In altri termini, il logaritmo in base a di b è quel numero c tale per cui a elevato a c è uguale a b. In simboli

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "In altri termini, il logaritmo in base a di b è quel numero c tale per cui a elevato a c è uguale a b. In simboli"

Transcript

1 LOGARITMO Il logaritmo è un operatore matematico indicato generalmente con loga(b); detta a la base e b l'argomento, il logaritmo in base a di b è definito come l'esponente a cui elevare la base per ottenere l'argomento. Cos'è il logaritmo in base a di b? Siano a e b due numeri reali, entrambi positivi e con. Definiamo il logaritmo in base a di b, e scriviamo per indicare quel numero reale c che realizza l'uguaglianza In altri termini, il logaritmo in base a di b è quel numero c tale per cui a elevato a c è uguale a b. In simboli il logaritmo in base a di b è l'operazione inversa rispetto all'elevamento a potenza. Diamo dei nomi ai personaggi a, b, c: - chiamiamo a la base del logaritmo; - chiamiamo b l'argomento del logaritmo; - chiamiamo c il valore del logaritmo. Essendo il logaritmo definito in modo che valga questa uguaglianza, osserviamo quanto segue: prendiamo a positivo. Se eleviamo un numero positivo (a) ad un qualsiasi numero (c) otteniamo un numero che è solo e soltanto positivo (nè zero nè negativo). Tutto qui: prendiamo la base e positiva (positivo vuol dire maggiore strettamente di zero) e quindi dobbiamo necessariamente considerare un argomento b positivo. Esempi sui logaritmi 1) Il primo e più semplice esempio che possiamo calcolare è il logaritmo di 1 con base a Qualsiasi numero diverso da zero (come è previsto dalle nostre ipotesi) ed elevato alla zero dà 1, quindi 2) Consideriamo il logaritmo in base a di a2 => Logaritmo naturale e logaritmo decimale

2 Ci sono due particolari tipi di logaritmi che si incontrano spesso, e che sono caratterizzati da una particolare scelta della base: il logaritmo naturale ed il logaritmo decimale. Il logaritmo naturale, in cui si prende come base il numero di Nepero Si è soliti indicare il logaritmo naturale con In altre parole se scriviamo ln(qualcosa) senza indicare la base intendiamo che vogliamo calcolare il logaritmo naturale, dunque in base, di qualcosa. Un altro logaritmo ricorrente è il logaritmo decimale, o logaritmo in base 10, in cui si prende come base Si indica tale logaritmo con Log(qualcosa), ovvero con una L maiuscola e senza indicare la base oppure nella forma standard. PROPRIETÀ DEI LOGARITMI Le proprietà dei logaritmi sono una serie di regole che permettono di semplificare notevolmente il calcolo dei logaritmi, e che permettono di riscrivere le operazioni tra logaritmi in una forma più semplice. Principali proprietà dei logaritmi Le proprietà dei logaritmi valgono per qualunque scelta della base del logaritmo (la a nell'espressione ), ma vi ricordiamo che la base e l'argomento devono sempre essere presi maggiori strettamente di zero (inoltre la base deve essere diversa da 1). Questi requisiti devono valere sempre. Definizione di logaritmo Logaritmo del prodotto Regola dell'esponente Logaritmo del rapporto Formula del cambiamento di base per logaritmi Formula di inversione per i logaritmi

3 P-0) Riscrittura alternativa di un logaritmo Questa proprietà è in realtà una semplicissima riscrittura della definizione di logaritmo, anche se non sembra. Per definizione infatti il è quel numero c tale che. L'identità su scritta vale solamente se logaritmo., in base a quanto chiesto dalla definizione di La precedente uguaglianza si verifica quindi facilmente, infatti sostituendo con c troviamo proprio. Quella appena introdotta più che una proprietà è un utile trucco algebrico che permette di uscire da situazioni che sembrano più complicate di quello che non siano. È una formuletta che non ha un utilizzo intuitivo ma proprio per questo gli esercizi che la richiedono sono pochi. Ad ogni modo con l'esperienza vi accorgerete quando sarà il momento di usarla. P-1) Il logaritmo del prodotto è la somma dei logaritmi Esempio 1 Se consideriamo il logaritmo in base 3 di 18, grazie alla proprietà del logaritmo del prodotto possiamo riscriverlo come dove l'ultimo passaggio si giustifica con la definizione di logaritmo:. Se invece prendiamo possiamo riscriverlo nella forma P-2) Regola dell'esponente La proprietà del logaritmo e dell'esponente ci dice sostanzialmente che, ogni volta che l'argomento di un logaritmo ha un esponente, possiamo portarlo davanti al logaritmo e farlo diventare un coefficiente.

