Prima prova intercorso lunedì 14 aprile 2005

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prima prova intercorso lunedì 14 aprile 2005"

Transcript

1 Prima prova intrcorso lundì 14 april 25 Laura in Scinza Inggnria di Matriali anno accadmico Istituzioni di Fisica dlla Matria - Prof. Lornzo Marrucci Tmpo a disposizion: 2 or 15 minuti Uso dgli appunti o di libri: NON AMMESSO; uso dlla calcolatric: AMMESSO Nota: pr lasciar un margin di rcupro intrno a qusto compito, il total di punti a disposizion è fissato a 32 invc ch a 3, ma il voto massimo di qusto scritto ai fini dlla mdia pr il voto final rsta comunqu 3/3. 1) Una molcola di acido fluoridrico HF può ssr considrata quivalnt ad un sistma di du mass (gli atomi di idrogno H di fluoro F) collgat da una molla (il lgam chimico tra i du atomi). Essndo il fluoro 19 volt più psant dll idrogno, pott assumr in prima approssimazion ch l atomo di fluoro rsti frmo mntr l idrogno oscilla. La frqunza misurata di oscillazion armonica (o, com si dic più spsso, di vibrazion ) dlla molcola risulta pari a ν Hz. Sapndo ch la massa dll atomo di idrogno è pari a m H kg, calcolar (a) la costant lastica k dl lgam chimico tra H F. Qusta vibrazion dlla molcola HF può ssr indotta utilizzando radiazion lttromagntica infrarossa, la qual srcita una forza lttrica sull atomo di idrogno a causa dl fatto ch l idrogno H nlla molcola HF possid una carica positiva q C (compnsata da un ugual carica ngativa dl fluoro). Calcolar (b) la lunghzza d onda λ dlla radiazion lttromagntica ch si trova in condizion di risonanza con l oscillazion dlla molcola HF. Sapndo poi ch l nrgia di lgam di una molcola di HF è approssimativamnt pari a 1 18 J, calcolat (c) la minima intnsità I dll onda lttromagntica di lunghzza d onda λ capac di dissociar la molcola, supponndo ch il fattor di qualità dlla risonanza vibrazional dlla molcola HF sia pari a Q 1 4. [punti: a 3; b 3; c 2] (costant dilttrica dl vuoto ε 9 pf/m) 2) Una catna di 1 pndoli prsnta l sgunti carattristich: i fili di sospnsion possono ssr considrati infinitamnt lunghi; l mass di pndoli sono pari a 1 g; la distanza di quilibrio tra pndoli conscutivi è 5 cm; l moll ch collgano i pndoli sono tutt uguali. Applicando una forza strna, imponiamo al primo pndolo dlla catna un moto armonico di ampizza 1 cm frqunza ciclica 1 Hz. Sulla catna si ossrva allora la gnrazion di un onda armonica viaggiant ch possid una lunghzza d onda di 1 m. In bas a qust informazioni, calcolar: (a) la vlocità dll ond sulla catna (b) la costant lastica dll moll dlla catna. Assumndo ora ch l ultimo pndolo dlla catna sia tnuto bloccato in modo ch si gnri un onda riflssa, calcolar (c) la vlocità massima di oscillazion dl pndolo ch si trova ad una distanza di 25 cm dall ultimo pndolo (suppont pr qusta risposta ch l onda riflssa non abbia ancora raggiunto il primo pndolo, pr cui non abbia influnza sulla gnrazion dll onda inizial). Suppont ora ch anziché trminar in un pndolo bloccato, la catna di 1 pndoli sia collgata tramit una molla (ugual all altr moll) ad un altra catna con l stss carattristich dlla prcdnt, cctto pr la massa di pndoli ch è m 4 g. Calcolar (d) l ampizza dll onda armonica ch vin trasmssa nlla sconda catna di pndoli [suggrimnto pr la domanda (d): nl limit continuo, i pndoli adiacnti al punto di contatto tra l du catn dvono sguir lo stsso moto nonché, pr il principio di azion razion, scambiarsi la stssa forza lastica]. [punti: a 2; b 2; c 2; d 2]. 3) Scrivt un saggio di circa mzza pagina su uno di sgunti du argomnti, a vostra sclta (ma NON ENTRAMBI). [punti: 8] a. Il fnomno dlla risonanza. b. La soluzion gnral dll quazion dll ond di D Almbrt. ATTENZIONE: la prova continua alla pagina sgunt...

2 sconda pagina Prima prova scritta intrcorso 14/4/25 - Istituzioni di Fisica dlla Matria - Prof. Lornzo Marrucci 4) TEST (val 1 punto pr ogni domanda, 8 punti in total) COGNOME: NOME: MATRICOLA: a) Enunciar sintticamnt (a parol /o con formul) il principio di sovrapposizion, rlativamnt ad un oscillator armonico: S x 1 (t) x 2 (t) sono dinamich possibili dll oscillator, allora anch x(t) x 1 (t)+x 2 (t) lo è b) Da quali tra i sgunti fattori può dipndr la dinamica di un oscillator smorzato soggtto ad una forza strna oscillant, dopo un tmpo molto lungo (cioè a rgim )? - Vlocità inizial: [SI] [NO] - Posizion inizial: [SI] [NO] - Intnsità forza strna: [SI] [NO] - Attriti intrni al sistma: [SI] [NO] c) Scrivt l sprssion gnrica di un onda armonica in notazion ral complssa: ξ A cos(±kx ωt+ϕ) ξ A c i(±kx iωt) d) Qual è la frqunza ciclica di un onda radio armonica la cui lunghzza d onda è 3 m? ν c / λ m/s / (3 m) 1 6 Hz 1 MHz ) Qual è la durata approssimativa dl più brv pacchtto d ond ch si possa costruir utilizzando una banda di frqunz di larghzza ν 1 khz? t 1/ ω 1/(2π ν) 1/(6 1 4 Hz) s 17 µs (ma va bn anch t 1/ ν 1 4 s) f) La corda di una chitarra si comporta com un risonator, prché è fissata ai du strmi. S la lunghzza dlla corda è L 1 m, spcificar quali tra l sgunti lunghzz d onda sono possibili sulla corda: [λ 5 m] [λ 5 cm] [λ 1 m] [λ 1 cm] [λ 2 m] [λ 3 m] [λ 3 cm] g) Mnzionar du sistmi fisici ch danno luogo ad ond longitudinali altri du ch danno luogo ad ond trasvrsali: Ond longitudinali: suono sistma pndoli; Ond trasvrsali: corda tsa campo lttromagntico h) Quanto val il modulo dl campo lttrico di un onda lttromagntica in un punto dllo spazio nll istant di tmpo in cui il campo magntico ha un modulo di 2 nt? E c B m/s T V/m.6 V/m

