petrucci Leioni di Costruione di Macchine 3. IL PROBLMA LASTICO Il problema elastico consiste nella determinaione del campo tensionale, delle deformaioni e degli spostamenti di un solido costituito di

Dettagli

Analisi limite di sistemi di travi

Analisi limite di sistemi di travi Analisi limite di sistemi di travi L analisi limite o calcolo a rottura consente di valutare direttamente la capacità portante ultima di una struttura, ovvero di valutare direttamente lo stato limite ultimo

Dettagli

Equilibrio della trave

Equilibrio della trave Equilibrio della trave 29 dicembre 29 Configurazione geometrica della linea d asse della trave Si assuma che la linea d asse della trave nella sua configurazione iniziale sia rappresentata nel piano yz

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

Stati di tensione. Associando un sistema di riferimento e scomponendo secondo di esso i vettori di forze per ogni faccia

Stati di tensione. Associando un sistema di riferimento e scomponendo secondo di esso i vettori di forze per ogni faccia Stati di tensione Se si opera un taglio su di un corpo qualunque soggetto ad un sistema di sollecitaioni esterne, sappiamo già che i due elementi separati si scambiano aioni interne in forma di fore e

Dettagli

Piastre sottili: soluzioni esatte. Piastra ellittica incastrata al bordo soggetta a carico distribuito costante

Piastre sottili: soluzioni esatte. Piastra ellittica incastrata al bordo soggetta a carico distribuito costante Piastre sottili: soluzioni esatte Piastra ellittica incastrata al bordo soggetta a carico distribuito costante Piastre sottili: soluzioni esatte Piastra triangolare appoggiata al bordo soggetta a carico

Dettagli

Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa

Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa Esercizio su sforzi tangenziali indotti da taglio T in trave inflessa t = 15 h = 175 Si consideri la sezione rappresentata in figura (sezione di trave inflessa) sulla quale agisca un taglio verticale T

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

ESERCIZI SVOLTI. 12 Travi iperstatiche 12.2 Travi continue

ESERCIZI SVOLTI. 12 Travi iperstatiche 12.2 Travi continue 1 Travi iperstatiche 1. Travi continue 1 ESERCIZI SVOLTI 1 1..4 Travi continue con sbalzi e con incastri Studiare la trave continua omogenea e a sezione costante rappresentata in figura, soggetta ai carichi

Dettagli

Capitolo 3. DEFORMAZIONE A TAGLIO (prof. Elio Sacco) 3.1 Formula di Jourawsky. 3.2 Deformazione a taglio di una trave

Capitolo 3. DEFORMAZIONE A TAGLIO (prof. Elio Sacco) 3.1 Formula di Jourawsky. 3.2 Deformazione a taglio di una trave Capitolo 3 DEFORMIONE TGLIO (prof. Elio Sacco) 3. Formula di Jourawsky Si considera inizialmente il caso di una sezione soggetta ad una sollectazione di taglio V. Sidefinisce tensione tangenziale media

Dettagli

Appunti di Meccanica dei Fluidi M. Tregnaghi

Appunti di Meccanica dei Fluidi M. Tregnaghi 6. TATIA: PINTA U UPERFII URVE METODO DELLE OMPONENTI : la spinta su una superficie curva è data dalla somma vettoriale della spinta di due componenti oriontali e di una componente verticale, in generale

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 5//14 Michela Eleuteri 1 eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi)

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) 2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) La circonferenza è la curva di 2^ grado che viene individuata univocamente da tre punti non allineati e possiede la seguente proprietà:

Dettagli

UNIVERSITA DEGLI STUDI DI ROMA TRE FACOLTA DI INGEGNERIA PROGETTO DI STRUTTURE - A/A Ing. Fabrizio Paolacci

UNIVERSITA DEGLI STUDI DI ROMA TRE FACOLTA DI INGEGNERIA PROGETTO DI STRUTTURE - A/A Ing. Fabrizio Paolacci PROGETTO DI STRUTTURE - / 010-11 Ing. Fabrizio Paolacci PROGETTO LLO STTO LIMITE ULTIMO PER TORSIONE DI UN SEZIONE RETTNGOLRE IN C.. NORMLE Con riferimento alle norme tecniche per le costruzioni NTC08,