4 P-3) Il logaritmo del rapporto è la differenza dei logaritmi In parole povere la proprietà del logaritmo del rapporto stabilisce che, indipendentemente dalla base, quando abbiamo un logaritmo contenente una frazione, possiamo riscrivere tale logaritmo come la differenza tra il logaritmo del numeratore meno il logaritmo del denominatore. Esempio 3 Un esempio semplice: se avessimo il logaritmo in base 7 di 1/49, potremmo riscriverlo come Se invece considerassimo tale logaritmo equivarrebbe a P-4) Formula del cambiamento di base La formula del cambiamento di base ci dice che possiamo scrivere il logaritmo nostra scelta, a patto che sia positiva e diversa da 1. con una nuova base c, a Per farlo, riscriviamo il logaritmo come un rapporto di logaritmi in cui il logaritmo a numeratore ha come base la base desiderata e argomento l'argomento di partenza, e il logaritmo a denominatore ha come base la base desiderata e come argomento la base di partenza. Il trucco per ricordare questa formula: riscrivo il logaritmo come un rapporto di logaritmi. Questi logaritmi hanno la nuova base c che vogliamo. Il logaritmo che sta sopra (a numeratore) ha come argomento ciò che inizialmente stava sopra (l'argomento iniziale), il logaritmo che sta sotto (a denominatore) ha come argomento ciò che inizialmente stava sotto (la base iniziale). Esempio 4 Vogliamo scrivere (non chiedetevi perchè: saranno gli eventuali esercizi a darcene motivo) il logaritmo come base. Usando la formula del cambiamento di base troviamo: usando

5 dove abbiamo usato la formula al primo passaggio. P-5) Formula di inversione base-argomento Esempio 5 Dato, decidiamo che non vogliamo avere a che fare con una base compresa tra 0 ed 1. Ci andrebbe bene la base 5 al suo posto. Dunque con la suddetta formula possiamo equivalentemente considerare:

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica erasmo@galois.it LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti

Dettagli

Per esempio se doveste scrivere 2 moltiplicato per se stesso 5 volte, sarebbe scomodissimo scrivere ogni volta

Per esempio se doveste scrivere 2 moltiplicato per se stesso 5 volte, sarebbe scomodissimo scrivere ogni volta POTENZE Le potenze sono moltiplicazioni ripetute, individuate da due numeri detti base ed esponente. Scriverean, ossia elevare il numero a (la base) a potenza con esponente n, significa moltiplicare la

Dettagli

Consideriamo un numero a e un numero naturale n positivo. Per dare una definizione corretta di radicale con indice n, o radice n-esima di a

Consideriamo un numero a e un numero naturale n positivo. Per dare una definizione corretta di radicale con indice n, o radice n-esima di a RADICALI E PROPRIETÀ DEI RADICALI I radicali in Matematica sono numeri definiti mediante radici con indice intero. I radicali possono essere espressi sotto forma di potenze con esponente fratto mediante

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

MATEMATICA LEZIONE 15 I MONOMI. (Prof. Daniele Baldissin) Un MONOMIO è il PRODOTTO di più FATTORI rappresentati da NUMERI e LETTERE.

