Fluidi magnetoreologici (MR)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fluidi magnetoreologici (MR)"

Transcript

1 Identificazione del sistema elettrico di un ammortizzatore magnetoreologico Cristiano Spelta

2 Fluidi magnetoreologici (MR) 2 Inventati negli anni quaranta. Consistono in una sospensione di olio e microparticelle di leghe di ferro. Cambiano caratteristica viscosa se sottoposti a un campo magnetico.

3 MRD- Sponge 3 Ammortizzatore classico F = cv Ammortizzatore controllato F = c( t) v () = (, ) ct f Iv La possibilità di modulare la caratteristica del fluido MR, lo rende adatto all utilizzo in ammortizzatori a smorzamento variabile (semi-attivi). Applicato dal settore automobilistico (Ferrari) a quello domestico (lavatrici, MRD Sponge). MRD Sponge non ha un fluido che scorre ma lavora ad attrito per mezzo di una spugna imbevuta di fluido.

4 MRD-sponge Schema del sistema di comando 4 V # V I I # ZOH Il campo magnetico viene generato da un comando in corrente. Le caratteristiche di frenatura vengono date in funzione della corrente Per avere una risposta efficace dell ammortizzatore è necessario che i transitori di corrente siano molto veloci e stabili.- controllo in corrente Obiettivo: identificare il modello del comando di corrente V I

5 Caratteristiche nominali del sistema 5 MAX = 0.7 Amps 130 mh 20 Ohm V = I( R+ Ls) in 1 I = Vin R+ Ls τ = L/ R= 0.06s B= 25 Hz; T 40ms risp Ad anello chiuso si desidera un tempo di risposta di 10 ms che corrisponde a una banda di 100 Hz. Teorema di Nyquist: F c > 2*B= 200 Hz. E buona norma scegliere F c =8--10*B (si consideri che si vuole una risposta a 10 ms con transitorio). F c =1 KHz.

6 Definizione esperimento Input: comando di tensione 6 15 Voltage (V) %definizione dell'asse dei tempi %rumore bianco di 60sec con %Fs=1KHz. Fs = 1000; time = [0:60*Fs-1]/Fs; input = 14*randn(60*Fs,1); plot(time,input); tim e (s ) Segnale di input deve eccitare tutte le dinamiche del sistema WN a campionamento di 1KHz. Il segnale in tensione non deve superare i limiti del costruttore. Imax = 0.7 A Vmax = 0.7*20 V = 14 V

7 Definizione dell esperimento Output: corrente impressa %recupero dei dati sperimentali Current (I) output = plot(time,output); tim e (s ) Il segnale di corrente è coerente con le specifiche di sistema. Prefiltragggio e condizionamento (discussione)

8 Analisi preliminare dei dati dB %visualizzazione del rapporto %ingresso uscita nel dominio %della frequenza db Y G ( jω) = X ( jω) ( jω) Hertz Pendenza: -20db/Dec [Pxx,F]=pwelch(input,1000); [Pyy,F]=pwelch(output,1000); G = Pyy./Pxx; semilogx(f*1000/6.28,10*log10(g)); Data la linearità del sistema Il rapporto tra spettro dell uscita e spettro dell ingresso è la risposta in frequenza del sistema. I () () s G s = V () s La risposta in frequenza è in prima approssimazione quella di un filtro passa basso a un polo (conferma)

9 9 Identificazione a scatola grigia (conoscenza della fisica del sistema)

10 Modello a un guadagno e un polo 10 Abbiamo visto che il sistema è nominalmente modellizzato da: ( ) G s k = 1 + st Per passare a un modello a tempo discreto è possibile utilizzare la trasformazione di Eulero in avanti (attenzione alla stabilità), che lega la variabile della trasmormata di Laplace a quella della trasformata z G ( z) s = z 1 T k = 1+ T 1 s ( z )/ Ts ( ) = ( 1 / ) ( 1 ) + ( / ) ( 1) y t T T y t kt T u t S ( ) = α ( 1) + β ( 1) y t y t u t S

11 Identificazione del modello a un polo minimi quadrati 11 ( ) = α ( 1) + β ( 1) yt yt ut Y = XP () ( 2) y y() 1 u() 1 y α Y = X = P= β y( n) y( n 1) u( n 1) 2 Pˆ = arg min Y XP Y = XPˆ T X XPˆ = T X Y T ( ) 1 ˆ T P= X X X Y Y=output; X1 = [0;output(1:n-1)]; U1 = [0; input(1:n-1)]; X=[X1 U1]; P = inv(x *X)*X *Y;

12 Modello a un polo Risultati Bode Diagram identificato % calcolo dell errore e = var(y-xp); sperimentale %definizione del modello identificato -30 Id1 = tf([ ],[ ]); Magnitude (db) -35 [ ] errore = var Y XP = 3.27 %disegno del diagramma di bode del %modello identificato e della risposta i%n frequenza sperimentale semilogx(f*1000,10*log10(g),'r') hold on; α= Τ = bodemag(id1); β = k = Frequency (Hz)

13 Modello a due poli e uno zero 13 ( ) G s = k ( 1+ st ) ( 1+ stp 1)( 1+ stp2) z Posso ottenere un risultato aumentando l ordina del sistema. Per mantenere i -20dB/dec ad alta frequenza inserisco anche uno zero. ( ) = α ( 1) + α ( 2) + β ( 1) + β ( 2) y t y t y t u t u t