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Tesina UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-PESCARA FACOLTÀ DI ARCHITETTURA F 1. π/4

Tesina UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-PESCARA FACOLTÀ DI ARCHITETTURA F 1. π/4 UNIVERSITÀ DEGLI STUDI G. D ANNUNZIO DI CHIETI-ESCARA FACOLTÀ DI ARCHITETTURA CORSO DI LAUREA SECIALISTICA, CORSI DI LAUREA TRIENNALI SCIENZA DELLE COSTRUZIONI E TEORIA DELLE STRUTTURE (Canali B,C) a.a.

Dettagli

Setti in C.A. -Trave parete forata

Setti in C.A. -Trave parete forata Setti in C.A. -Trave parete forata Rif. Bibliografico Pozzati, vol IIa pag.379 Consideriamo una parete di irrigidimento costituito da un setto in c.a. in cui sono praticate delle aperture (es. parete di

Dettagli

v P = d OP (t) dt = OP (t) (3.1) = v = d2 OP (t) dt 2 P =

v P = d OP (t) dt = OP (t) (3.1) = v = d2 OP (t) dt 2 P = Capitolo 3 Cinematica La cinematica studia il moto di punti e corpi a prescindere dalle cause che lo determinano. La relazione tra moto e azioni sarà oggetto della dinamica. In questo capitolo si descrivono

Dettagli

Tensioni e deformazioni interne

Tensioni e deformazioni interne Tensioni e deformaioni interne Una trave soggetta a carichi ortogonali, si inflette spaando il piano di inflessione La direione di inflessione, se c è simmetria rispetto al piano x, è diretta secondo Si

Dettagli

Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì TRAVI CONTINUE AGGIORNAMENTO DEL 27/10/2011

Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì TRAVI CONTINUE AGGIORNAMENTO DEL 27/10/2011 Sussidi didattici per il corso di OSRUZIONI EILI Prof. Ing. Francesco Zanghì RVI ONINUE GGIORNMENO EL 7/0/0 orso di OSRUZIONI EILI Prof. Ing. Francesco Zanghì Per trave continua intendiamo una trave unica,

Dettagli

Lezione 39 - Le equazioni di congruenza

Lezione 39 - Le equazioni di congruenza Lezione 9 - Le equazioni di congruenza ü [.a. 0-0 : ultima revisione 7 agosto 0] Per definizione, in una trave iperstatica non e' possibile calcolare le reazioni vincolari con sole equazioni di equilibrio.

Dettagli

ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE

ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE 1 PROVA SCRITTA 11 gennaio 2013 - Esercizio 2 Data la struttura di figura, ricavare le equazioni delle azioni interne (M, N, T) e tracciarne

Dettagli

17. Elettromagnetismo

17. Elettromagnetismo 1 quaioni di Mawell 17. lettromagnetismo Nelle leioni precedenti abbiamo considerato i campi elettrico e magnetico statici, cioè abbiamo considerato fenomeni indipendenti dal tempo. I campi elettrico e

Dettagli

MP. Moti rigidi piani

MP. Moti rigidi piani MP. Moti rigidi piani Quanto abbiamo visto a proposito dei moti rigidi e di moti relativi ci consente di trattare un esempio notevole di moto rigido come il moto rigido piano. Un moto rigido si dice piano

Dettagli

LA PARABOLA E LA SUA EQUAZIONE

LA PARABOLA E LA SUA EQUAZIONE LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da

Dettagli

Le coniche: circonferenza, parabola, ellisse e iperbole.