MATEMATICA LEZIONE 15 I MONOMI. (Prof. Daniele Baldissin) Un MONOMIO è il PRODOTTO di più FATTORI rappresentati da NUMERI e LETTERE. MATEMATICA LEZIONE 15 ARGOMENTI 1) Definizione di monomio 2) Riduzione in forma normale 3) Monomi simili, interi e frazionari 4) Grado di un monomio I MONOMI (Prof. Daniele Baldissin) Un MONOMIO è il PRODOTTO

Dettagli

Le proprietà che seguono valgono x, y > 0, a > 0 a 1, e b qualsiasi. Da queste si possono anche dedurre le seguenti uguaglianze log a 1 = 0

Le proprietà che seguono valgono x, y > 0, a > 0 a 1, e b qualsiasi. Da queste si possono anche dedurre le seguenti uguaglianze log a 1 = 0 Corso di Potenziamento a.a. 009/00 I Logaritmi Fissiamo un numero a > 0, a. Dato un numero positivo t, l equazione a x = t ammette un unica soluzione x che si chiama logaritmo in base a di t e si scrive

Dettagli

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO.

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO. EQUAZIONI DI SECONDO GRADO Un'equazione del tipo x 2 + (x+4) 2 = 20 è un'equazione DI SECONDO GRADO IN UNA INCOGNITA. Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati

Dettagli

IPSSART Aversa - Prof Nunzio ZARIGNO - Anno scolastico I LOGARITMI. Definizione di logaritmo

IPSSART Aversa - Prof Nunzio ZARIGNO - Anno scolastico I LOGARITMI. Definizione di logaritmo IPSSART Aversa Prof Nunzio ZARIGNO Anno scolastico 200910 I LOGARITMI Definizione di logaritmo Definizione Si dice LOGARITMO in base a, con, di un numero reale positivo b, e si scrive log a b, l'esponente

Dettagli

LOGARITMI ED ESPONENZIALI

LOGARITMI ED ESPONENZIALI 1 LOGARITMI ED ESPONENZIALI 1. (Da Veterinaria 2013) Riscrivendo 9 3x+2 nel formato 3 y, quale sarà il valore di y? a) 3x b) 3x + 4 c) 6x + 2 d) 6x + 4 e) 9x + 6 2. (Da Odontoiatria 2009) Qual è la soluzione

Dettagli

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x

Dettagli

Potenze reali, esponenziali e logaritmi

Potenze reali, esponenziali e logaritmi Potenze reali, esponenziali e logaritmi Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Potenze reali, esponenziali e logaritmi 1 / 14 Potenza ad esponente intero positivo

Dettagli

Prof. Emanuele ANDRISANI

Prof. Emanuele ANDRISANI Potenze con esponente razionale Sia a > 0 e a 1. Abbiamo definito a x quando x N. Poniamo a 0 = 1 a x = a m n = n a m se x = m n Q, x > 0, m, n N a x = 1 a x se x Q, x > 0. È così definita la potenza a

Dettagli

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI DERIVABILI Sia f : domf R una funzione e sia 0 domf di accumulazione per domf Chiamiamo derivata prima di

Dettagli

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato:

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato: Radicali Radice quadrata Consideriamo la funzione che associa ad un numero reale il suo quadrato: il cui grafico è il seguente: Il grafico della funzione si trova al di sopra dell asse delle x ed è simmetrico

Dettagli

radicando. Si ottiene 5 RADICALI Termini a x = indice della radice y = esponente del radicando Esempi: 25 = 5 perché 5 = 25

radicando. Si ottiene 5 RADICALI Termini a x = indice della radice y = esponente del radicando Esempi: 25 = 5 perché 5 = 25 RADICALI Termini x y a x = indice della radice y = esponente del radicando 25 = 5 perché 5 = 25 5 indica la radice quadrata di 5, non è un numero intero, è decimale, illimitato e non periodico. 16 = 2

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizi 06/7 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizio. Risolvere la seguente equazione: Soluzione. ) x+ ) x 7 x = 0 7 L equazione è definita per ogni x 0, valore in cui

Dettagli

Algebra. I numeri relativi

Algebra. I numeri relativi I numeri relativi I numeri relativi sono quelli preceduti dal segno > o dal segno . I numeri positivi sono quelli preceduti dal segno + (zero escluso). I numeri negativi sono quelli preceduti

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

I RADICALI QUADRATICI

I RADICALI QUADRATICI I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,

Dettagli

Notazione scientifica e inversione di formule

Notazione scientifica e inversione di formule Notazione scientifica e inversione di formule M. Spezziga Liceo Margherita di Castelvì Sassari Indice 1 Calcoli in notazione scientifica 2 1.1 Moltiplicazioni per potenze di dieci.......................................