3 Esrcizio 1 a) Dall rlazioni ν ω 2π k m H ricaviamo immdiatamnt k (2πν) 2 m H 4 (3.14) N/m 966 N/m (domanda a) (Nota pr chi vuol approfondir: un risultato più prciso, snza dovr considrar frmo l atomo di fluoro, può ssr facilmnt ottnuto con la stssa formula, sostitundo alla massa dll atomo di idrogno la massa ridotta dl sistma di du atomi). b) In risonanza, la radiazion lttromagntica dv possdr la stssa frqunza ν dlla vibrazion. Prciò, la sua lunghzza d onda sarà smplicmnt λ c/ν m/s / s m 2.5 µm (domanda b) c) Pr calcolar l intnsità dll onda risonant ncssaria a dissociar la molcola è ncssario calcolar l nrgia mccanica U tot (cintica più potnzial) acquisita dall oscillator sotto l fftto dlla forza oscillant dovuta all onda. S A è l ampizza dll oscillazion, l nrgia dll oscillator è U tot ½ k A 2 (1) (pr ricostruir qusta formula, basta considrar il fatto ch l nrgia total dll oscillator divnta tutta potnzial ngli istanti in cui x ±A, ch l nrgia potnzial di una forza lastica è U ½ k x 2 ). In condizioni di risonanza, s Q è il fattor di qualità, l ampizza A di oscillazion è Q volt più grand dll ampizza A ch si avrbb in condizioni statich (ovvro a bassa frqunza), ossia F A QA Q k (2) dov F è l ampizza dlla forza oscillant (infatti in condizioni statich si ha k x + F, da cui A x F /k ). La forza lttrica dovuta all onda è data dalla carica q moltiplicata pr il campo lttrico E dll onda, cioè F qe (3) dov E è l ampizza dl campo lttrico dll onda. Mttndo insim l formul (1)-(3), ottniamo la sgunt sprssion pr l nrgia dll oscillator in funzion dll ampizza di campo lttrico: U tot QqE (4) 2 2k

4 Ora dobbiamo lgar l ampizza dl campo lttrico all intnsità I dll onda. Qusto lgam è dato dalla sgunt formula: I ½ c ε E 2 (5) Combinando la (4) la (5) ottniamo l intnsità dll onda in funzion dll nrgia mccanica ch l onda fa acquistar all oscillator: I kc ε U Qq tot S ora poniamo U tot ugual all nrgia di dissociazion U diss, qusta sprssion fornisc l intnsità minima ncssaria a dissociar la molcola (è sufficint un calcolo grossolano, ad una cifra significativa, prché i dati in qusto caso hanno bassa prcision): I kc ε Udiss W/m 6 1 W/m 8 38 Qq (domanda c) Esrcizio 2 a) L onda armonica gnrata sulla catna ha la stssa frqunza ν la stssa ampizza A dll oscillazion imposta al primo pndolo. Conoscndo la lunghzza d onda λ la frqunza ν dll onda, possiamo immdiatamnt calcolarn la vlocità: v λν 1 m 1 s 1 1 m/s (domanda a) b) Pr dtrminar la costant lastica, mttiamo in rlazion la vlocità dll ond con l carattristich dlla catna. Sappiamo ch la vlocità è data dalla sgunt sprssion: K v (1) ρ l dov K è il modulo lastico ρ l la dnsità linar di massa dlla catna. La prima è lgata alla costant lastica k di una molla dalla rlazion K k x, dov x è la lunghzza dlla molla quindi la distanza tra du pndoli conscutivi. La sconda è data da ρ l m/ x. Combinando qust rlazioni la (1), ottniamo k c) m x m v.1 1 N N/m 2 ( 5 1 ) (domanda b) Quando l onda armonica raggiung il pndolo bloccato vin riflssa. La sovrapposizion dll onda incidnt di qulla riflssa cra un onda stazionaria di ugual lunghzza d onda λ 5 cm, con un nodo nl punto di riflssion. Ogni λ/2 c è un altro nodo, mntr in mzzo tra du nodi si ha un vntr dll onda stazionaria. A 25 cm, ossia λ/4, di distanza da un nodo abbiamo quindi un vntr, ossia un

5 massimo dll onda stazionaria. S A 1 cm è l ampizza dll onda incidnt, l ampizza di qusto massimo è 2A (prché ni vntri l onda incidnt si combina con l onda riflssa con lo stsso sgno), cioè l oscillazion dl pndolo in qusto punto è govrnata da una lgg dl tipo ξ(t) 2A cos(ωt+ϕ) (2) Drivando qusta si ottin la vlocità dl pndolo dξ 2ω Asin( ωt+ ϕ) (3) dt il cui massimo (in modulo) si raggiung pr sin ±1. Prciò si ha v max 2ωA 4πνA m/s 1.26 m/s (domanda c) Un modo altrnativo più formal pr ricavar il mdsimo risultato è il sgunt. Il campo ottnuto com sovrapposizion dll onda incidnt riflssa è il sgunt (in notazion complssa): ξ(x,t) A ikx iωt + B ikx iωt (4) L ampizza complssa dll onda riflssa B vin ricavata imponndo la condizion al contorno ξ(xd,t), dov d è la posizion dll ultimo pndolo sull ass x. Convin scglir l origin dll ass x proprio in qusto punto, pr cui si ha d (ma è possibilissimo far i calcoli anch snza qusta sclta), da cui: B A il campo total (4) divnta ξ(x,t) A ikx iωt A ikx iωt 2iA sin(kx) iωt Pr x λ/4 π/(2k) si ha sin(kx) 1, pr cui il pndolo si muov con la sgunt lgg: ξ( λ/4, t) 2iA iωt (5) la cui part ral corrispond alla (2) (così si dtrmina anch la fas ϕ dll oscillazion, ch prò non ci srv). Il rsto dlla drivazion rlativa alla domanda (c) procd com prima. d) L condizioni da imporr al campo ξ nl punto di contatto tra l du catn, nl qual convin porr l origin dll ass x, sono suggrit nl tsto dl problma. Il campo ξ nl punto di contatto dv ssr lo stsso da ambo i lati (prché nl limit continuo pndoli vicini si muovono quasi nllo stsso modo), ovvro ξ 1 (x,t) ξ 2 (x,t) (6) dov ξ 1 ξ 2 sono du funzioni ch rapprsntano rispttivamnt il campo ξ pr x< (prima catna) pr x> (sconda catna). Inoltr, dobbiamo imporr ch la forza lastica scambiata tra l du catn sia la stssa. La forza lastica scambiata tra du pndoli adiacnti è data dalla sgunt sprssion: ξn ξn 1 ξ Fnn, 1 k( ξn ξn 1) k x K x x (7)