14 Modello a due poli e uno zero Risultati Bode Diagram identificato Y=output; X1 = [0;output(1:n-1)]; X2 = [0;0; output(1:n-2)]; U1 = [0; input(1:n-1)]; U2 = [0;0;input(1:n-2)]; X=[X1 X2 U1 U2]; P = inv(x *X)*X *Y; sperimentale % calcolo dell errore e = var(y-xp); %definizione del modello identificato -35 [ ] errore = var Y XP = Id2 = tf([p(3) p(4)], [1 p(1) p(2) ],0.001); Frequency (rad/sec) %disegno del diagramma di bode del %modello identificato e della risposta i%n frequenza sperimentale semilogx(f*1000,10*log10(g),'r') hold on; bodemag(id2);

15 Modello a due poli e uno zero con ritardo 15 ( ) G s = k ( 1+ st ) ( 1+ stp 1)( 1+ stp2) z e sτ Un sistema di acquisizione e controllo digitale introduce un ritardo intrinseco nel sistema. Aggiungo un ritardo al modello. () = α ( 1) + α ( 2) + α ( 3) + β ( 1) + β ( 2) + β ( 3) y t y t y t y t u t u t u t

16 Modello a due poli e uno zero con ritardo Risultati 16 Magnitude (db) sperimentale Bode Diagram identificato Y=output; X1 = [0;output(1:n-1)]; X2 = [0;0; output(1:n-2)]; X3 = [0;0;0;output(n-3)]; U1 = [0; input(1:n-1)]; U2 = [0;0;input(1:n-2)]; U3 = [0;0;0;output(1:n-3)]; X=[X1 X2 X2 U1 U2 U3]; P = inv(x *X)*X *Y; % calcolo dell errore e = var(y-xp); [ ] errore = var Y XP 0 %definizione del modello identificato Id3 = tf([p(4) p(5) p(6)], [1 p(1) p(2) p(3)],0.001); Frequency (rad/sec) %disegno del diagramma di bode del %modello identificato e della risposta i%n frequenza sperimentale semilogx(f*1000,10*log10(g),'r') hold on; bodemag(id3);

17 Id. Scatola grigia 17 Conoscere la fisica del sistema aiuta a definire l esperimento di identificazione e la famiglia di modelli tra cui cercare. Per questo tipo di paradigma esiste un legame tra i coefficienti del modello identificato (ARX) e il sistema reale. Modello identificato fornisce una spiegazione fisica del sistema. Esistono altri metodi di identificazione oltre quelli classici basati sui minimi quadrati

18 18 Black Box

19 Definizione del modello 19 Nessuna ipotesi sul modello da identificare Nota solo la frequenza di campionamento del sistema (ovviamente necessaria). ARX(na,nb) ( ) = α ( 1 ) α ( ) + β ( 1 ) β ( ) y t y t y t a u t u t b Fissiamo 1 a n 1 b n Ordine della parte autoregressiva: n a =1..5 Ordine della parte esogena: n b =1..5 n criterio della minimizzazione della varianza dell errore di predizione minimi quadrati n

20 Scelta della complessità Criterio AIC N 1 J = ( y ˆ i yi) N i= 1 2 ( 2 / ) ln( ) ln( ) AIC = n N + J J nb = complessita EX nb = 3 na = 3 nb = 1 Y=output; X1 = [0;output(1:n-1)]; X2 = [0;0; output(1:n-2)]; X3 = [0;0;0;output(n-3)]; U1 = [0; input(1:n-1)]; U2 = [0;0;input(1:n-2)]; U3 = [0;0;0;output(1:n-3)];... %1,1 X=[X1 U1]; p = inv(x *X)*X *Y; e(1,1) = var(y-xp); %2,1 X=[X1 X2 U1]; p = inv(x *X)*X *Y; e(2,1) = var(y-xp); nb=3 nb = 2 nb = 4 nb = 5 %3,1 X=[X1 X2 X3 U1]; p = inv(x *X)*X *Y; e(3,1) = var(y-xp); Complessita AR

21 Risultati dell identificazione Bode Diagram identificato Magnitude (db) sperimentale Frequency (Hz)

22 22 Ident Toolbox di Matlab

23 Ident Tool di Matlab interfaccia di selezione dati 23

24 Ident Tool di Matlab Scelta del modello 24

25 Ident Tool di Matlab Identificazione 25

Identificazione del sistema elettrico di un ammortizzatore magnetoreologico

Identificazione del sistema elettrico di un ammortizzatore magnetoreologico Identificazione del sistema elettrico di un ammortizzatore magnetoreologico Cristiano Spelta cristiano.spelta@unibg.it Fluidi magnetoreologici (MR) 2 Inventati negli anni quaranta. Consistono in una sospensione

Dettagli

SOLUZIONE. Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015

SOLUZIONE. Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.24-5 Prof. Silvia Strada Seconda prova intermedia 2 Febbraio 25 SOLUZIONE ESERCIZIO punti: 8 su 32 Si consideri un sistema dinamico,

Dettagli

Sistemi retroazionati

Sistemi retroazionati - 9AKSBL Sistemi retroazionati Definizioni Legami La struttura di un sistema di controllo in retroazione d a d y r - e C(s) u A G P (s) y C(s) controllore; A Attuatore; G p (s) Impianto; Td Trasduttore;

