Le operazioni fondamentali in N Basic Arithmetic Operations in N
|
|
|
- Faustina Viviani
- 10 anni fa
- Visualizzazioni
Transcript
1 Operzioi fodetli i - 1 Le operzioi fodetli i Bsic Arithetic Opertios i I geerle u operzioe è u procedieto che due o più ueri, dti i u certo ordie e detti terii dell'operzioe, e ssoci u ltro, detto risultto dell'operzioe.. (;b) c co (; b; c) Quello che cbi d operzioe d operzioe è il procedieto. Ogi divers operzioe è cotrddistit d u proprio sibolo. Soo itere ll isiee dei ueri turli le operzioi il cui risultto è cor u uero turle. Si dice, ioltre, che l isiee è chiuso per queste operzioi. Tvol rissutiv dell oecltur utilizzt. (;b) (c;d) terii risultto proprietà sibol o ddizioe + ddedi so totle sottrzioe - iuedo sottredo oltipliczioe x fttori (oltiplicdo *, oltiplictore) divisioe : / eleveto ^ potez ** estrzioe di rdice logrito log l dividedo divisore bse espoete idice rdicdo bse potez differez resto prodotto quoto quoziete potez rdicle (bse cerct) logrito (espoete cercto) couttiv ssocitiv dissocitiv ivritiv couttiv ssocitiv dissocitiv distributiv ivritiv distributiv o soo qui riportte per problei di spzio le proprietà di queste operzioi.
2 Operzioi fodetli i - 2 Le quttro operzioi fodetli Addizioe L'ddizioe è l'operzioe che dti due ueri qulsisi, detti ddedi, e ssoci u terzo, detto so o totle, otteuto cotdo dopo l prio ddedo tte uità qute soo quelle del secodo. L'ddizioe è iter! L'isiee è chiuso rispetto ll'ddizioe. (3+2) (5+8) Sottrzioe L sottrzioe è l'operzioe che dti due ueri qulsisi i u dto ordie (iuedo > sottredo; ltrieti Z), detti iuedo e sottredo, e ssoci u terzo, detto differez o resto, otteuto togliedo l iuedo tte uità qute soo quelle del sottredo. L sottrzioe o è iter! L'isiee o è chiuso rispetto ll (5-2) sottrzioe (Z). (2-5) Sottrzioe co risultto i Z. Per eseguire l sottrzioe co il iuedo iore del sottredo, si esegue l differez dei due ueri (ggiore - iore) e si ttribuisce l risultto il sego egtivo. (+) 3 + (-) 8 = 3-8 = -5 (perché 8-3=5) Moltipliczioe L oltipliczioe è l'operzioe che dti due ueri qulsisi, detti fttori (o oltiplicdo e oltiplictore), e ssoci u terzo, detto prodotto, otteuto ddiziodo tte volte le uità del prio qute soo le uità del secodo x3 = volte = L oltipliczioe è iter! L'isiee è chiuso rispetto ll oltipliczioe. (3x2) (5x8) Divisioe L divisioe è l'operzioe che dti due ueri qulsisi i u dto ordie, detti dividedo e divisore, e ssoci u terzo, detto quoto o quoziete (risultto i e Q), otteuto rggruppdo i tte prti qute e richiede il divisore oppure cotdo qute prti si possoo otteere, coposte d tte uità qute e idic il divisore. L divisioe o è iter! L'isiee o è chiuso rispetto ll divisioe (8 2) (Q). (5 2) Se u uero è ultiplo di u uero b, diverso d 0, si dice quoto o quoziete estto quel uero q che oltiplicto per b d coe risultto. L divisioe o dà resto! Quidi: = b x q (12:3=4 quidi 12=3x4) Se i due ueri soo tli che o si ultiplo di b, si dice quoziete o quoziete pprossito quel uero che oltiplicto per b dà u prodotto iore di. I questo cso l divisioe dà u resto r diverso d zero! Quidi: = b x q + r (11:5=2 resto 1 quidi 11=2x5+1)