6 Prciò l uguaglianza dll forz scambiat ai du lati dl punto di contatto si traduc nlla sgunt condizion di uguaglianza dll drivat parziali dl campo: ξ x ξ x 1 2 x x (8) dov abbiamo usato il fatto ch il modulo lastico K dll du catn è ugual. E anch util dtrminar la vlocità dll ond sulla sconda catna. La vlocità dll ond è invrsamnt proporzional alla radic quadrata dlla dnsità di massa ρ l quindi, a parità di distanza tra i pndoli, anch dlla massa m di ciascun pndolo. Prciò, ssndo la massa di pndoli nlla sconda catna 4 volt qulla di pndoli dlla prima catna tutt l altr carattristich dll du catn idntich, si ha: v 2 v 1 /2 (9) A qusto punto si può procdr con uno qualsiasi di du approcci quivalnti. Nl primo approccio, assumiamo fin dal principio ch, s l onda incidnt è armonica di frqunza tmporal ω, anch l onda trasmssa qulla riflssa dovranno ssr ond armonich con la mdsima frqunza tmporal. Infatti è chiaro ch s l ond trasmssa riflssa avssro una divrsa dinamica tmporal, l condizioni (6) (8) non potrbbro ssr soddisfatt pr ogni istant di tmpo t. Un altro modo pr convincrsi di qusto fatto è di considrar ch l onda trasmssa l onda riflssa sono in fftti gnrat dai pndoli posti in oscillazion dall onda incidnt ch agiscono com sorgnti. Ma noi sappiamo ch una sorgnt ch oscilla in modo armonico a frqunza ω gnra solo ond armonich di frqunza tmporal ω. Quindi possiamo scrivr ξ A + B 1 ξ C 2 ik1x iωt ik1x iωt ik2x iωt (1) dov A, B C sono l ampizz (complss) dll onda incidnt, riflssa trasmssa. Ora usiamo l du condizioni (6) (8), ottnndo dopo alcun smplificazioni: A + B C k 1 (A B) k 2 C (11) Qust du quazioni, risolt pr l onda trasmssa C, ci forniscono: 2k 2 ω /v.67 cm k + k ω/v + ω/v 1+ v v C A A A A (domanda d) Con il scondo approccio non si assum nulla sulla forma dll ond riflssa trasmssa. Si pon quindi: ξ f( t x/v) + g( t+ x/v) ξ ht ( x/v ) (12) dov f, g h sono l onda incidnt, riflssa trasmssa. Si è sclto pr qustioni di convninza ni calcoli di scrivr l argomnto di qust funzioni com t±x/v anziché x±vt, cosa comunqu dl tutto quivalnt. Sostitundo l (12) nll condizioni (6) (8) ottniamo:

7 f() t + g() t h() t f () t + g () t h () t v v v (13) dov con l apic indichiamo la drivata risptto all argomnto dlla funzion (la convninza di usar t±x/v com argomnto dll funzioni si vd proprio in qusta quazion, prché pr x tutt tr l funzioni in gioco divntano funzioni dl mdsimo argomnto t). Intgrando risptto al tmpo la sconda dll (13) ( ponndo a zro la costant d intgrazion, ch non dscriv un onda), possiamo risolvr l du quazioni pr l onda trasmssa h(t) ( pr l onda riflssa g, ch prò non ci srv), ottnndo: h () t () () 1 v v f t + 3 f t 1 2 (14) Pr ottnr infin il campo nlla sconda catna di pndoli basta sostituir t t x/v 2 nlla funzion h(t) così dtrminata, cioè ξ ( xt, ) ht ( x/v ) f( t x/v ) f( t x/v ) 1+ v1 v2 3 (15) (notar in particolar l argomnto t x/v 2 non t x/v 1 ch appar nlla f in qusta formula). Qusta quazion mostra ch, s l onda incidnt è armonica, l onda trasmssa è ffttivamnt anch li armonica con ugual frqunza tmporal (ma non spazial, a causa dlla divrsa vlocità dll ond nll du catn), confrmando così anch la validità di ragionamnti usati nl primo approccio. L ampizza dll onda riflssa è data dai 2/3 dll ampizza dll onda incidnt, com già trovato con il primo approccio.

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010)

Ingegneria dei Sistemi Elettrici_3c (ultima modifica 22/03/2010) Inggnria di Sistmi Elttrici_3c (ultima modifica /03/00) Enrgia Forz lttrostatich P F + + Il lavoro richisto nl vuoto pr portar una carica lntamnt, (prché possano ritnrsi trascurabili sia l nrgia cintica

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima modifica 17/10/2017) Energia e Forze elettrostatiche R 12 F Q 2

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3B (ultima modifica 17/10/2017) Energia e Forze elettrostatiche R 12 F Q 2 + ELETTOMAGNETISMO APPLICATO ALL'INGEGNEIA ELETTICA ED ENEGETICA_B (ultima modifica 7/0/07) Enrgia Forz lttrostatich F Una carica positiva posta in un punto P a distanza da una carica positiva fissa ch

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 24/25 2 gnnaio 25 TESTO E SOLUZIONE Esrcizio In rifrimnto allo schma a blocchi in figura. s3 r y 2 s2 s y K Domanda.. Dtrminar una ralizzazion in quazioni