Dettagli

Spettri e banda passante

Spettri e banda passante Banda passante - 1 Corso di Laurea in Ingegneria Meccanica Spettri e banda passante DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Esempio: Altoparlante

Dettagli

Azione Filtrante. Prof. Laura Giarré https://giarre.wordpress.com/ca/

Azione Filtrante. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Azione Filtrante Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Sviluppo in serie di Fourier Qualunque funzione periodica di periodo T può essere rappresentata mediante sviluppo

Dettagli

Banda passante e sviluppo in serie di Fourier

Banda passante e sviluppo in serie di Fourier CONTROLLI AUTOMATICI Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/controlliautomatici.html Banda passante e sviluppo in serie di Fourier Ing. e-mail: luigi.biagiotti@unimore.it

Dettagli

Regolazione e Controllo dei Sistemi Meccanici 23 Novembre 2005

Regolazione e Controllo dei Sistemi Meccanici 23 Novembre 2005 Regolazione e Controllo dei Sistemi Meccanici 23 Novembre 25 Numero di matricola A) Si consideri la risposta al gradino unitario riportata in fig. e si determini qualitativamente la funzione di trasferimento

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Seconda prova intermedia 12 Febbraio 2015 Nome e Cognome:........................... Matricola...........................

Dettagli

Esercitazione di Controlli Automatici 1 n 7

Esercitazione di Controlli Automatici 1 n 7 Esercitazione di ontrolli Automatici 1 n 7 a.a. 26/7 I risultati di 6 prove di risposta armonica di un sistema elettrico di caratteristiche non note sono riportati in allegato. I dati significativi sono

Dettagli

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 27 Gennaio 2009 Cognome Nome Matricola

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 27 Gennaio 2009 Cognome Nome Matricola PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 7 Gennaio 9 Cognome Nome Matricola............ Verificare che il fascicolo sia costituito da 8 pagine. Scrivere le risposte ai singoli esercizi negli

Dettagli

08. Analisi armonica. Controlli Automatici

08. Analisi armonica. Controlli Automatici 8. Analisi armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Alessio Levratti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

Spettri e banda passante

Spettri e banda passante Banda passante - Corso di Laurea in Ingegneria Meccanica Controlli Automatici L Spettri e banda passante DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

LSS ADC DAC. Piero Vicini A.A

LSS ADC DAC. Piero Vicini A.A LSS 2016-17 ADC DAC Piero Vicini A.A. 2016-2017 Conversione Digitale-Analogica La conversione digitale-analogica (DAC, Digital to Analog Conversion) permette di costruire una tensione V (o una corrente

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Analisi

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Luigi

Dettagli

MODELLO COMPLETO PER IL CONTROLLO. D r (s) U(s) Y (s) d m (t): disturbi misurabili. d r (t): disturbi non misurabili

MODELLO COMPLETO PER IL CONTROLLO. D r (s) U(s) Y (s) d m (t): disturbi misurabili. d r (t): disturbi non misurabili MODELLO COMPLETO PER IL CONTROLLO D m (s) D r (s) Y o (s) U(s) P (s) Y (s) d m (t): disturbi misurabili d r (t): disturbi non misurabili y o (t): andamento desiderato della variabile controllata u(t):

Dettagli

Prof. Carlo Rossi DEIS - Università di Bologna Tel:

Prof. Carlo Rossi DEIS - Università di Bologna Tel: Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093020 email: carlo.rossi@unibo.it Sistemi Tempo-Discreti In questi sistemi i segnali hanno come base l insieme dei numeri interi: sono sequenze

Dettagli

Fondamenti di Data Processing

Fondamenti di Data Processing Fondamenti di Data Processing Vincenzo Suraci Automazione INTRODUZIONE AL DATA PROCESSING ACQUISIZIONE DATI SCHEMA COSTRUTTIVO SCHEDA INPUT OSCILLATORE A FREQUENZA COSTANTE BANDA PASSANTE ACCORDATA AL

Dettagli

= 2000) Controlli automatici LB 16/1/ Il regolatore

= 2000) Controlli automatici LB 16/1/ Il regolatore Quiz A 1. La compensazione del segnale di riferimento in anello aperto: viene effettuata filtrando opportunamente l uscita misurata viene effettuata progettando un filtro che cancella totalmente la dinamica

Dettagli

# MODELLI APPROSSIMATI DI SISTEMI DINAMICI

# MODELLI APPROSSIMATI DI SISTEMI DINAMICI # MODELLI APPROSSIMATI DI SISTEMI DINAMICI # Riferimento per approfondimenti: Bolzern-Scattolini-Schiavoni: Fondamenti di Controlli Automatici, McGraw-Hill, 998 Cap. 7. Il problema della determinazione

Dettagli

Appello di Febbraio di Fondamenti di Automatica A.A Febbraio 2011 Prof. SILVIA STRADA Tempo a disposizione: 2 h. 30 m.