3 Proprietà delle quttro operzioi fodetli Addizioe couttiv I u ddizioe cbido l'ordie degli ddedi l so o cbi. + b = b + (, b) Operzioi fodetli i = Addizioe ssocitiv Sostituedo due o più ddedi l loro so il risultto dell ddizioe o cbi ( + b ) + c = + (b + c) (, b) = = = Addizioe dissocitiv I u ddizioe sostituedo u ddedo due o più ddedi l cui so si l ddedo sostituito il risultto (l so) o cbi + b = + c + d dove b = c + d = Moltipliczioe couttiv I u oltipliczioe cbido l'ordie dei fttori il prodotto o cbi. b = b (, b) 2 x 3 = 3 x 2 Moltipliczioe ssocitiv Sostituedo due o più fttori il loro prodotto il risultto dell oltipliczioe o cbi. ( b) c = (b c) 2 x 5 x 7 = 10 x 7 = 2 x 35 = 14 x 5 Moltipliczioe dissocitiv I u oltipliczioe sostituedo u fttore due o più fttori il cui prodotto si il fttore sostituito il risultto (il prodotto) o cbi. b = c d dove b = c d 24 x 8 = 6 x 4 x 8 Moltipliczioe distributiv Per oltiplicre u uero per i terii di u ddizioe (o di u sottrzioe) è possibile clcolre il prodotto del fttore dto per ogi sigolo terie dell'ddizioe (o sottrzioe) e poi sorli (o sottrrli). (b ± c) = (b ± c) = ( b) ± ( c) 5 (3 + 2) = (3 + 2) 5 = (5 3) + (5 2) = = 25 7 (4-2) = (4-2) 7 = (7 4) - (7 2) = = 14 Sottrzioe ivritiv Sodo o sottredo uo stesso uero i due terii di u sottrzioe il risultto o cbi. - b = ( ± c) - (b ± c) (8-5) = (8 + 5) - (5 + 5) = = 3 (8-5)= (8-5) - (5-5) = 3-0 = 3 Divisioe ivritiv Dividedo o oltiplicdo per uo stesso uero i due terii di u divisioe il risultto o cbi b = ( c) (b c) = ( c) (b c) Divisioe distributiv Per dividere i terii di u ddizioe (o sottrzioe) per u uero è possibile eseguire l divisioe di ogi sigolo terie dell'ddizioe (o sottrzioe) per il divisore dto e poi sorli (o sottrrli) ( ± b) c = ( c) ± ( b c)
4 Operzioi fodetli i - 4 Operzioe di eleveto potez L'eleveto potez è l'operzioe che dti due ueri qulsisi, i u dto ordie e detti bse ed espoete, e ssoci u terzo detto potez, che si ottiee oltiplicdo l bse per sé stess tte volte qudo idic l'espoete. Il clcolo dell potez di u uero (bse) si esegue coe prodotto di tti fttori uguli ll bse quti e idic l'espoete. I geerle: = b = (... ) -volte co (;) L'eleveto potez è iter! L'isiee è chiuso rispetto ll'eleveto potez. Proprietà delle poteze Il prodotto di poteze veti l stess bse é u potez che h per bse l stess bse e per espoete l so degli espoeti: x y = x+y Esepio: = = 3 6 perché = = 3 6 Il quoziete di poteze veti l stess bse é u potez che h per bse l stess bse e per espoete l