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere

Dettagli

64=8 radice perché 8 2 = 64

64=8 radice perché 8 2 = 64 RADICI E NUMERI IRRAZIONALI 1. Che cosa vuol dire estrarre la radice quadrata di un numero? Estrarre la radice quadrata di un numero vuol dire calcolare quel numero, che elevato al quadrato, dà per risultato

Dettagli

Anno 3. Funzioni esponenziali e logaritmi: le 4 operazioni

Anno 3. Funzioni esponenziali e logaritmi: le 4 operazioni Anno 3 Funzioni esponenziali e logaritmi: le 4 operazioni 1 Introduzione In questa lezione impareremo a conoscere le funzioni esponenziali e i logaritmi; ne descriveremo le principali caratteristiche e

Dettagli

Anno 3. Equazioni esponenziali e logaritmiche

Anno 3. Equazioni esponenziali e logaritmiche Anno 3 Equazioni esponenziali e logaritmiche 1 Introduzione Lo scopo delle pagine che seguono è quello di passare in rassegna le strategie risolutive per le equazioni esponenziali e logaritmiche. Al termine

Dettagli

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite Lezioni del 22 e 24 settembre. Numeri razionali. 1. Operazioni, ordinamento. Indichiamo con N, Z, Q gli insiemi dei numeri naturali, interi relativi, e razionali: N = {0, 1, 2,...} Z = {0, ±1, ±2,...}

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x

Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio 2015 - Soluzioni degli esercizi Risolvere le seguenti equazioni. Dove è necessario, scrivere le condizioni di accettabilità e usarle

Dettagli

I numeri complessi. Capitolo 7

I numeri complessi. Capitolo 7 Capitolo 7 I numeri complessi Come abbiamo fatto per i numeri reali possiamo definire assiomaticamente anche i numeri complessi. Diciamo che l insieme C dei numeri complessi è un insieme su cui sono definite

Dettagli

I LIMITI. non è definita per valori della x uguali a + 5 e 5. In questo caso l insieme di variabilità della variabile x, che si chiama dominio, è

I LIMITI. non è definita per valori della x uguali a + 5 e 5. In questo caso l insieme di variabilità della variabile x, che si chiama dominio, è I LIMITI LIMITE INFINITO DI UNA FUNZIONE PER X CHE TENDE A UN VALORE FINITO. Tra i tanti obiettivi che l analisi matematica si prefigge vi è quello di tracciare i grafici delle funzioni nel piano cartesiano

Dettagli

3. (Da Medicina 2006) Quale delle seguenti equazioni rappresenta una funzione y = f(x) tale che f(2) = -1 e f(-1) = 5?

3. (Da Medicina 2006) Quale delle seguenti equazioni rappresenta una funzione y = f(x) tale che f(2) = -1 e f(-1) = 5? QUESITI 1 FUNZIONI 1. (Da Medicina e Odontoiatria 201) Data la funzione f ( x ) = x 6, quale delle seguenti risposte rappresenta la sua funzione inversa? 1 x a) f ( x ) = + 6 1 x b) f ( x ) = 2 1 x c)

Dettagli

Esercizi sulle radici

Esercizi sulle radici Esercizi sulle radici Semplificazione Per semplificare una radice utilizzando, quando necessario, i valori assoluti, dobbiamo ricordare che se una radice ha indice pari, il suo radicando (il numero che

Dettagli

Insiemi numerici. Teoria in sintesi NUMERI NATURALI

Insiemi numerici. Teoria in sintesi NUMERI NATURALI Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri

Dettagli

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione

Dettagli

Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m

Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m Vale la [1] perché per le proprietà delle potenze risulta a m a

Dettagli

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica a.a. 2008/2009 Docente Ing. Andrea Ghedi Docente: Dott. Ing. Andrea Ghedi Ingegnere Biomedico, specialista

Dettagli

Potenze: alcune semplici equazioni

Potenze: alcune semplici equazioni Potenze: alcune semplici equazioni Fissiamo ora un numero reale a ed un numero intero positivo n. Vogliamo risolvere l equazione x n = a definizione: Le eventuali soluzioni prendono il nome di radici n-esime

Dettagli

Limiti di successioni

Limiti di successioni Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche

Dettagli

Anno 1. Frazioni algebriche: definizione e operazioni fondamentali

Anno 1. Frazioni algebriche: definizione e operazioni fondamentali Anno Frazioni algebriche: definizione e operazioni fondamentali Introduzione In questa lezione introdurremo il concetto di frazione algebrica. Al termine di questa lezione sarai in grado di: definire il

Dettagli

Anno 5 Regole di derivazione

Anno 5 Regole di derivazione Anno 5 Regole di derivazione 1 Introduzione In questa lezione mostreremo quali sono le regole da seguire per effettuare la derivata di una generica funzione. Seguendo queste regole e conoscendo le derivate

Dettagli

Funzioni esponenziali e logaritmiche Indice

Funzioni esponenziali e logaritmiche Indice Funzioni esponenziali e logaritmiche Indice Funzioni esponenziali...1 Funzioni logaritmiche...3 Funzioni esponenziali Definizione: Si definisce funzione esponenziale di base a > 0 la funzione reale y =

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

LE EQUAZIONI DI SECONDO GRADO

LE EQUAZIONI DI SECONDO GRADO LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere

Dettagli

Potenze, esponenziali e logaritmi 1 / 34

Potenze, esponenziali e logaritmi 1 / 34 Potenze, esponenziali e logaritmi / 34 Grafico della funzione x 2 e x 2 / 34 y f(x)=x 2 y=x f (x)= x x Le funzioni potenza 3 / 34 Più in generale, si può considerare, per n N, n>0, n pari, la funzione

Dettagli

I logaritmi. Cenni storici

I logaritmi. Cenni storici 1 I logaritmi by Caterina Vespia "Poiché non vi è nulla di più ostico nell applicazione matematica, né che reca maggiori difficoltà nei calcoli, che la moltiplicazione, la divisione, l estrazione di radici

Dettagli

Appunti di matematica per le Scienze Sociali Parte 1

Appunti di matematica per le Scienze Sociali Parte 1 Appunti di matematica per le Scienze Sociali Parte 1 1 Equazioni 1.1 Definizioni preliminari 1.1.1 Monomi Si definisce monomio ogni prodotto indicato di fattori qualsiasi, cioè uguali o diseguali, numerici

Dettagli

BREVE RIEPILOGO SULLE FRAZIONI

BREVE RIEPILOGO SULLE FRAZIONI BREVE RIEPILOGO SULLE FRAZIONI ---> Numeratore = numero di parti uguali considerate Linea di frazione Denominatore = numero di parti uguali in cui è diviso l'intero la frazione si

Dettagli

tele limite è unico. Ciò significa che se non può accadere che una funzione abbia limiti diversi per x. Se per assurdo si avesse che lim f ( x)

tele limite è unico. Ciò significa che se non può accadere che una funzione abbia limiti diversi per x. Se per assurdo si avesse che lim f ( x) Calcolo dei iti (C. DIMAURO) Per il calcolo dei iti ci serviamo di alcuni teoremi. Tali teoremi visti nel caso in cui, valgono anche quando Teorema dell unicità del ite: se una funzione ammette ite per

Dettagli

Esercizi svolti sui limiti

Esercizi svolti sui limiti Francesco Daddi - dicembre 9 Esercizi svolti sui iti Esercizio. Calcolare sin). Soluzione. Moltiplichiamo e dividiamo per : sin) = sin) = sin) a questo punto, ponendo y =, dato che otteniamo y siny y =