Appello di Febbraio di Fondamenti di Automatica A.A Febbraio 2011 Prof. SILVIA STRADA Tempo a disposizione: 2 h. 30 m. Appello di Febbraio di Fondamenti di Automatica A.A. 1-11 Febbraio 11 Prof. SILVIA STRADA Tempo a disposizione: h. 3 m. Nome e Cognome: Matricola: Firma: N.B. Svolgere i vari punti nello spazio che segue

Dettagli

Lezione 8: Diagramma di Nyquist

Lezione 8: Diagramma di Nyquist Fondamenti di Automatica 1 Lezione 8: Diagramma di Nyquist Regole per il tracciamento qualitativo Esercizi Fondamenti di Automatica 2 Diagrammi polari o di Nyquist Diagramma polare fornisce, al variare

Dettagli

Sistemi di controllo

Sistemi di controllo Compito del 18 settembre 212 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte che si ritengono corrette. Alcuni quesiti possono avere più risposte corrette. I quiz si ritengono

Dettagli

Confronto tra vari metodi di discretizzazione

Confronto tra vari metodi di discretizzazione Confronto tra vari metodi di discretizzazione Marco Ariola Università degli Studi di Napoli 14 novembre 2005 Marco Ariola (Univ. Napoli) Confronto metodi discretizzazione 14 novembre 2005 1 / 7 La funzione

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA

CONTROLLI AUTOMATICI Ingegneria Gestionale  ANALISI ARMONICA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

Gianmaria De Tommasi A.A. 2008/09

Gianmaria De Tommasi A.A. 2008/09 Controllo Gianmaria De Tommasi A.A. 2008/09 1 e discretizzazione del controllore 2 Controllore tempo-discreto e suo equivalente tempo- Nell ipotesi di segnale di errore e(t) a banda limitata, nell intervallo

Dettagli

Esercizio 1. (s 1) (s 0.5)(s 1) G(s) 28. p1 = -0.5 (sx) p2 = -1 (sx) Tipo: g=0. G(0) = 56 = 20log10(56) ~ 35 db

Esercizio 1. (s 1) (s 0.5)(s 1) G(s) 28. p1 = -0.5 (sx) p2 = -1 (sx) Tipo: g=0. G(0) = 56 = 20log10(56) ~ 35 db Esercizio 1 2 G(s) 28 (s 1) (s.5)(s 1) Poli: p1 = -.5 p2 = -1 zeri: z1 = 1 (dx) Tipo: g= Guadagno: G() = 56 = 2log1(56) ~ 35 db Bode del Modulo 3 Scala 4 6 5 4 3 Magnitude (db) 2 1-1 -2 1.1.2.3 1 1 Piazzamento

Dettagli

Progetto dei Sistemi di Controllo Digitali. Docente: Prof. Francesco Amato

Progetto dei Sistemi di Controllo Digitali. Docente: Prof. Francesco Amato Progetto dei Sistemi di Controllo Digitali Docente: Prof. Francesco Amato 1 Schema di un sistema di controllo digitale Controllore digitale r e A/D e* u* D/A u y Processo Sistema a empo-continuo Sistema

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ gennaio 2004

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ gennaio 2004 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/2004 4 gennaio 2004 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi. La chiarezza

Dettagli

Controlli Automatici 2 27 Settembre 2007 COGNOME...NOME... MATR...CDL (ELETTR, GEST, MECC)

Controlli Automatici 2 27 Settembre 2007 COGNOME...NOME... MATR...CDL (ELETTR, GEST, MECC) Controlli Automatici 2 27 Settembre 27 COGNOME...NOME... MATR...CDL (ELETTR, GEST, MECC) Per il processo descritto dalla funzione di trasferimento P(s) = s + 4 (s + )(s +.) a.) Si tracci il diagramma di

Dettagli

Analisi Armonica. Prof. Laura Giarré

Analisi Armonica. Prof. Laura Giarré Analisi Armonica Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Analisi armonica di sistemi dinamici Analisi nel dominio del tempo. Studio del comportamento dinamico di un

Dettagli

Esercizi proposti. a. tracciare i diagrammi di Bode b. calcolare la risposta al gradino unitario applicato in t=0

Esercizi proposti. a. tracciare i diagrammi di Bode b. calcolare la risposta al gradino unitario applicato in t=0 Esercizi proposti s 1) Per il sistema con f.d.t. G ( s ) = si chiede di: s 1 a. tracciare i diagrammi di Bode b. calcolare la risposta al gradino unitario applicato in t= s ) Per il sistema con f.d.t.

Dettagli

9. Risposta in Frequenza

9. Risposta in Frequenza 9. Risposta in Frequenza 9 Risposta in Frequenza u(t) U(s) G(s) y(t) Y(s) Ricorda: la funzione di trasferimento di un sistema lineare tempo continuo è il rapporto fra la trasf. di Laplace Y (s) dell uscita

Dettagli

Realizzazione digitale di controllori analogici

Realizzazione digitale di controllori analogici Realizzazione digitale di controllori analogici Digitalizzazione di un controllore analogico Sistema di controllo r(t) uscita + - desiderata e(t) segnale di errore C(s) controllore analogico u(t) ingresso

Dettagli

Analisi dei sistemi in retroazione

Analisi dei sistemi in retroazione Facoltà di Ingegneria di Reggio Emilia Corso di Controlli Automatici Corsi di laurea in Ingegneria Meccatronica ed in Ingegneria della Gestione Industriale Ing. Alessandro Macchelli e-mail: amacchelli@deis.unibo.it