differez degli espoeti: x y = x-y Esepio: 3 4 :3 2 = = 3 2 perché 3 4 :3 2 = ( ):(3 3)= 3 2 L potez di u potez é u potez che h per bse l stess bse e per espoete il prodotto degli espoeti: ( x ) y = xy Esepio: (5 2 ) 3 = = 5 6 perché (5 5) 3 = (5 5) (5 5) (5 5)= 5 6 Il prodotto di poteze co lo stesso espoete é u potez che h per espoete lo stesso espoete e per bse il prodotto delle bsi: x b x = ( b) x Il quoziete di poteze co lo stesso espoete é u potez che h per espoete lo stesso espoete e per bse il quoziete delle bsi: x b x = ( b) x Qulsisi potez co espoete 1 è l bse. b 1 = b e quidi b = b 1 Qulsisi potez co espoete 0 è pri 1. 0 = 1 L 0 0 potez è priv di sigificto! 0 0 => priv di sigificto Qulsisi potez co bse 1 è 1. 1 = 1 Qulsisi potez co bse 0 ed espoete diverso d zero è = 0 ( )
5 Operzioi fodetli i - 5 Estrzioe di rdice E' dett rdice ritetic eesi (, che, di idice ) di u uero rele, u secodo uero rele (se esiste), b, tle che l potez eesi di questo si ugule d. Si scrive = b che equivle b = e che può essere posto sotto l for b = 1/ = = b Il uero che copre sotto il sego di rdice è detto rdicdo Esepio: 2 3 = 8 x 3 = 8 d dove 3 8 = 2 L rdice o è iter! L'isiee o è chiuso rispetto ll rdice (I). Proprietà b c = b c b = = b = b ( ) = = = + b Logrito Dicesi logrito di u uero, i u dt bse, l'espoete cui si deve elevre l bse per otteere il uero dto. Se fr tre ueri >1, b>0 e x itercede u relzioe espoezile del tipo: x =b x è detto logrito i bse di b, e si scrive: log b = x Esepio: 2 3 = 8 2 x = 8 d dove log 2 8 = 3 Il logrito o è iter! L'isiee o è chiuso rispetto l logrito. Proprietà log ( b c...) = log + log b + log c +... log ( b) = log - log b log = log log = 1 log
6 Operzioi fodetli i - 6 Legge di Hkel Perché 0 = 1? Per l legge di Hkel ed u po' di buo seso tetico. H. Hkel ( ) stbilì il pricipio di perez delle regole del clcolo. Se ell tetic si vuole geerlizzre u cocetto l di là dell su origiri defiizioe, bisog scegliere, tr tutti i odi possibili, quello che perette di coservre iutte le regole del clcolo el più esteso uero dei csi. Poteze di 10 Prticolre iportz ssuoo le poteze del uero 10, poiché perettoo di seplificre l scrittur di ueri grdissii e piccolissii. Trdurre u potez di dieci i uero iftti è seplice: escludedo l'espoete zero del prio uero 10 0, si può verificre che il uero delle uità di ogi espoete è ugule l uero di zeri del risultto! 10 6 = I ueri possoo essere scritti quidi i for polioile secodo quest regol: = 2 x x x x 10 0 Prefissi iterzioli TERA T GIGA G MEGA M (MIRIA CHILO k ETTO h DECA d uità DECI d ,1 CETI c ,01 MILLI ,001 MICRO µ , AO , PICO p , FEMTO f , ATTO , Vedi il docueto sulle poteze di 10 dispoibile su