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

03. Le oscillazioni meccaniche. 03 d. Le onde stazionarie

03. Le oscillazioni meccaniche. 03 d. Le onde stazionarie 03. 03 d. L ond stazionari 03. Contnuti : la fnomnologia, il formalismo ral qullo complsso, il principio di sovrapposizion l analisi spttral. slid#3 Pitagora Samo 570-495 a.c. Jan Baptist Josph Fourir

Dettagli

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max 16-1 Copyright 009 Th McGraw-Hill Companis srl RISOLUZIONI CAP. 16 16.1 Nl flusso laminar compltamnt sviluppato all intrno di un tubo circolar vin misurata la vlocità a r R/. Si dv dtrminar la vlocità

Dettagli

Potenziale ed energia potenziale y

Potenziale ed energia potenziale y Potnzial d nrgia potnzial ) Siano dat du carich puntiformi positiv Q =Q Q =9Q, dispost sullo stsso ass rispttivamnt ad una distanza 3 dal punto (vdi figura). a) il lavoro ncssario pr portar una carica

Dettagli

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1. Studiamo la funzion q ( = at, ssndo a b costanti rali con a >. Il dominio dlla funzion è tutto R la funzion è ovunqu continua. Il grafico dlla funzion non

Dettagli

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga

Le tranformazioni canoniche nella meccanica quantistica. P. Jordan a Gottinga L tranformazioni canonic nlla mccanica quantistica P. Jordan a Gottinga (ricvuto il 27 april 926) Vin data una dimostrazion d una congttura avanzata da Born, Hisnbrg dall autor, c la trasformazion canonica

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Prova scritta finale 16 giugno 2007

Prova scritta finale 16 giugno 2007 Prova scritta final 6 giugno 007 Istituzioni di Fisica dlla Matria Prof. Lornzo Marrucci anno accadmico 006-007 Tmpo a disposizion: 3 or Uso dgli appunti o di libri: NON AMMESSO uso dlla calcolatric: AMMESSO

Dettagli

POTENZE NECESSARIE E DISPONIBILI

POTENZE NECESSARIE E DISPONIBILI POTENZE NECESSARIE E DISPONIBILI In qusto capitolo ci proponiamo di dtrminar l curv dll potnz ncssari pr l vari condizioni di volo. Tali curv dipndranno da divrsi fattori com il pso dl vlivolo, la quota,

Dettagli

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl )

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl ) Spttro roto-vibrazional di HCl (H 5 Cl, H 7 Cl ) SCOPO: Misurar l nrgi dll transizioni vibro-rotazionali dll acido cloridrico gassoso utilizzar qust nrgi pr calcolar alcuni paramtri molcolari spttroscopici.

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy Analisi Matmatica II Corso di Inggnria Gstional Compito dl 8-1-19 - È obbligatorio consgnar tutti i fogli, anch la brutta il tsto. - L rispost snza giustificazion sono considrat null. Esrcizio 1. 14 punti)

Dettagli

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE Indic 1. Funzioni implicit 1. Ottimizzazion vincolata. Esrcizi 4.1. Funzioni implicit 4.. Ottimizzazion vincolata 6 1. Funzioni implicit Ricordiamo ch s

Dettagli

Fisica Generale VI Scheda n. 1 esercizi di riepilogo dei contenuti di base necessari. 1.) Dimostrare le seguenti identità vettoriali:

Fisica Generale VI Scheda n. 1 esercizi di riepilogo dei contenuti di base necessari. 1.) Dimostrare le seguenti identità vettoriali: Fisica Gnral VI Schda n. 1 srcizi di ripilogo di contnuti di bas ncssari 1.) Dimostrar l sgunti idntità vttoriali:. A (B C) = B (A C) C (A B) (A B) = ( A) B ( B) A ( A) = ( A) 2 A. suggrimnto: è important

Dettagli

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA Prof F Frrari Corso di Laura Spcialistica in Inggnria Chimica di procsso Corso di Laura Spcialistica in Inggnria pr l Ambint dll Risors CognomNomMatCdL

Dettagli

interazione forte il π ha una massa inferione al π violazione del numero lepto nico interazione debole conservazione dell'energia SI NO :

interazione forte il π ha una massa inferione al π violazione del numero lepto nico interazione debole conservazione dell'energia SI NO : Dir quali razioni sono possibili quali no. Nl caso siano possibili indicar l intrazion rsponsabil nl caso non lo siano, spigar prché. a) π π ν il π ha una massa infrion al π b) Λ p π ν violazion dl numro

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001

Università degli Studi di Bergamo Facoltà di Ingegneria. Corso di Elettrotecnica Scritto del 15 giugno 2001 Univrsità dgli Studi di Brgamo Facoltà di nggnria Corso di lttrotcnica Scritto dl 5 giugno Soluzion a cura di: Balada Marco srcizio. La prima cosa da far è analizzar il circuito trovar l possibili smplificazioni,

Dettagli

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2)

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2) Esrcizi su intgrazion numrica sistmi linari Approssimar il sgunt intgral con la formula di Gauss a tr nodi (n) x cos xdx Si considri il sistma Applicando il mtodo di Eulro implicito con h π /( ω), quanto

Dettagli

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 9 settembre 2011

Università di Pavia Facoltà di Ingegneria Corso di Laurea in Ingegneria Edile/Architettura Correzione prova scritta 9 settembre 2011 1 Univrsità di Pavia Facoltà di Inggnria Corso di Laura in Inggnria Edil/rchitttura Corrzion prova scritta 9 sttmbr 011 1. Dati i tnsori: { L = 3x y +3 y z +4 z x M = 3 x x + x z +5 y y d il vttor v =

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 29 giugno 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 29 giugno 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 9 giugno 01 1) Un blocco di massa m 500g vin tirato mdiant una fun lungo un piano inclinato di 60, scabro, si muov con acclrazion costant pari

Dettagli

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni:

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI VALENTINA CASARINO Esrcizi pr il corso di Analisi Matmatica (Inggnria Gstional, dll Innovazion dl Prodotto, Mccanica Mccatronica, Univrsità dgli studi di Padova)

Dettagli

I Compitino di Fisica Generale II di Ingegneria CIVILE 7 MAGGIO 2011.