Dettagli

Lezione 20. Controllo del moto

Lezione 20. Controllo del moto Lezione 20. Controllo del moto . Introduzione In questa lezione si affronta il tema del controllo del moto. Innanzitutto si progetta il controllore della corrente di armatura. Quindi si procederà alla

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE Ing. Federica

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.casy.deis.unibo.it/care ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE Ing. Luca Gentili

Dettagli

Lezione 19. Stabilità robusta. F. Previdi - Fondamenti di Automatica - Lez. 19 1

Lezione 19. Stabilità robusta. F. Previdi - Fondamenti di Automatica - Lez. 19 1 Lezione 19. Stabilità robusta F. Previdi - Fondamenti di Automatica - Lez. 19 1 Schema 1. Stabilità & incertezza 2. Indicatori di stabilità robusta 3. Margine di guadagno 4. Margine di fase 5. Criterio

Dettagli

B = Si studi, giustificando sinteticamente le proprie affermazioni, la stabilità del sistema. si A = G(s) = Y f (s) U(s) = 1.

B = Si studi, giustificando sinteticamente le proprie affermazioni, la stabilità del sistema. si A = G(s) = Y f (s) U(s) = 1. ESERCIZIO 1 Un sistema dinamico lineare invariante e a tempo continuo è descritto dall equazione differenziale che lega l ingresso all uscita:... y (t) + ÿ(t) + 4ẏ(t) + 4y(t) = u(t) 1. Si determinino le

Dettagli

Sistemi di controllo

Sistemi di controllo Compito del 8 gennaio 2014 - Quiz Per ciascuno dei seguenti quesiti, segnare con una crocetta le risposte che si ritengono corrette. Alcuni quesiti possono avere più risposte corrette. I quiz si ritengono

Dettagli

Corso di Fondamenti di Automatica. Università di Roma La Sapienza. Diagrammi di Bode. L. Lanari. Dipartimento di Informatica e Sistemistica

Corso di Fondamenti di Automatica. Università di Roma La Sapienza. Diagrammi di Bode. L. Lanari. Dipartimento di Informatica e Sistemistica Corso di Fondamenti di Automatica Università di Roma La Sapienza Diagrammi di Bode L. Lanari Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza Roma, Italy Ultima modifica May 8,

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 09/02/2017 Prof. Marcello Farina SOLUZIONI Anno Accademico 2015/2016 ESERCIZIO 1 Si consideri il sistema a tempo discreto non lineare descritto dalle seguenti

Dettagli

Cognome Nome: Matricola: Corso di Laurea: Fondamenti di Controlli Automatici - A.A. 2011/12 20 settembre Domande Teoriche

Cognome Nome: Matricola: Corso di Laurea: Fondamenti di Controlli Automatici - A.A. 2011/12 20 settembre Domande Teoriche Fondamenti di Controlli Automatici - A.A. / settembre - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica ) CONTROLLI AUTOMATICI Ingegneria Meccatronica ANALISI ARMONICA Prof. Cesare Fantuzzi Ing. Cristian Secchi e-mail: cesare.fantuzzi@unimore.it, cristian.secchi@unimore.it http://www.automazione.ingre.unimore.it

Dettagli

Sistemi e Tecnologie della Comunicazione

Sistemi e Tecnologie della Comunicazione Sistemi e Tecnologie della Comunicazione Lezione 5: strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza Rappresentazione spettrale di un segnale Il grafico

Dettagli

Teoria dei Sistemi s + 1 (s + 1)(s s + 100)

Teoria dei Sistemi s + 1 (s + 1)(s s + 100) Teoria dei Sistemi 03-07-2015 A Dato il sistema dinamico rappresentato dalla funzione di trasferimento 10s + 1 (s + 1)(s 2 + 16s + 100) A.1 Si disegnino i diagrammi di Bode, Nyquist e i luoghi delle radici.

Dettagli

LABORATORIO DI AUTOMAZIONE Progetto 1 Registratore digitale

LABORATORIO DI AUTOMAZIONE Progetto 1 Registratore digitale LABORATORIO DI AUTOMAZIONE Progetto 1 Registratore digitale Prof. Carlo Rossi DEIS - Università di Bologna Tel: 051 2093024 email: crossi@deis.unibo.it Procedura di sintesi Guida alla sintesi del controllo

Dettagli

Sistemi di Controllo Digitale. Esercitazione 1: 31 Gennaio 2008 RICHIAMI DI CONTROLLI AUTOMATICI

Sistemi di Controllo Digitale. Esercitazione 1: 31 Gennaio 2008 RICHIAMI DI CONTROLLI AUTOMATICI Sistemi di Controllo Digitale Esercitazione 1: 31 Gennaio 28 RICHIAMI DI CONTROLLI AUTOMATICI Andrea Paoli, Matteo Sartini DEIS - Università di Bologna Tel. 51-293874/2 E-mail: {andrea.paoli}{matteo.sartini}@unibo.it

Dettagli

Soluzione degli esercizi del Capitolo 9

Soluzione degli esercizi del Capitolo 9 Soluzione degli esercizi del Capitolo 9 Soluzione dell Esercizio 9.1 Il diagramma polare associato alla funzione L(s) = µ/s, µ > comprende l intero semiasse reale negativo. È quindi immediato concludere