7 Operzioi fodetli i - 7 Frequetly Asked Questios i Mthetics The Sci.Mth FAQ Te AMES OF LARGE UMBERS ig for 10**k: k Aeric Europe SI--Prefix -24 Yocto -21 Zepto -18 QUITILLIOTH Atto -15 QUADRILLIOTH Feto -12 TRILLIOTH Pico -9 BILLIOTH o -6 MILLIOTH Micro -3 THOUSADTH Milli -2 HUDREDTH Ceti -1 TETH Deci 1 TE Dec 2 HUDRED Hecto 3 THOUSAD Kilo 4 Myri (?) 6 Millio Millio Meg 9 Billio Millird Gig I itly (Thousd Millirds) 12 Trillio Billio Ter 15 Qudrillio Billird Pet 18 Quitillio Trillio Ex 21 Sextillio Trillird Zett 24 Septillio Qudrillio Yott 27 Octillio Qudrillird 30 oillio Quitillio (ovetillio) 33 Decillio Quitillird 36 UDECILLIO Sextillio 39 DUODECILLIO Sextillird 42 tredecillio Septillio 45 quttuordecillio Septillird 48 quidecillio Octillio 51 sexdecillio Octillird 54 septedecillio oillio (ovetillio) 57 octodecillio oillird (ovetillird) 60 ovedecillio Decillio 63 VIGITILLIO Decillird 6* (2-1)-illio -illio 6*+3 (2)-illio -illird 100 Googol Googol 303 CETILLIO 600 CETILLIO 10^100 Googolplex Googolplex The Aeric syste is used i: US,... The Europe syste is used i: Austri, Belgiu, Chile, Gery, the etherlds, Itly (see exceptio) Scdivi
8 Operzioi fodetli i - 8 Lo zero e l'uo Lo zero e l'uo soo due ueri prticolri che ssuoo coporteti diversi elle operzioi e che occorre vere be chiri. Lo zero ddizioe eleeto eutro + 0 = 0 + = sottrzioe eleeto eutro destr - 0 = oltipliczioe eleeto ssorbete x 0 = 0 x = divisioe se dividedo dà 0 0 = 0 perché x 0 = 0 10 : 2 = 5 sigific che 5 *2 = 10 6 : 3 = 2 sigific che 2 *3 = 6 0 : 9 = x sigific x * 9 = 0 divisioe se divisore errore 0 = Ipossibile -> perché o esiste essu uero che per zero di u uero 10 : 2 = 5 sigific che 5 *2 = 10 6 : 3 = 2 sigific che 2 *3 = 6 7 : 0 = x sigific x * 0 = 5???? divisioe se dividedo e divisore 0 0 = ideterit elev. potez Bse 0 = 0 co 0 elev. potez Espoete 0 = 1 co 0 elev. potez bse e espoete 0 0 o h seso rdice Rdicdo 0 = 0 L'uo ddizioe Successivo + 1 > sottrzioe Precedete - 1 < oltipliczioe eleeto eutro x 1= 1 x = divisioe eutro destr 1 = perché x 1 = divisioe iverso siistr 1 = 1/ elev. potez Bse 1 = 1 elev. potez Espoete 1 = quidi = 1 rdice Rdicdo 1 = 1 perché 1 =1 logrito potez = 1 log 1 = 0 logrito bse = potez log = 1 Cosult per i csi più iteressti thforu.org/dr.th/fq/fq.divideby0.htl (Ask Dr. Mth) (Ripsso tetic) www2.polito.it/didttic/polyth/htls/rgoet/apputi/testi/feb_03/apputi.htm (PolyMth)
9 Ricerc terii icogiti Operzioi fodetli i - 9 Eseguire u operzioe sigific cercre il risultto. E' couque possibile rislire l vlore "icogito" di uo dei terii dell'operzioe qudo si coosce il risultto e gli ltri terii. Quest deterizioe si f utilizzdo u procedieto "iverso" rispetto quello usule. Usulete si idic il terie icogito (icogit) co u delle segueti lettere iuscole: x, y o z. per tture questo si scrive l'egugliz reltiv ll'operzioe idicdo il terie icogito co l x. Esepio: x + 3 = 5 Quidi usdo le operzioi iverse o ricoducedole csi siili si risolve.