I Compitino di Fisica Generale II di Ingegneria CIVILE 7 MAGGIO 2011. I ompitino di Fisica Gnral II di Inggnria IVILE 7 MAGGIO. Esrcizio : Una carica lttrica = µ è distribuita uniformmnt su un arco di circonfrnza di raggio = cm ch sottnd un angolo = 6 risptto al cntro dlla

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Complementi sulle applicazioni della trasformata di Fourier alla risoluzione di problemi per equazioni a derivate parziali

Complementi sulle applicazioni della trasformata di Fourier alla risoluzione di problemi per equazioni a derivate parziali Complmnti sull applicazioni dlla trasformata di ourir alla risoluzion di prolmi pr quazioni a drivat parziali Marco Bramanti March, 00 Nll applicazioni all quazioni a drivat parziali, spsso una funzion

Dettagli

Criteri basati sullo stato di deformazione!massima deformazione normale (Poncelet-de St. Venant-Grashof)

Criteri basati sullo stato di deformazione!massima deformazione normale (Poncelet-de St. Venant-Grashof) Critri dirttamnt basati sullo stato di tnsion!massima tnsion normal (Ranin-Lamé-Navir)!Massima tnsion tangnzial (Trsca-Gust)!Curva dlla rsistnza intrinsca (Coulomb-Mohr)!Massima tnsion tangnzial ottadral

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

Numeri complessi - svolgimento degli esercizi

Numeri complessi - svolgimento degli esercizi Numri complssi - svolgimnto dgli srcizi ) Qusto srcizio richid di calcolar la potnza n-sima (n 45) di un numro complsso. Scriviamo z nlla forma sponnzial z ρ iθ dov ) ( ) ρ ( + θ π 6 dato ch sin θ cos

Dettagli

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014 Matmatica Statistica - Scinz Ambintali Esam 4 Fbbraio 014 Esrcizio 1 - Part A Supponiamo di conoscr l misur a, b c di tr grandzz con la sgunt incrtzza: 1.15 < a < 1.19 10.03 < b < 10.0 7.13 < c < 7.1 Quali

Dettagli

Esercitazione di AM120

Esercitazione di AM120 Univrsità dgli Studi Roma Tr - Corso di Laura in Matmatica Esrcitazion di AM0 A.A. 07 08 - Esrcitator: Luca Battaglia Soluzioni dll srcitazion dl 6 7 Marzo 08 Argomnto: Drivat. Dimostrar, utilizzando la

Dettagli

Applicazioni dell integrazione matematica

Applicazioni dell integrazione matematica Applicazioni dll intgrazion matmatica calcolo dlla biodisponibilità di un farmaco Prof. Carlo Albrini Indic Indic 1 Elnco dll figur 1 1 Prliminari 1 Intrprtazion matmatica dl problma 3 Elnco dll figur

Dettagli

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità.

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità. 6-0 6- I critri di rsistnza (o tori dlla rottura) dfiniscono un lgam tra lo stato tnsional la sua pricolosità. Ogni stato tnsional può ssr rapprsntato da una funzion scalar dll tnsioni principali ch può

Dettagli

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 1 GIUGNO 1998 Tempo assegnato: 2 ore e 30 minuti ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA PROVA SCRITTA DEL 1 GIUGNO 1998 Tmpo assgnato: 2 or 30 minuti PRIMO ESERCIZIO [8 punti] Sia A il sottoinsim dll anllo (M (2, R, +, (dov

Dettagli

Distribuzione gaussiana

Distribuzione gaussiana Appunti di Misur Elttric Distribuion gaussiana Funion dnsità di probabilità di Gauss... Calcolo dlla distribuion cumulativa pr una variabil di Gauss... Funion dnsità di probabilità congiunta...6 Funion

Dettagli

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità.

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità. 6-0 6- I critri di rsistnza (o tori dlla rottura) dfiniscono un lgam tra lo stato tnsional la sua pricolosità. Ogni stato tnsional può ssr rapprsntato da una funzion scalar dll tnsioni principali ch può

Dettagli

Enrico Borghi EFFETTO ZEEMAN

Enrico Borghi EFFETTO ZEEMAN Enrico Borghi EFFETTO ZEEMN È noto col nom di fftto Zman (Pitr Zman, 1896) il fnomno pr cui l righ dllo spttro di un atomo sottoposto a un campo magntico B si scindono in un crto numro di componnti la

Dettagli

Alla temperatura di 300K è ragionevole ritenere che tutto il drogante sia attivato, cioè che ad ogni atomo accettore corrisponda una lacuna, per cui

Alla temperatura di 300K è ragionevole ritenere che tutto il drogante sia attivato, cioè che ad ogni atomo accettore corrisponda una lacuna, per cui 1 1. Una ftta di silicio è drogata con una concntrazion N A = 10 16 atm/cm 3 di atomi accttori, si valuti la concntrazion di portatori maggioritari minoritari alla tmpratura T = 300K. Alla tmpratura di

Dettagli

Prova scritta di Algebra 23 settembre 2016

Prova scritta di Algebra 23 settembre 2016 Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la

Dettagli

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2.

LEZIONE 17. Esercizio Trovare la soluzione delle seguenti equazioni differenziali di Bernoulli, ciascuna con condizione iniziale y(0) = 2. 7 LEZIOE 7 Esrcizio 7 Trovar la soluzion dll sgunti quazioni diffrnziali di Brnoulli, ciascuna con condizion inizial y) = La prima quazion è y x) =yx) y x) Si può dividr pr il trmin di grado più alto in

Dettagli

Problema 3: CAPACITA ELETTRICA E CONDENSATORI

Problema 3: CAPACITA ELETTRICA E CONDENSATORI Problma 3: CAPACITA ELETTRICA E CONDENSATORI Prmssa Il problma composto da qusiti di carattr torico da una succssiva part applicativa costituisc un validissimo smpio di quilibrio tra l divrs signz ch convrgono

Dettagli

Forza d interesse e scindibilità. Benedetto Matarazzo

Forza d interesse e scindibilità. Benedetto Matarazzo orza d intrss scindibilità Bndtto Matarazzo Corso di Matmatica inanziaria Rgimi finanziari Oprazioni finanziari Intrss Sconto Equivalnz finanziari Rgim dll intrss smplic Rgim dll intrss composto Rgim dll