Dettagli

a.a. 2016/2017 Docente: Stefano Bifaretti

a.a. 2016/2017 Docente: Stefano Bifaretti a.a. 2016/2017 Docente: Stefano Bifaretti email: bifaretti@ing.uniroma2.it Introduzione Un sistema di controllo automatico èunsistemaingrado di imporre a una o più variabili controllate (uscite) gli andamenti

Dettagli

Corso di Teoria dei Sistemi N. Raccolta di esercizi svolti tratti da temi d esame

Corso di Teoria dei Sistemi N. Raccolta di esercizi svolti tratti da temi d esame Politecnico di Torino - Consorzio Nettuno Michele Taragna Corso di Teoria dei Sistemi - 955N Raccolta di esercizi svolti tratti da temi d esame Diploma Universitario a Distanza in Ingegneria Informatica

Dettagli

Corso di Identificazione dei Modelli e Analisi dei Dati (AA ) Prof. Sergio Bittanti. Esercitazione di laboratorio

Corso di Identificazione dei Modelli e Analisi dei Dati (AA ) Prof. Sergio Bittanti. Esercitazione di laboratorio Corso di Identificazione dei Modelli e Analisi dei Dati (AA 2009-2010) Prof. Sergio Bittanti Esercitazione di laboratorio Sommario Serie temporali e sistemi Generazione Analisi Predittori di serie temporali

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stabilità dei sistemi di controllo in retroazione Margini di stabilità Indicatori di robustezza della stabilità Margine di guadagno Margine di fase Stabilità regolare e marginale ed estensioni delle definizioni

Dettagli

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Luigi Biagiotti DEIS-Università di Bologna Tel. 5 29334 e-mail: lbiagiotti@deis.unibo.it Analisi armonica di sistemi dinamici Analisi nel

Dettagli

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA

Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Ingegneria e Tecnologie dei Sistemi di Controllo ANALISI ARMONICA Luigi Biagiotti DEIS-Università di Bologna Tel. 051 2093034 e-mail: lbiagiotti@deis.unibo.it Analisi armonica di sistemi dinamici Analisi

Dettagli

Fondamenti di Automatica Prof. Paolo Rocco. Soluzioni della seconda prova scritta intermedia 6 luglio 2017

Fondamenti di Automatica Prof. Paolo Rocco. Soluzioni della seconda prova scritta intermedia 6 luglio 2017 Fondamenti di Automatica Prof. Paolo Rocco Soluzioni della seconda prova scritta intermedia 6 luglio 217 ESERCIZIO 1 Si consideri il sistema di controllo di figura, con y variabile controllata e y o riferimento:

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2005/ febbraio 2006 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2005/ febbraio 2006 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 25/26 13 febbraio 26 TESTO E SOLUZIONE Esercizio 1 Si consideri il sistema lineare descritto dalle equazioni di stato seguenti: ẋ 1 (t) = 2x 1 (t) αx 2 (t)

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale Un amplificatore è realizzato con un LM741, con Ad = 100 db, polo di Ad a 10 Hz. La controreazione determina un guadagno ideale pari

Dettagli

Regolazione e Controllo dei Sistemi Meccanici 1 Giugno 2006

Regolazione e Controllo dei Sistemi Meccanici 1 Giugno 2006 Regolazione e Controllo dei Sistemi Meccanici 1 Giugno 26 Numero di matricola = 1α 1 = 1β 1 Si consideri lo schema di azionamento di una valvola rotativa riportato in fig1 Il sistema è costituito da tre

Dettagli

Esercitazione 08: Analisi di stabilità dei sistemi di controllo

Esercitazione 08: Analisi di stabilità dei sistemi di controllo Esercitazione 8: Analisi di stabilità dei sistemi di controllo 6 maggio 219 (3h) Fondamenti di Automatica Prof. M. Farina Responsabile delle esercitazioni: Enrico Terzi Queste dispense sono state scritte

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica. CONTROLLI AUTOMATICI Ingegneria Meccatronica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica. CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccatronica http://www.automazione.ingre.unimore.it/pages/corsi/automazione%2industriale.htm ANALISI ARMONICA Analisi armonica di sistemi dinamici Analisi nel dominio del

Dettagli

Invito alla lettura. Simboli e notazioni

Invito alla lettura. Simboli e notazioni Indice Generale Invito alla lettura Simboli e notazioni xiii xv 1 Automatica, ieri e oggi 1 1.1 Le disavventure di Sir Shovell................... 1 1.2 Missioni cometarie......................... 1 1.3

Dettagli

Esercizio 1. Si consideri la funzione di trasferimento. G(s) = K 1 + st

Esercizio 1. Si consideri la funzione di trasferimento. G(s) = K 1 + st Esercizio. Si consideri la funzione di trasferimento G(s) = K + st + sτ. Si dimostri che, qualunque siano i valori dei parametri reali K, T e τ, il relativo diagramma di Nyquist è una circonferenza. Si

Dettagli

Cognome Nome Matricola Corso di Laurea

Cognome Nome Matricola Corso di Laurea Fondamenti di Controlli Automatici A.A. 213/14 7 gennaio 215 Quiz di Teoria Cognome Nome Matricola Corso di Laurea Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

Regolazione e Controllo dei Sistemi Meccanici 9 Giugno 2005

Regolazione e Controllo dei Sistemi Meccanici 9 Giugno 2005 Regolazione e Controllo dei Sistemi Meccanici 9 Giugno 25 Numero di matricola =1α 1 =1β 1 =1γ 1 Si consideri il sistema riportato in fig.1 costituito da un rotore interno di inerzia I i e attuato da una