I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)
I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA
1. L'INSIEME DEI NUMERI REALI
. L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli
EQUAZIONI ESPONENZIALI -- LOGARITMI
Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =
Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra:
Disequzioi Mrio Sdri DISEQUAZIONI Defiizioi U disequzioe è u disegugliz tr due espressioi che cotegoo icogite. Risolvere u disequzioe sigific trovre quell'isieme di vlori che, ttriuiti lle icogite, l redoo
I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21
I ueri turli Cos soo i ueri turli? I ueri turli soo i ueri 0 1 4 5 6 7 8 9 10 11 1 L isiee dei ueri turli si idic co N. N { 0, 1,,, 4, 5, 6, 7, 8, 9, 10, 11, 1,..} Quli soo le crtteristiche di N? L isiee
Sdl ELEMENTI DI BASE: Potenze. Radicali. Logaritmi
ELEMENTI DI BASE: Poteze Rdicli Logritmi POTENZE L potez co bse ed espoete, o potez - esim di, si idic co ed è il prodotto di fttori tutti uguli d. =... ( volte) 0 = 1 PROPRIETÀ DELLE POTENZE m = +m :
Progressioni geometriche
Progressioi geometriche Comicimo co due esempi: Esempio Cosiderimo l successioe di umeri:, 6,, 4, 48, 96 L successioe è tle che si pss d u termie l successivo moltiplicdo il precedete per. Si dice che
PROGETTO SIRIO PRECORSO di MATEMATICA Teoria
Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3
Successioni e Logica. Preparazione Gara di Febbraio 2009. Gino Carignani
Successioi e Logic Preprzioe Gr di Febbrio 009 Gio Crigi Progressioe ritmetic è u successioe di umeri tli che l differez tr ciscu termie e il suo precedete si u costte d (rgioe) d α α d α d K ( α )d 3
52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%
RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base
LA PROPAGAZIONE DEGLI ERRORI:
LA PROPAGAZIOE DEGLI ERRORI: Fio d or io visto coe deterire l errore di u grdezz isurt direttete. Spesso però cpit ce il vlore dell grdezz ce si vuole deterire o è isurile, deve essere ricvto prtire d
Appunti sui RADICALI
Imprimo d operre co i rdicli Apputi sui RADICALI sego di rdice, idice di rdice, rdicdo, espoete del rdicdo: cquisteri fmilirità co queste prole: simbolo di rdice, idice di rdice, rdicdo, espoete del rdicdo.
APPLICAZIONI LINEARI
APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte
Liceo Classico di Trebisacce Classe IV B - MATEMATICA. Prof. Mimmo Corrado. Numeri naturali [ ] ( ) ( ) Numeri razionali
Mtemtic www.mimmocorrdo.it Liceo Clssico di Treiscce Clsse IV B - MATEMATICA Esercizi per le vcze estive 0 Prof. Mimmo Corrdo Numeri turli Clcol il vlore delle segueti espressioi. 0 ( ) [ ] ( ) [ ] 0 [
, dove s n è la somma parziale n-esima definita da. lim s n = lim s n = + (= ). a n = a 1 + a 2 +...
. serie umeriche Def. (serie). Dt u successioe ( ) (co R per ogi ), si chim serie di termie geerle l successioe (s ), dove s è l somm przile -esim defiit d () s = + 2 +... + = k. L serie coverge (semplicemete)
Numerazione binaria Pagina 2 di 9 easy matematica di Adolfo Scimone
Numerazioe biaria Pagia di 9 easy matematica di Adolfo Scimoe SISTEMI DI NUMERAZIONE Sistemi di umerazioe a base fissa Facciamo ormalmete riferimeto a sistemi di umerazioe a base fissa, ad esempio el sistema
La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000
Diesioeto di ssi di otore correte cotiu Si idividuio i pretri pricipli di u cchi correte cotiu eccitzioe idipedete i rdo di uovere u tr veloce ote che sio le seueti specifiche: Tesioe di lietzioe dell
Successioni e serie. Ermanno Travaglino
Successioi e serie Ermo Trvglio U successioe è u sequez ordit di umeri o di ltre grdezze, e u serie è l somm dei termii di tle sequez. U successioe si rppreset co l'espressioe,,,, ell qule è u itero positivo,
Unità Didattica N 12. I logaritmi e le equazioni esponenziali
Uità Didttic N I riti e le equzioi espoezili Uità Didttic N I riti e le equzioi espoezili ) Potez co espoete itero di u uero rele. ) Potez co espoete rziole. ) Potez co espoete rele di u uero rele positivo.
DEFINIZIONE SUCCESSIONE NUMERICA Una successione numerica è una funzione che ha per dominio l insieme dei numeri naturali { 0;1;2;3;...