Dettagli

1. Dati i tensori: { L = 3ex e y + 2e y e z + 3e z e x

1. Dati i tensori: { L = 3ex e y + 2e y e z + 3e z e x 1 Univrsità di Pavia Facoltà di Inggnria Corso di Laura in Inggnria Edil/Architttura Corrzion prova scritta Esam di Mccanica Razional 30 gnnaio 01 1. Dati i tnsori: { L = 3x y + y z + 3 z x M = x x y y

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.

y = ln x ln x x x Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag. Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. atg Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag.9 ln

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nom, Cognom... Matricola... ANALISI MATMATICA PROA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 7/8 Libri, appunti calcolatrici non ammssi Prima part - Lo studnt scriva solo la risposta, dirttamnt

Dettagli

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015

Le soluzioni della prova scritta di Matematica del 6 Febbraio 2015 L soluzioni dlla prova scritta di Matmatica dl Fbbraio 5. Sia data la funzion a. Trova il dominio di f f b. Scrivi, splicitamnt pr stso non sono sufficinti disgnini, quali sono gli intrvalli in cui f è

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzion di problmi a) f rapprsnta un fascio di funzioni omografich, al variar dl paramtro a in R, s si vrifica la condizion: a$ (- a) +! 0 " a!! S a!! il grafico rapprsnta iprboli quilatr di asintoti

Dettagli

Sistemi trifase. Parte 1. (versione del ) Sistemi trifase

Sistemi trifase. Parte 1.   (versione del ) Sistemi trifase Sistmi trifas Part www.di.ing.unibo.it/prs/mastri/didattica.htm (vrsion dl 5--08) Sistmi trifas l trasporto la distribuzion di nrgia lttrica avvngono in prvalnza pr mzzo di lin trifas Un sistma trifas

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 9 APRILE 6 Si risolvano cortsmnt i sgunti problmi PRIMO PROBLEMA (PUNTEGGIO: 6/3) Si calcoli l intgral in valor principal P = Pr Q sn( z) + z dz dov Q è

Dettagli

EQUAZIONI DIFFERENZIALI. Saper integrare equazioni differenziali del primo ordine lineari e a variabili separabili.

EQUAZIONI DIFFERENZIALI. Saper integrare equazioni differenziali del primo ordine lineari e a variabili separabili. EQUAZIONI DIFFERENZIALI OBIETTIVI MINIMI Sapr riconoscr classificar l quazioni diffrnziali. Sapr intgrar quazioni diffrnziali dl primo ordin linari a variabili sparabili. Sapr intgrar quazioni diffrnziali

Dettagli

I Bonus di Fisica Nucleare e Subnucleare 1 - AA 2018/2019

I Bonus di Fisica Nucleare e Subnucleare 1 - AA 2018/2019 I Bonus di Fisica uclar Subnuclar 1 - AA 018/019 17 April 019 OME E COGOME: CAALE: 1 Un acclrator di lttroni positroni di 10 GV di nrgia ciascuno, i cui impulsi sono dirtti lungo l ass z nl sistma di rifrimnto

Dettagli

ESERCIZI SULLA CONVEZIONE

ESERCIZI SULLA CONVEZIONE Giorgia Mrli matr. 97 Lzion dl 4//0 ora 0:0-:0 ESECIZI SULLA CONVEZIONE Esrcizio n Considriamo un tubo d acciaio analizziamo lo scambio trmico complto, ossia qullo ch avvin sia all intrno sia all strno

Dettagli

FUNZIONI. Dominio: il dominio di una funzione è l insieme delle x in cui una funzione è definita.

FUNZIONI. Dominio: il dominio di una funzione è l insieme delle x in cui una funzione è definita. FUNZIONI Dominio: il dominio di una funzion è l insim dll in cui una funzion è dfinita. Funzioni Fratt: una funzion si dic fratta quando compar la al dnominator Pr calcolar il dominio di una funzion fratta

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018 Univrsità di Pisa - Corso di Laura in Informatica Analisi Matmatica A Pisa, fbbraio 08 omanda A C log + 0 + = C omanda La funzion f : 0, + R dfinita da f = + A ha minimo ma non ha massimo è itata ma non

Dettagli

f x è pari, simmetrica rispetto all asse y, come da

f x è pari, simmetrica rispetto all asse y, come da Esam di Stato 7 Problma Confrontiamo alcun proprità dlla funzion con l informazioni dducibili dal grafico: f f quindi figura f, compatibil con il grafico Imponiamo ch f a Notiamo ch f è pari, simmtrica

Dettagli

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI Corso di Laura in Inggnria Elttronica NLISI E TRSMISSIONE DEI SEGNLI Soluzioni prova scritta dl /6/ Esrcizio Si considrino i du sgnali x ( t) = sinc( t / T) x( t) = sinc( t / T ) i) Si trovi l sprssion

Dettagli

Informazioni personali Si prega di indicare il proprio nome, cognome e numero di matricola nei seguenti campi. Nome e cognome: Matricola:

Informazioni personali Si prega di indicare il proprio nome, cognome e numero di matricola nei seguenti campi. Nome e cognome: Matricola: UNIVERSITÀ DEGLI STUDI DI VERONA CORSO DI LAUREA IN SCIENZE E TECNOLOGIE VITICOLE ED ENOLOGICHE Esam di MATEMATICA (A) San Floriano, //9 Informazioni prsonali Si prga di indicar il proprio nom, cognom

Dettagli

G(r,r ) è la funzione diadica di Green. L equazione differenziale soddisfatta da G(r,r ) è simile a quella soddisfatta dal campo elettrico Er ( ).