Dettagli

Controllo in retroazione: Analisi e Sensitività. Prof. Laura Giarré https://giarre.wordpress.com/ca/

Controllo in retroazione: Analisi e Sensitività. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Controllo in retroazione: Analisi e Sensitività Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Schema di riferimento per il controllo in retroazione Come già visto lo schema

Dettagli

Metodi di Controllo Avanzati. Prof. Laura Giarré

Metodi di Controllo Avanzati. Prof. Laura Giarré Metodi di Controllo Avanzati Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Metodi di controllo avanzati Compensazione in avanti del riferimento Prefiltraggio del segnale di

Dettagli

Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona

Corso di laurea in Informatica. Regolatori. Marta Capiluppi Dipartimento di Informatica Università di Verona Corso di laurea in Informatica Regolatori Marta Capiluppi marta.capiluppi@univr.it Dipartimento di Informatica Università di Verona Scelta delle specifiche 1. Picco di risonanza e massima sovraelongazione

Dettagli

COMPITO DI SEGNALI E SISTEMI 15 febbraio 2010

COMPITO DI SEGNALI E SISTEMI 15 febbraio 2010 COMPITO DI SEGNALI E SISTEMI 5 febbraio 00 Teoria. Con riferimento ad un sistema lineare a tempo di screto descritto da un equazione alle differenze del tipo n m a i yk i = b i uk i i=0 i=0. Si ricavi,

Dettagli

= b ns n + + b 0. (s p i ), l r, A(p i) 0, i = 1,..., r. Y f (s) = G(s)U(s) = H(s) + n i=1. Parte dipendente dai poli di G(s) ( transitorio ).

= b ns n + + b 0. (s p i ), l r, A(p i) 0, i = 1,..., r. Y f (s) = G(s)U(s) = H(s) + n i=1. Parte dipendente dai poli di G(s) ( transitorio ). RISPOSTA FORZATA SISTEMI LINEARI STAZIONARI u(t) G(s) = B(s) A(s) = b ns n + + b 0 s n + + a 0 y f (t) Classe di funzioni di ingresso. U := l Q(s) u( ) : U(s) = P (s) = i= (s z i ) ri= (s p i ), l r, A(p

Dettagli

Lezione 12. Azione filtrante dei sistemi dinamici. F. Previdi - Automatica - Lez. 12 1

Lezione 12. Azione filtrante dei sistemi dinamici. F. Previdi - Automatica - Lez. 12 1 Lezione. Azione filtrante dei sistemi dinamici F. Previdi - Automatica - Lez. Schema della lezione. Introduzione. Filtro passa-basso 3. Filtro passa-alto 4. Risonanza F. Previdi - Automatica - Lez. . Introduzione

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 2 luglio 26: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema lineare con ingresso u ed uscita y descritto dalle seguenti

Dettagli

Controlli Automatici 2 22/06/05 Compito a

Controlli Automatici 2 22/06/05 Compito a Controlli Automatici 2 22/6/5 Compito a a) Si consideri il diagramma di Bode (modulo e fase) di G(s) in figura 1. Si 5 Bode Diagram 5 15 45 9 135 18 3 2 1 1 2 3 Frequency (rad/sec) Figure 1: Diagrammi

Dettagli

Controlli Automatici 2 13/07/05 Compito a

Controlli Automatici 2 13/07/05 Compito a Controlli Automatici 3/7/5 Compito a a) Data la funzione di trasferimento P (s) = (s+)(s+) (s+)s. a.) Si tracci il diagramma di Bode. a.) Si tracci il diagramma di Nyquist. Bode Diagram 5 Magnitude (db)

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO

Dettagli

FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Prof. Matteo Corno

FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Prof. Matteo Corno POLITECNICO DI MILANO FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Anno Accademico 2014/15 Seconda Prova in Itinere 12/02/2015 COGNOME... NOME... MATRICOLA... FIRMA.... Verificare che il fascicolo

Dettagli

Sintesi per tentativi nel dominio della frequenza

Sintesi per tentativi nel dominio della frequenza Sintesi per tentativi nel dominio della frequenza Viene utilizzata per sistemi a fase minima affinchè sia valido il criterio di Bode e le relazioni approssimate tra le specifiche siano sufficientemente

Dettagli

Esercizi di Controlli Automatici

Esercizi di Controlli Automatici Esercizi di Controlli Automatici L. Magni Esercizio Si studi la stabilità dei seguenti sistemi retroazionati negativamente con guadagno d anello L(s) al variare di > utilizzando il luogo delle radici e

Dettagli

Identificazione di modello

Identificazione di modello SE5 Prof. Davide Manca Politecnico di Milano Dinamica e Controllo dei Processi Chimici Esercitazione #5 Identificazione di modello ing. Sara Brambilla SE5 Identificazione di modello Nel definire un modello

Dettagli

Capitolo 2. Introduzione

Capitolo 2. Introduzione Indice Guida alla lettura Prefazione all edizione italiana Prefazione L editore ringrazia Capitolo 1 Introduzione X XIII XV XXII 1.1 Introduzione 3 1.1.1 Definizione di un sistema di controllo 4 1.1.2