Le coniche: circonferenza, parabola, ellisse e iperbole. Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono

Dettagli

Introduzione alla Meccanica: Cinematica

Introduzione alla Meccanica: Cinematica Introduzione alla Meccanica: Cinematica La Cinematica si occupa della descrizione geometrica del moto, senza riferimento alle sue cause. E invece compito della Dinamica mettere in relazione il moto con

Dettagli

Flessione semplice. , il corrispondente raggio di curvatura R del tubo vale:

Flessione semplice. , il corrispondente raggio di curvatura R del tubo vale: Esercizio N.1 Il tubo rettangolare mostrato è estruso da una lega di alluminio per la quale σ sn = 280 MPa e σ U = 420 Mpa e E = 74 GPa. Trascurando l effetto dei raccordi, determinare (a) il momento flettente

Dettagli

Unità 7: Il caso delle travi F=6000 N = = 40. R ya 2000 F T y. = = Nmm

Unità 7: Il caso delle travi F=6000 N = = 40. R ya 2000 F T y. = = Nmm omportamento meccanico dei materiali Esercizio 1 Una trave di sezione rettangolare 040 mm lunga m, appoggiata alle estremità, è soggetta ad un carico verticale di 000 che agisce nella mezzeria. alcolare

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

DINAMICA E STATICA RELATIVA

DINAMICA E STATICA RELATIVA DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.

Dettagli

Lezione 16 Geometrie toroidali di confinamento magnetico

Lezione 16 Geometrie toroidali di confinamento magnetico Lezione 16 Geometrie toroidali di confinamento magnetico G. osia Universita di Torino G. osia - Fisica del plasma confinato Lezione 16 1 Geometria toroidale I più moderni sistemi di confinamento magnetico

Dettagli

Misure di campi magnetici: bobine di Helmholtz e solenoidi

Misure di campi magnetici: bobine di Helmholtz e solenoidi Misure di campi magnetici: bobine di Helmholtz e solenoidi - S.S., 12 Settembre 2007 - Per il calcolo del campo magnetico prodotto da una corrente che fluisce in un circuito di forma nota è utile servirsi

Dettagli

INTRODUZIONE AI DUE VOLUMI... XIX STRUTTURE LINEARI PIANE ISOSTATICHE Strutture lineari piane Strutture lineari spaziali...

INTRODUZIONE AI DUE VOLUMI... XIX STRUTTURE LINEARI PIANE ISOSTATICHE Strutture lineari piane Strutture lineari spaziali... INDICE INTRODUZIONE AI DUE VOLUMI............ XIX VOLUME I STRUTTURE LINEARI PIANE ISOSTATICHE CAP. 1 TIPOLOGIE STRUTTURALI.......... 1 1.1 DEFINIZIONI.................. 1 1.2 STRUTTURE LINEARI...............

Dettagli

Prodotto Scalare e Prodotto Vettore I

Prodotto Scalare e Prodotto Vettore I Prodotto Scalare e Prodotto Vettore I Prodotto Scalare: pplicaione che va dallo spaio prodotto R 3 R 3 in R tale che: 3 B B B, = j = 1 j j Norma di un Vettore: pplicaione che va dallo spaio dei vettori

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Si riproducono le pp del testo Lezioni di Scienza delle Costruzioni correggendo alcuni errori di stampa.

Si riproducono le pp del testo Lezioni di Scienza delle Costruzioni correggendo alcuni errori di stampa. Si riproducono le pp. 88-97 del testo Leioni di Sciena delle Costruioni correggendo alcuni errori di stampa..4 rchi e curva funicolare L'arco è uno degli elementi architettonici più impiegati nelle costruioni

Dettagli

Correzione 1 a provetta del corso di Fisica 1,2

Correzione 1 a provetta del corso di Fisica 1,2 Correzione 1 a provetta del corso di Fisica 1, novembre 005 1. Primo Esercizio (a) Indicando con r (t) il vettore posizione del proiettile, la legge oraria del punto materiale in funzione del tempo t risulta

Dettagli

Fig. 1.1 Schema statico

Fig. 1.1 Schema statico ESERCIZIO 1 Fig. 1.1 Schema statico Primo passo: Determinazione delle reazioni vincolari Sulla struttura agisce un carico regolare che è equivalente, ai soli fini dell equilibrio di corpo rigido, ad una