G(r,r ) è la funzione diadica di Green. L equazione differenziale soddisfatta da G(r,r ) è simile a quella soddisfatta dal campo elettrico Er ( ). 1 La funion diadica di Grn prmtt di sprimr il campo lttrico in funion dll su sorgnti. Poiché sia il campo lttrico Er ( ) sia la sorgnt lttrica Jr ( ) sono quantità vttoriali, la funion di Grn risulta ssr

Dettagli

Analisi Matematica I Soluzioni tutorato 8

Analisi Matematica I Soluzioni tutorato 8 Corso di laura in Fisica - Anno Accadmico 7/8 Analisi Matmatica I Soluzioni tutorato 8 A cura di David Macra Esrcizio (i) abbiamo ch R( i) I( i), quindi inoltr,dividndo pr il modulo i (R( i)) + (I( i))

Dettagli

Prima prova intercorso giovedì 20 aprile 2006

Prima prova intercorso giovedì 20 aprile 2006 Prima prova intercorso giovedì 0 aprile 006 aurea in Scienza e Ingegneria dei Materiali anno accademico 005-006 Istituzioni di Fisica della Materia - Prof. orenzo Marrucci Tempo a disposizione: ore e 0

Dettagli

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor

Dettagli

Calore Specifico

Calore Specifico 6.08 - Calor Spcifico 6.08.a) Lgg Fondamntal dlla Trmologia Un modo pr far aumntar la Tmpratura di un Corpo è qullo di cdr ad sso dl Calor, pr smpio mttndolo in Contatto Trmico con un Corpo a Tmpratura

Dettagli

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE Ni paragrafi prcdnti abbiamo dtrminato, pr l vari quazioni diffrnziali saminat, l soluzioni di quilibrio dl modllo. In qusto paragrafo,

Dettagli

Esame di Dispositivi Optoelettronici 29 Gennaio 2007

Esame di Dispositivi Optoelettronici 29 Gennaio 2007 Esam di Dispositivi Optolttronici 9 Gnnaio 007 Domanda di toria : a: Introdurr il conctto di momnto rticolar di un lttron in un potnzial priodico d il suo lgam con la forza agnt sul portator. b: Discutr

Dettagli

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006 orso di omponnti ircuiti a Microond Ing. Francsco atalamo 3 Ottobr 006 Indic Ond supriciali modi di ordin suprior Lin in microstriscia accoppiat Ond supriciali Un onda supricial è un modo guidato ch si

Dettagli

Esercizi riguardanti l integrazione

Esercizi riguardanti l integrazione Esrizi riguardanti l intgrazion. Trovar una primitiva dlla funzion f. Calolar il sgunt intgral indfinito d. Trovar una primitiva dlla funzion f. Tra tutt l primitiv dlla funzion f os sn, dtrminar qulla

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO Y557 - ESAME DI STATO DI LICEO SCIENTIFICO PIANO NAZIONALE DI INFORMATICA CORSO SPERIMENTALE Tma di: MATEMATICA (Sssion suppltiva 00) QUESTIONARIO. Da un urna contnnt 90 pallin numrat s n straggono quattro

Dettagli

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica srcitaion Francsca pollonio Dipartimnto Inggnria lttronica -mail: () t cos( ω t ϕ) ampia pulsaion Vttori complssi Data una granda scalar (t) variabil cosinusoidalmnt nl tmpo fas i può sprimr (t) com sgu:

Dettagli

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste Infinitsimi dtto infinitsimo una qualsiasi quantita tndnt a zro quando una opportuna variabil tnd ad assumr un dtrminato valor dati du infinitsimi α β α β non sono paragonabili tra loro s il lim β α non

Dettagli

Astronomia Lezione 21/10/2011

Astronomia Lezione 21/10/2011 Astronomia Lzion 1/10/011 Docnt: Alssandro Mlchiorri.mail:alssandro.mlchiorri@roma1.infn.it Slids: obron.roma1.infn.it/alssandro/ Libri di tsto: - An introduction to modrn astrophysics B. W. Carroll, D.

Dettagli

11 Funzioni iperboliche

11 Funzioni iperboliche 11 Funzioni iprbolich 11.1 L funzioni iprbolich: dfinizioni grafici L funzioni iprbolich sono particolari combinazioni di di. Hanno numros applicazioni nl campo dll inggnria si prsntano in modo dl tutto

Dettagli

EQUAZIONI DELLA MAGNETOFLUIDODINAMICA (MHD)

EQUAZIONI DELLA MAGNETOFLUIDODINAMICA (MHD) EQUAZIONI DELLA MAGNETOFLUIDODINAMICA (MD) V. D'Alssandro Copyright ADEPRON Tutti i Diritti Risrvati - www.adpron.it EQUAZIONI DELLA MAGNETOFLUIDODINAMICA (MD) Valrio D'ALESSANDRO * * Inggnr Trmomccanico;

Dettagli

Approfondimenti. Rinaldo Rui. ultima revisione: 6 settembre Secondo Principio della Termodinamica

Approfondimenti. Rinaldo Rui. ultima revisione: 6 settembre Secondo Principio della Termodinamica Approfondimnti Rinaldo Rui ultima rvision: 6 sttmbr 2019 3 Scondo Principio dlla rmodinamica 3.5 Lzion #13 3.5.2 Enrgia Intrna d Entropia di Sistmi Idrostatici Abbiamo sinora visto ch un sistma idrostatico

Dettagli

Fluidodinamica, mercoledì 8 febbraio 2012

Fluidodinamica, mercoledì 8 febbraio 2012 Fluidodinamica, mrcoldì 8 fbbraio 212 Part di Fluidodinamica I Domanda 1 L componnti cartsian dlla vlocità di una corrnt piana dipndnt dal tmpo sono dat dall rlazioni u(x, y, t) = x 1 + t v(x, y, t) =

Dettagli

PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 31 GENNAIO 2018 CORREZIONE

PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 31 GENNAIO 2018 CORREZIONE PRIMO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 7/8 GENNAIO 8 CORREZIONE SE AVETE FATTO IL COMPITO A SOSTITUITE a ; COMPITO B a ; COMPITO C a 5; COMPITO D a 4; Esrcizio,

Dettagli

Condensatori e dielettrici

Condensatori e dielettrici La fibrillazion è una contrazion disordinata dl muscolo cardiaco. Un fort shock lttrico può ripristinar la normal contrazion. Pr usto è ncssario applicar al muscolo una corrnt di A pr un tmpo di ms. L

Dettagli

LIMITI. 6. Esempi di riepilogo. 7. Limite per eccesso e per difetto 8. Limiti fondamentali. Nota bene 1. Nota bene 2

LIMITI. 6. Esempi di riepilogo. 7. Limite per eccesso e per difetto 8. Limiti fondamentali. Nota bene 1. Nota bene 2 LIITI Limit inito in un punto Limit ininito in un punto 3 Limit inito all ininito 4 Limit ininito all ininito 5 Limiti da dstra da sinistra Nota bn 6 Esmpi di ripilogo Nota bn 7 Limit pr ccsso pr ditto

Dettagli

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A

Matematica per l Economia (A-K) II Esonero 15 dicembre 2017 (prof. Bisceglia) Traccia A Matmatica pr l Economia (A-K) II Esonro 5 dicmbr 7 (pro. Biscglia) Traccia A. Data la unzion classiicarli. sn cos, individuar vntuali punti di discontinuità. Dtrminar, s possibil, un punto di approssimazion

Dettagli

OPERATORI DIFFERENZIALI IN COORDINATE POLARI. Indice 1. Gradiente in coordinate polari 1 2. Laplaciano in coordinate polari 3 3.