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esercizi per il corso Matematica clea Daniele Ritelli anno accademico 008/009 Lezione : Numeri naturali e principio di induzione Esercizi svolti. Provare che + + + n. Provare che + + + n n(n + ) n(n +

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

0.1 Numeri complessi C

0.1 Numeri complessi C 0.1. NUMERI COMPLESSI C 1 0.1 Numeri complessi C Abbiamo visto sopra come l introduzione dei numeri irrazionali può essere motivata dalla necessità di trovare soluzione all equazione x = 0 che non ha soluzioni

Dettagli

INSIEME N. L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi.

INSIEME N. L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi. INSIEME N L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi. N = {0;1;2;3... Su tale insieme sono definite le 4 operazioni di base: l'addizione (o somma), la sottrazione, la moltiplicazione

Dettagli

Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008

Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008 Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008 Soluzione: La risposta corretta è B. perché senza la parentesi l esponente si applica solo al numeratore:

Dettagli

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO Equazioni fratte, di secondo grado o superiore Le equazioni di secondo grado Un equazione è di secondo grado se si può scrivere nella

Dettagli

Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006

Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 Congruenze Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 1 Il resto nella divisione tra interi Consideriamo i numeri naturali 0, 1, 2, 3,... ed effettuiamone la divisione per 3, indicando il resto:

Dettagli

Funzioni esponenziali e logaritmiche

Funzioni esponenziali e logaritmiche Funzioni esponenziali e logaritmiche Definizione: Si definisce funzione esponenziale di base a > 0 la funzione reale y = exp a (x) che fa corrispondere ad ogni x R il numero reale positivo a x. Proprietà

Dettagli

Disequazioni - ulteriori esercizi proposti 1

Disequazioni - ulteriori esercizi proposti 1 Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi

Dettagli

1 La funzione logaritmica

1 La funzione logaritmica Liceo Scientico Paritario Ven. A. Luzzago di Brescia - A.S. 2011/2012 Equazioni e disequazioni logaritmiche - Simone Alghisi 1 La funzione logaritmica Si è dimostrato che l'equazione esponenziale in forma

Dettagli

Il fattore numerico (4) prende il nome di coefficiente o parte numerica, mentre il fattore letterale (x2) costituisce la cosiddetta parte letterale.

Il fattore numerico (4) prende il nome di coefficiente o parte numerica, mentre il fattore letterale (x2) costituisce la cosiddetta parte letterale. Definizione di monomio Un monomio è un'espressione matematica che consiste in un prodotto di fattori qualsiasi, siano essi numerici o letterali I fattori letterali hanno per esponente un numero naturale

Dettagli

Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008

Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008 Come risolvere i quesiti della Prova Nazionale di Terza Media (INVALSI) Anno Scolastico 2007/2008 Soluzione: La risposta corretta è B. perché senza la parentesi l esponente si applica solo al numeratore:

Dettagli

Numeri reali. Funzioni reali di variabile reale

Numeri reali. Funzioni reali di variabile reale Numeri reali. Funzioni reali di variabile reale Composizione di funzioni. Per semplicita, da ora in poi fino ad avviso contrario, useremo la seguente nozione di composizione di funzioni (che assume una

Dettagli

1 Relazione di congruenza in Z

1 Relazione di congruenza in Z 1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo

Dettagli

LE RADICI QUADRATE 9=3. è il simbolo dell operazione e prende il nome di segno di radice

LE RADICI QUADRATE 9=3. è il simbolo dell operazione e prende il nome di segno di radice LE RADICI QUADRATE L ESTRAZIONE DI RADICE È L OPERAZIONE INVERSA DELL OPERAZIONE DI ELEVAMENTO A POTENZA INDICE 9=3 RADICE QUADRATA SEGNO DI RADICE RADICANDO 9 è il numero di cui vogliamo calcolare la

Dettagli

PREREQUISITI PER SEGUIRE IL CORSO

PREREQUISITI PER SEGUIRE IL CORSO PREREQUISITI PER SEGUIRE IL CORSO Insiemi numerici e aritmetica elementare. Equazioni e disequazioni di primo e secondo grado. Geometria elementare e geometria analitica: rette, parabole, iperbole equilatera.