Dettagli

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come

( ρ, θ + π ) sono le coordinate dello stesso punto. Pertanto un punto P può essere descritto come Coordinate polari Il sistema delle coordinate cartesiane è uno dei possibili sistemi per individuare la posizione di un punto del piano, relativamente ad un punto fisso O, mediante una coppia ordinata

Dettagli

Costruzioni in zona sismica

Costruzioni in zona sismica Costruzioni in zona sismica Lezione 7 Sistemi a più gradi di libertà Il problema dinamico viene formulato con riferimento a strutture con un numero finito di gradi di libertà. Consideriamo le masse concentrate

Dettagli

Corso di Progetto di Strutture. POTENZA, a.a Serbatoi e tubi

Corso di Progetto di Strutture. POTENZA, a.a Serbatoi e tubi Corso di Progetto di Strutture POTENZA, a.a. 01 013 Serbatoi e tubi Dott. Marco VONA Scuola di Ingegneria, Università di Basilicata marco.vona@unibas.it htt://www.unibas.it/utenti/vona/ CONSIDEAZIONI INTODUTTIVE

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim DIFFERENZIAZIONE 1 Regola della catena Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim = f (x 0 ). x x 0 x x 0 Questa

Dettagli

Corso di Progetto di Strutture

Corso di Progetto di Strutture Corso di Progetto di Strutture POTENZA, a.a. 009 00 Serbatoi e tubi Dott. Ing. arco VONA DiSGG, Università di Basilicata Centro di Competenza Regionale sul Rischio Sismico (CRiS) marco.vona@unibas.it I

Dettagli

Esercizi svolti sulla parabola

Esercizi svolti sulla parabola Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura

Dettagli

Dr. Stefano Sarti Dipartimento di Fisica

Dr. Stefano Sarti Dipartimento di Fisica UNIVERSITÀ DI ROMA LA SAPIENZA FACOLTÀ DI INGEGNERIA Corso di Laurea in Ingegneria per l Ambiente e il Territorio ESAME DI FISICA GENERALE II DM 270) Data: 8/9/202. In un disco uniformemente carico di

Dettagli

Cinematica nello Spazio

Cinematica nello Spazio Cinematica nello Spazio Abbiamo introdotto, nelle precedenti lezioni, le grandezze fisiche: 1) Spostamento; 2) Velocità; 3) Accelerazione; 4) Tempo. Abbiamo ricavato le equazioni per i moti: a) uniforme;

Dettagli

Indice delle lezioni del corso di Scienza delle Costruzioni Corso di laurea in Ingegneria Civile (01CFOAX), Vercelli

Indice delle lezioni del corso di Scienza delle Costruzioni Corso di laurea in Ingegneria Civile (01CFOAX), Vercelli Indice delle lezioni del corso di Corso di laurea in Ingegneria Civile (0CFOAX), Vercelli Fabrizio Barpi Dipartimento di Ingegneria Strutturale e Geotecnica Politecnico di Torino 6 maggio 2009 Questo documento

Dettagli

UNIVERSITA DEGLI STUDI DI PAVIA REGISTRO. DELLE LEZIONI-ESERCITAZIONI- SEMINARI Anno accademico 2011/12

UNIVERSITA DEGLI STUDI DI PAVIA REGISTRO. DELLE LEZIONI-ESERCITAZIONI- SEMINARI Anno accademico 2011/12 REGISTRO DELLE LEZIONI-ESERCITAZIONI- SEMINARI Anno accademico 2011/12 Cognome e Nome BISI FULVIO Qualifica RICERCATORE CONFERMATO MAT/07 Insegnamento di FISICA MATEMATICA (500474) Impartito presso: Corso

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

Esercitazioni Fisica Corso di Laurea in Chimica A.A

Esercitazioni Fisica Corso di Laurea in Chimica A.A Esercitazioni Fisica Corso di Laurea in Chimica A.A. 2016-2017 Esercitatore: Marco Regis 1 I riferimenti a pagine e numeri degli esercizi sono relativi al libro Jewett and Serway Principi di Fisica, primo