SUCCESSIONI DEFINIZIONE SUCCESSIONE NUMERICA U successioe ueric è u fuzioe che h per doiio l isiee dei ueri turli { 0;;;; } N o u suo sottoisiee e coe codoiio R, o u suo sottoisiee I vlori che ssue tle
( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0
CAPITOLO VII DERIVATE. GENERALITÀ Defiizioe.) La derivata è u operatore che ad ua fuzioe f associa u altra fuzioe e che obbedisce alle segueti regole: () D a a a 0 0 0 derivata di u moomio D 6 D 0 D ()
RADICALI Classe II a.s. 2010/2011 Prof.ssa Rita Schettino
RADICALI Clsse II.s. 00/0 Prof.ss Rit Schettio RADICALI Aritetici I R Algerici I R prof.ss R. Schettio N. B. R idic l isiee dei ueri reli o egtivi, ossi positivi o ulli. RADICALI ARITMETICI DEFINIZIONE
APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)
ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).
Calcolo delle Radici Veriano Veracini [email protected]
Verio Vercii Clcolo delle rdici Clcolo delle Rdici Verio Vercii [email protected] Premess Lo scopo di queste pgie è quello di descrivere lcui metodi prtici per il clcolo delle rdici, compresi lcui metodi
La misura: unità del SI, incertezza dei dati e cifre significative
La misura: unità del SI, incertezza dei dati e cifre significative p. 1 La misura: unità del SI, incertezza dei dati e cifre significative Sandro Fornili e Valentino Liberali Dipartimento di Tecnologie
L INTEGRALE DEFINITO b f (x) d x a 1
L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio
Successioni. Grafico di una successione
Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario
Campionamento stratificato. Esempio
ez. 3 8/0/05 Metodi Statiici per il Marketig - F. Bartolucci Uiversità di Urbio Campioameto ratificato Ua tecica molto diffusa per sfruttare l iformazioe coteuta i ua variabile ausiliaria (o evetualmete
Percorsi di matematica per il ripasso e il recupero
Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo
lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)
Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)
F (r(t)), d dt r(t) dt
Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,
IL CALCOLO COMBINATORIO
IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito
Calcolo combinatorio. Definizione
Clcolo comitorio Lortorio di Bioiformtic Corso A 5-6 Defiizioe Il Clcolo Comitorio è l isieme delle teciche che permettoo di cotre efficietemete il umero di possiili scelte, comizioi, lliemeti etc. di
- 1 - 4. Per le funzioni reali di variabile reale si può dare la seguente definizione dovuta a Dirichlet:
- - Fuzioi Defiizioi fodmetli. Dti due isiemi o vuoti X e Y si chim ppliczioe o fuzioe d X Y u relzioe tr i due isiemi che d ogi X f corrispodere uo ed u solo y Y. Se y è l immgie di trmite f, si scrive
CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI finora 51 esercizi sviluppati + molti limiti notevoli dimostrati di Leonardo Calconi
CALCOLARE VELOCEMENTE I LIMITI DI SUCCESSIONI fior 5 esercizi sviluppti + molti limiti otevoli dimostrti di Leordo Clcoi Arevizioi: N = Numertore, D = Deomitore, sg = sego di L clssificzioe che segue è
3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3
MINIERO DELL'IRUZIONE,DELL'UNIERIÀ E DELLA RICERCA CUOLE IALIANE ALL EERO EAMI DI AO DI LICEO CIENIFICO essioe Ordiri s 00/005 ECONDA PROA CRIA em di Mtemtic Il cdidto risolv uo dei due problemi e quesiti
Successioni numeriche
08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl
CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA
CORSO DI METODI MATEMATICI PER L INGEGNERIA MECCANICA. ALCUNE NOZIONI E STRUMENTI PRELIMINARI -RICHIAMI SUGLI SPAZI VETTORIALI Ricordimo che u vettore i R (o C ) e u -upl ordit di umeri reli (o complessi)
ELEMENTI DI CALCOLO COMBINATORIO. Disposizioni
ELEMENTI DI CALCOLO COMBINATORIO Il clcolo comitorio h come oggetto il clcolo del umero dei modi co i quli possoo essere ssociti, secodo regole stilite, gli elemeti di due o più isiemi o di uo stesso isieme.
TERMOFISICA Scambi di energia termica e loro relazioni con le proprietà fisiche delle sostanze.