Dettagli

Fondamenti di Automatica Prof. Luca Bascetta. Soluzioni della seconda prova scritta intermedia 25 giugno 2018

Fondamenti di Automatica Prof. Luca Bascetta. Soluzioni della seconda prova scritta intermedia 25 giugno 2018 Fondamenti di Automatica Prof. Luca Bascetta Soluzioni della seconda prova scritta intermedia 25 giugno 28 ESERCIZIO Si consideri il sistema di controllo di figura, con y variabile controllata e y o riferimento:

Dettagli

Regolazione e controllo

Regolazione e controllo 1 Regolazione e controllo Introduzione Ricapitolazione dei concetti importanti Mikael Bianchi, Ricercatore SUPSI 5 dicembre 2016 2 Indice Introduzione Scopo della lezione Programma Cenni storici ed applicazioni

Dettagli

La Retroazione. automatica ROMA TRE Stefano Panzieri- 1

La Retroazione. automatica ROMA TRE Stefano Panzieri- 1 La Retroazione Catena aperta e catena chiusa Regolazione / Asservimento Controllo del moto e controllo di processo Sensibilità alle variazioni parametriche Banda Critica Controllo ad alto guadagno Influenza

Dettagli

Scritto di regolazione e controllo dei sistemi meccanici 27 Giugno 2002

Scritto di regolazione e controllo dei sistemi meccanici 27 Giugno 2002 Scritto di regolazione e controllo dei sistemi meccanici 27 Giugno 22 Numero di matricola = α 1 = β 1 = γ 1 = δ 1 (NO/VO) Dato il sistema di un braccio rigido con riduttore e trasmissione elastica di coppia

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2005/ giugno 2006 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2005/ giugno 2006 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 25/26 5 giugno 26 TESTO E SOLUZIONE Esercizio 1 Si consideri il sistema dinamico descritto dalle equazioni di stato ẋ 1 (t) = x 1 (t) + 2x 2 (t) + u(t) ẋ

Dettagli

a.a. 2014/2015 Docente: Stefano Bifaretti

a.a. 2014/2015 Docente: Stefano Bifaretti a.a. 2014/2015 Docente: Stefano Bifaretti email: bifaretti@ing.uniroma2.it Un sistema di controllo automatico è un sistema in grado di imporre a una o più variabili controllate (uscite) gli andamenti temporali

Dettagli

Regolazione e controllo

Regolazione e controllo DTI / ISEA / Regolazione e Controllo 1 Regolazione e controllo Analisi in frequenza Mikael Bianchi, Ricercatore SUPSI 19 maggio 2017 DTI / ISEA / Regolazione e Controllo 2 Tematiche Introduzione all analisi

Dettagli

Controllo in retroazione: Progetto in Frequenza. Prof. Laura Giarré https://giarre.wordpress.com/ca/

Controllo in retroazione: Progetto in Frequenza. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Controllo in retroazione: Progetto in Frequenza Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Schema di riferimento per il controllo in retroazione Come già visto lo schema

Dettagli

Applicando le leggi di Kirchhoff e le formule di base dei componenti RLC, si ottiene il seguente modello matematico:

Applicando le leggi di Kirchhoff e le formule di base dei componenti RLC, si ottiene il seguente modello matematico: Prova TIPO F per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta multipla (v. ultime

Dettagli

Teoria dei Sistemi

Teoria dei Sistemi Teoria dei Sistemi 13-06-2016 Esercizio 1 In Figura sono riportati un sottomarino telecomandato da remoto (ROV) ed il suo modello nel piano di pitch (beccheggio). Il sistema ha massa M e momento di inerzia

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. Controlli Automatici A 22 Giugno 11 - Esercizi Si risolvano i seguenti esercizi. Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. a.1) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Soluzione degli esercizi del Capitolo 7

Soluzione degli esercizi del Capitolo 7 Soluzione degli esercizi del Capitolo 7 Soluzione dell Esercizio 7.1 La trasformata di Laplace dell uscita del sistema è da cui, per t, Y(s) = G(s)U(s) = 2 3.2 1+5ss 2 +.16 = = 64 1 5s +12.8 s+.2 s 2 +.16

Dettagli

Presentazione dell'edizione italiana...xi

Presentazione dell'edizione italiana...xi Indice generale Presentazione dell'edizione italiana...xi Prefazione... xiii Capitolo 1 Concetti fondamentali... 1 1.1 Introduzione... 1 1.2 Terminologia relativa ai sistemi di controllo... 1 1.3 Funzionamento

Dettagli

Corso di Teoria dei Sistemi N. Raccolta di esercizi svolti tratti da temi d esame

Corso di Teoria dei Sistemi N. Raccolta di esercizi svolti tratti da temi d esame Politecnico di Torino - Consorzio Nettuno Michele Taragna Corso di Teoria dei Sistemi - 955N Raccolta di esercizi svolti tratti da temi d esame Diploma Universitario a Distanza in Ingegneria Informatica

Dettagli

Controllo Digitale - A. Bemporad - A.a. 2007/08

Controllo Digitale - A. Bemporad - A.a. 2007/08 Model reduction Riduzione dei sistemi Nella progettazione di regolatori lineari basati sul modello, la complessità della legge di controllo dipende dall ordine del sistema (numero di poli / numero di stati).

Dettagli