Dettagli

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0 Equazione esponenziale a x = b con 00 Proprietà delle potenze: a n. b n = ( a. b ) n a n : b n = ( a : b ) n a n. a m = a n+m a n : a m = a n-m ( a n ) m = a n a n/m n a = a -n/m

Dettagli

3 Dispense di Matematica per il primo anno dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore Frazioni Algebriche

3 Dispense di Matematica per il primo anno dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore Frazioni Algebriche 3 Dispense di Matematica per il primo anno dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore Frazioni Algebriche 100 Per l esercitazioni on-line visita le pagine : www.chihapauradellamatematica.org

Dettagli

INSIEME Q. Le operazioni di addizione, moltiplicazione e sottrazione erano operazioni già chiuse su Z, e lo rimangono in Q. Alcune definizioni

INSIEME Q. Le operazioni di addizione, moltiplicazione e sottrazione erano operazioni già chiuse su Z, e lo rimangono in Q. Alcune definizioni INSIEME Q L'insieme dei numeri razionali (Q) è un'estensione dell'insieme dei numeri interi Z. Ai numeri positivi e negativi interi si aggiungono, così, anche i numeri decimali. Tale estensione, però,

Dettagli

CORSO DI LAUREA IN MATEMATICA

CORSO DI LAUREA IN MATEMATICA CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

Derivata di una funzione

Derivata di una funzione Derivata di una funzione Prof. E. Modica http://www.galois.it erasmo@galois.it Il problema delle tangenti Quando si effettua lo studio delle coniche viene risolta una serie di esercizi che richiedono la

Dettagli

CORSO DI LAUREA IN FISICA

CORSO DI LAUREA IN FISICA CORSO DI LAUREA IN FISICA ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia di R quindi

Dettagli

Operazioni tra matrici e n-uple

Operazioni tra matrici e n-uple CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,

Dettagli

Minimo Comune multiplo

Minimo Comune multiplo Minimo Comune multiplo Il minimo comune multiplo (si scrive anche mcm) è il più piccolo numero che sia divisibile per tutti i numeri dati. Che significa? Se io ho tre numeri, il mcm è, tra i tanti possibili

Dettagli

Le potenze dei Numeri Naturali (Interi positivi)

Le potenze dei Numeri Naturali (Interi positivi) Le potenze dei Numeri Naturali (Interi positivi) Le potenze rappresentano un tipo particolare di moltiplicazioni: le moltiplicazioni in cui tutti i fattori sono uguali, ad esempio! mentre una generica

Dettagli

LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org

LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org LOGARITMI Sia un numero reale positivo ed un numero reale, positivo, diverso da 1; si dice logaritmo di in base il valore da attribuire come esponente alla base per ottenere una potenza uguale all argomento.

Dettagli

OPERAZIONI IN Q = + = = = =

OPERAZIONI IN Q = + = = = = OPERAZIONI IN Q A proposito delle operazioni tra numeri razionali, affinché il passaggio da N a vero e proprio ampliamento è necessario che avvengano tre cose: Q risulti un ) le proprietà di ciascuna operazione

Dettagli

Manuale di. per studen DSA (...e non solo) Gabriella Campo. Esponenziali. Logaritmi. Goniometria. Trigonometria. Calcolo Combinatorio

Manuale di. per studen DSA (...e non solo) Gabriella Campo. Esponenziali. Logaritmi. Goniometria. Trigonometria. Calcolo Combinatorio Gabriella Campo Manuale di Maca per studen DSA (...e non solo) FORMULE, MAPPE ED ESERCIZI RISOLTI Esponenziali Logaritmi Goniometria Trigonometria Calcolo Combinatorio Calcolo delle Probabilità www.booksprintedizioni.it

Dettagli

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi. Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

Prerequisiti per seguire il corso

Prerequisiti per seguire il corso Prerequisiti per seguire il corso Insiemi numerici e aritmetica elementare. Equazioni e disequazioni di primo e secondo grado. Geometria elementare e geometria analitica: rette, parabole, iperbole equilatera.