OPERATORI DIFFERENZIALI IN COORDINATE POLARI. Indice 1. Gradiente in coordinate polari 1 2. Laplaciano in coordinate polari 3 3. OPERATORI DIFFERENZIALI IN COORDINATE POLARI Indic 1. Gradint in coordinat polari 1 2. Laplaciano in coordinat polari 3 3. Esrcizi 4 1. Gradint in coordinat polari Sia f una funzion di class C 1 dfinita

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del NOME:... MATRICOLA:.... Corso di Laura in Fisica, A.A. 00/0 Calcolo, Esam scritto dl 3.0.0 Data la funzion f(x = x +x, a dtrminar il dominio (massimal di f ; b trovar tutti gli asintoti di f ; c trovar

Dettagli

Interazione onde materia e configurazioni elettroniche. Interazione radiazione - materia. Spettro elettromagnetico. Onde elettromagnetiche

Interazione onde materia e configurazioni elettroniche. Interazione radiazione - materia. Spettro elettromagnetico. Onde elettromagnetiche Intrazion ond matria configurazioni lttronich Intrazion radiazion - matria N.B.: 00 nm 3.1 V / 700 nm 1.77 V Ond lttromagntich Spttro lttromagntico c λ / T λ ν Spttro lttromagntico Emissioni dl corpo nro

Dettagli

Scuola di Storia della Fisica

Scuola di Storia della Fisica Scuola di Storia dlla Fisica Sulla Storia dll Astronomia: il Novcnto. Gli strumnti, l scoprt, l tori. Asiago -6 Fbbraio 16 GLOSSARIO: Scattring Thomson Compton Biagio Buonaura GdSF & Lico Scintifico Statal

Dettagli

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017 I PPELLO (& II ESONERO) DI SEGNLI E SISTEMI 05 giugno 017 Esrcizio 1. [+ punti] SOLO PER CHI SOSTIENE L PROV COMPLET Si considri il modllo ingrsso/uscita LTI causal dscritto dalla sgunt quazion diffrnzial:

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Pag. 1/5 Sssion straordinaria 2017 I043 ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Indirizzi: LI02, EA02 SCIENTIFICO LI03 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE (Tsto valvol anch pr la corrispondnt

Dettagli

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza):

Nozioni di base sulle coniche (ellisse (x^2/a^2)+(y^2/b^2)=1, iperbole(x^2/a^2)-(y^2/b^2)=1, parabola e circonferenza): Nozioni di bas sull conich (lliss (x^2/a^2)+(y^2/b^2)=1, iprbol(x^2/a^2)-(y^2/b^2)=1, parabola circonfrnza): Dlta =0, significa un solo punto di intrszion tra fascio di rtt conica Dlta >=0, significa 2

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014 Matmatica Statistica - Scinz Ambintali Esam 4 Fbbraio 014 Esrcizio 1 - Part A Supponiamo di conoscr l misur a, b c di tr grandzz con la sgunt incrtzza: 3.17 < a < 3.4 7.05 < b < 7.9 11.89 < c < 1.11 Quali

Dettagli

dove A è una costante caratteristica dello specifico metallo e k è la costante di Boltzmann.

dove A è una costante caratteristica dello specifico metallo e k è la costante di Boltzmann. ) Il riscaldamnto dl filo comporta la cssion di nrgia al rticolo cristallino quindi agli lttroni dgli orbitali più strni; s l nrgia acquisita dagli lttroni risulta suprior all nrgia di lgam (Vi, do Vi

Dettagli

ESERCIZI SULLA DEMODULAZIONE INCOERENTE

ESERCIZI SULLA DEMODULAZIONE INCOERENTE Esrcitazioni dl corso di trasmissioni numrich - Lzion 4 6 Fbbraio 8 ESERCIZI SULLA DEMODULAZIONE INCOERENE I du sgnali passa basso di figura sono utilizzati pr la trasmission di simboli binari quiprobabili

Dettagli

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla Esam di Stato 8 sssion suppltiva Problma La condizion richista è soddisfatta quando il primo massimo dlla curva, di ascissa, si trova sulla bisttric dl primo quadrant, pr cui (tutt l misur linari sono

Dettagli

Esame di Metodi Matematici per l Ingegneria Secondo appello. 28 Febbraio 2017 A.A. 2016/2017. Prof. M. Bramanti Tema A

Esame di Metodi Matematici per l Ingegneria Secondo appello. 28 Febbraio 2017 A.A. 2016/2017. Prof. M. Bramanti Tema A Esam di Mtodi Matmatici pr l Inggnria Scondo appllo. 8 Fbbraio 17 A.A. 16/17. Prof. M. Bramanti Tma A Cognom: Nom N matr. o cod. prsona: Dom 1 Dom Dom 3 Es 1 Es Es 3 Tot. Punti Domand di toria rispondr

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1

Matematica per l Economia (A-K) e Matematica Generale 10 gennaio 2018 (prof. Bisceglia) Traccia F. log 1,1 Matmatica pr l Economia (A-K) Matmatica Gnral gnnaio 8 (pro. Biscglia) Traccia F. Dtrminar, s possibil, un punto di approssimazion con un rror, dll quazion 5, nll intrvallo,.. Calcolar, s possibil, il

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ FUNZINI E LR RAPPRESENTAZINE Tst di autovalutazion 0 0 0 0 0 50 60 70 80 90 00 n Il mio puntggio, in cntsimi, è n Rispondi a ogni qusito sgnando una sola dll 5 altrnativ. n Confronta l tu rispost

Dettagli