Dettagli

Resistenza dei materiali

Resistenza dei materiali Scheda riassuntiva capitoli 8-1 Resistenza dei materiali a resistenza dei materiali mette in relazione tra loro i seguenti elementi: Trazione/ Carichi compressione Taglio Flessione Torsione Deformazioni

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

Affidabilità e Sicurezza delle Costruzioni Meccaniche Calcolo dello stato tensionale in sezioni 1 di diversa geometria

Affidabilità e Sicurezza delle Costruzioni Meccaniche Calcolo dello stato tensionale in sezioni 1 di diversa geometria CeTe Aidabilità e Sicurea delle Costruioni eccaniche Eserciio - Data una seione rettangolare 000 mm soggetta ad uno soro normale - 0000 calcolare la tensione normale sulla seione. La ormula da utiliare

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

BOZZA. Caratteristiche di Sollecitazione T(z) taglio in direzione Y

BOZZA. Caratteristiche di Sollecitazione T(z) taglio in direzione Y ezione n. 4 Richiami sulla linea elastica di una struttura a deormata di una struttura Per deormata della struttura si intende la conigurazione che la struttura stessa assume a seguito dell applicazione

Dettagli

ALMA MATER STUDIORUM UNIVERSITÀ DEGLI STUDI DI BOLOGNA

ALMA MATER STUDIORUM UNIVERSITÀ DEGLI STUDI DI BOLOGNA ALMA MATER STUDIORUM UNIVERSITÀ DEGLI STUDI DI BOLOGNA FACOLTÀ DI INGEGNERIA Corso di Laurea Triennale in Ingegneria Civile Indirizzo Strutture D.I.S.T.A.R.T. Dipartimento di Ingegneria delle Strutture,

Dettagli

Università degli Studi della Basilicata Facoltà di Ingegneria

Università degli Studi della Basilicata Facoltà di Ingegneria Università degli Studi della Basilicata Facoltà di Ingegneria Corso di TECNICA DELLE COSTRUZIONI Docente: Collaboratori: Prof. Ing. Angelo MASI Dr. Ing. Giuseppe Santarsiero Ing. Vincenzo Manfredi RICHIAMI

Dettagli

1 Applicazioni lineari

1 Applicazioni lineari 1 Applicazioni lineari 1 Applicazioni lineari 1.1 Definizione Si considerino lo spazio tridimensionale euclideo E e lo spazio vettoriale V ad esso associato. Definizione. 1.1. Sia A una applicazione di

Dettagli

Giacomo Sacco Appunti di Costruzioni Edili

Giacomo Sacco Appunti di Costruzioni Edili Giacomo Sacco Appunti di Costruzioni Edili Le tensioni dovute a sforzo normale, momento, taglio e a pressoflessione. 1 Le tensioni. Il momento, il taglio e lo sforzo normale sono le azioni che agiscono

Dettagli

COMPORTAMENTO MECCANICO DEI MATERIALI

COMPORTAMENTO MECCANICO DEI MATERIALI Dipartimento di Meccanica Politecnico di Torino COMPORTAMENTO MECCANICO DEI MATERIALI Schede per il tutorato del modulo teledidattico febbraio 00 Prova di Traione - Stato di Tensione e di deformaione in

Dettagli

M557- Esame di Stato di Istruzione Secondaria Superiore

M557- Esame di Stato di Istruzione Secondaria Superiore Problema Ministero dell Istruzione, dell Università e della Ricerca M557- Esame di Stato di Istruzione Secondaria Superiore Indirizzi: LI, EA SCIENTIFICO LI3, EA9 SCIENTIFICO Opzione Scienze Applicate

Dettagli

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi 1) Cinematica 1.1) Ripasso: Il moto rettilineo Generalità sul moto: definizione di sistema

Dettagli

I numeri complessi 1. Claudio CANCELLI (www.claudiocancelli.it)