Dettagli

Monomi L insieme dei monomi

Monomi L insieme dei monomi Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili

Dettagli

II modulo Le frazioni

II modulo Le frazioni II modulo Le frazioni Il concetto di frazione I numeri naturali (0, 1, 2, 3, ecc.) sono il primo fondamentale strumento che l uomo ha utilizzato per contare. Tuttavia ci si è ben presto resi conto che

Dettagli

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Matematica di base Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Calendario 21 Ottobre Aritmetica ed algebra elementare 28 Ottobre Geometria elementare 4 Novembre Insiemi

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

Integrali indefiniti fondamentali. Integrali indefiniti riconducibili a quelli immediati. a dx ax c. log. e dx e c. cos xdx senx c.

Integrali indefiniti fondamentali. Integrali indefiniti riconducibili a quelli immediati. a dx ax c. log. e dx e c. cos xdx senx c. Integrali indefiniti fondamentali Integrali indefiniti riconducibili a quelli immediati d f ( c d f ( c a d a c n n d c con n - n a a d log k e d e k k e c a c e d e c d log c send cos c cos d sen c senhd

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

Risolvere le seguenti disequazioni

Risolvere le seguenti disequazioni Risolvere le seguenti disequazioni 1. x 4x x 4 > 0 Innanzi tutto il denominatore deve essere non nullo, quindi l insieme di definizione (o campo d esistenza) è x ±. Se decomponiamo sia numeratore che denominatore,

Dettagli

I POLINOMI. La forma normale di un polinomio. Un polinomio è detto in FORMA NORMALE se in esso non compaiono monomi simili.

I POLINOMI. La forma normale di un polinomio. Un polinomio è detto in FORMA NORMALE se in esso non compaiono monomi simili. I POLINOMI Un polinomio è una somma algebrica tra monomi Sono polinomi le seguenti espressioni 2ab + 4bc -5a 2 b + 2ab - 5c 5x + 2y + 8x in esse infatti troviamo somme o differenze tra monomi La forma

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

FRAZIONI e NUMERI RAZIONALI

FRAZIONI e NUMERI RAZIONALI FRAZIONI e NUMERI RAZIONALI Frazioni Come per i numeri naturali, anche per gli interi relativi si definisce l'operazione di divisione come operazione inversa della moltiplicazione: Divisione di numeri

Dettagli

Equazioni di 2 grado

Equazioni di 2 grado Equazioni di grado Antonino Leonardis Introduzione Solitamente per trovare la formula risolutiva delle equazioni di secondo grado si utilizza il completamento del quadrato Adesso vedremo un modo leggermente

Dettagli

Disequazioni fratte. Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria.

Disequazioni fratte. Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria. 1 Disequazioni fratte Una disequazione in cui l'incognita compare a denominatore si chiama fratta o frazionaria. Prima di affrontare le disequazioni fratte, ricordiamo il procedimento che utilizziamo per

Dettagli

Generalmente gli insiemi si indicano con le lettere maiuscole dell'alfabeto: elementi si utilizzano le lettere minuscole.

Generalmente gli insiemi si indicano con le lettere maiuscole dell'alfabeto: elementi si utilizzano le lettere minuscole. Cos'è un insieme Un insieme in Matematica è un raggruppamento di elementi di qualsiasi tipo, di tipo numerico, logico o concettuale, che può essere individuato mediante una caratteristica comune agli elementi

Dettagli

EQUAZIONI DI PRIMO GRADO

EQUAZIONI DI PRIMO GRADO Cognome... Nome... Equazioni di primo grado EQUAZIONI DI PRIMO GRADO Un'equazione di primo grado e un'uguaglianza tra due espressioni algebriche di primo grado, vera solo per alcuni valori che si attribuiscono

Dettagli