I numeri complessi 1. Claudio CANCELLI (www.claudiocancelli.it) I numeri complessi Claudio CANCELLI (www.claudiocancelli.it) Ed..0 www.claudiocancelli.it April 0 I numeri complessi INDICE DEI CONTENUTI. l numero complesso, forma algebrica...3. Il piano complesso, rappresentaione

Dettagli

PRINCIPALI TIPI DI ELEMENTO E LORO IMPIEGO

PRINCIPALI TIPI DI ELEMENTO E LORO IMPIEGO PRINCIPALI TIPI DI ELEMENTO E LORO IMPIEGO PRINCIPALI TIPI DI ELEMENTO 2D 3D ASTA TRAVE SOLIDO GUSCIO Pb. Piastra/guscio di ElasticitàTravature piana Telai reticolari Piastra/guscio Pb. di Elasticità 3D

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008 Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto

Dettagli

R. Capone Analisi Matematica Integrali multipli

R. Capone Analisi Matematica Integrali multipli Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

PROGETTAZIONE DI STRUTTURE MECCANICHE

PROGETTAZIONE DI STRUTTURE MECCANICHE PROGETTAZIONE DI STRUTTURE MECCANICHE Andrew Ruggiero A.A. 2011/12 Analisi matriciale delle strutture: caratterizzazione degli elementi A. Gugliotta, Elementi finiti Parte I Elementi e strutture Una qualsiasi

Dettagli

Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2

Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2 0 Marzo 00 Verifica di matematica roblema Si consideri l equazione ln( + ) 0. a) Si dimostri che ammette due soluzioni reali. Nel piano riferito a coordinate ortogonali monometriche (; ) è assegnata la

Dettagli

parametri della cinematica

parametri della cinematica Cinematica del punto Consideriamo il moto di una particella: per particella si intende sia un corpo puntiforme (ad es. un elettrone), sia un qualunque corpo esteso che si muove come una particella, ovvero

Dettagli

LA CIRCONFERENZA E LA SUA EQUAZIONE

LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA COME LUOGO GEOMETRICO DEFINIZIONE Assegnato nel piano un punto C, detto centro, si chiama circonferenza la curva piana luogo geometrico dei punti equidistanti

Dettagli

Cupole. Possono nascere azioni flessionali

Cupole. Possono nascere azioni flessionali Cupole Le cupole sottili sono praticamente prove di momenti flettenti se i vincoli non alterano il regime di membrana che si avrebbe se la membrana fosse estesa indefinitamente (non limitata da un bordo)

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

04 LA CIRCONFERENZA ESERCIZI. 1 Determina il luogo geometrico costituito dai punti del piano aventi distanza 2 dal punto C(1; 3).

04 LA CIRCONFERENZA ESERCIZI. 1 Determina il luogo geometrico costituito dai punti del piano aventi distanza 2 dal punto C(1; 3). 04 LA CIRCONFERENZA ESERCIZI 1. LA CIRCONFERENZA E LA SUA EQUAZIONE 1 Determina il luogo geometrico costituito dai punti del piano aventi distanza dal punto C(1; 3). x + y x 6y + 6 = 0 Indica se le seguenti

Dettagli

Valutazione della curvatura media di un elemento strutturale in c.a.

Valutazione della curvatura media di un elemento strutturale in c.a. 16.4 Stato limite di deformazione 16.4.1 Generalità Lo stato limite di deformazione può essere definito come la perdita di funzionalità della struttura a causa di una sua eccessiva deformazione. Segnali

Dettagli

STATI LIMITE ULTIMI PER TENSIONI TANGENZIALI

STATI LIMITE ULTIMI PER TENSIONI TANGENZIALI AI LIMIE ULIMI PER ENIONI ANGENZIALI Michelangelo Latera PhD - Ass. Prof. of tructural Engineering (ecnica elle Costruioni) Facoltà i Architettura - Università egli tui ella Basilicata E-mail: michelangelo.latera@unibas.it

Dettagli