TERMOFISICA Scambi di energia termica e loro relazioni con le proprietà fisiche delle sostanze. TERMODINAMICA Utilizza alcuni principi fondamentali assunti come postulati derivati dall esperienza: corpo
3. Funzioni iniettive, suriettive e biiettive (Ref p.14)
. Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y
Una funzione è una relazione che ad ogni elemento del dominio associa uno e un solo elemento del codominio
Radicali Per itrodurre il cocetto di radicali che già avete icotrato alle medie quado avete imparato a calcolare la radice quadrata e cubica dei umeri iteri, abbiamo bisogo di rivedere il cocetto di uzioe
Anno 5 Successioni numeriche
Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai
Appunti sulla MATEMATICA FINANZIARIA
INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi
Introduzione all algebra
Introduzione ll lgebr E. Modic [email protected] Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di
NECESSITÀ DEI LOGARITMI
NECESSITÀ DEI LOGARITMI Nelle equzioi espoezili he imo risolto sior er sempre possiile ridursi equzioi i ui si vev l stess se, l equzioe divetv lgeri sempliemete uguglido gli espoeti. M o tutte le equzioi
FUNZIONI ESPONENZIALI
CONCETTI INTRODUTTIVI FUNZIONI ESPONENZIALI POTENZE AD ESPONENTE RAZIONALE L teori delle poteze può essere estes che lle poteze che ho per espoete u NUMERO RAZIONALE INSIEME Q. Ho seso solo le poteze che
UNIVERSITA DEGLI STUDI DI FERRARA Scuola Di Specializzazione Per L insegnamento Secondario
UNIVERSITA DEGLI STUDI DI FERRARA Scuol Di Specilizzzioe Per L isegmeto Secodrio CLASSE DI SPECIALIZZAZIONE A049-A059 Tem: Progressioi Aritmetiche e Geometriche. Successioi. Limite di u Successioe. Fuzioi
Dalla stima alla misura &!!% ""! " # $ & " ' etroina 2
!!""!"!$!%!""!% &!!% ""!! " $ $$% & " '! etroina ( ) & & " ' - + -, -+ - $ + - ' ""' P. Amati e R. Spigarolo, L ora di scienze, Giunti 1997 [ ] Ma che cos è un ordine di grandezza? E quella valutazione
Soluzione La media aritmetica dei due numeri positivi a e b è data da M
Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è
APPROFONDIMENTI SUI NUMERI
APPROFONDIMENTI SUI NUMERI. Il sistem di umerzioe deimle Be presto, ll operzioe turle del otre, si è ggiut l esigez di «rppresetre» i umeri. I sistemi di umerzioe possiili soo molti; per or i limitimo
1. Considerazioni generali
. osiderazioi geerali Il processaeto di ob su acchie parallele è iportate sia dal puto di vista teorico che pratico. Dal puto di vista teorico questo caso è ua geeralizzazioe dello schedulig su acchia
Stabilità dei sistemi di controllo in retroazione
Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità
ESPONENZIALI E LOGARITMI
ESPONENZIALI E LOGARITMI ) COSA SIGNIFICANO GLI ESPONENTI IRRAZIONALI pg. ) LA FUNZIONE ESPONENZIALE 5 ) LOGARITMI 8 ) LA FUNZIONE LOGARITMICA 9 5) I LOGARITMI: QUESTIONI DI STORIA E DI SIMBOLOGIA 6) PROPRIETA
2. E L E M E N T I S T R U T T U R A L I E T E R R I T O R I A L I D I U N A Z I E N D A A G R A R I A
2. E L E M E N T I S T R U T T U R A L I E T E R R I T O R I A L I D I U N A Z I E N D A A G R A R I A Capitolo 2 - Elementi strutturali e territoriali di un azienda agraria 2. 1. G r a n d e z z e e u
V Tutorato 6 Novembre 2014
1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe
1 Limiti di successioni
Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite
Sintassi dello studio di funzione
Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:
PARTE QUARTA Teoria algebrica dei numeri
Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)
ESPONENZIALI E LOGARITMI
ESPONENZIALI E LOGARITMI 1 se 0, per ogni R ; Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >0: Sono definite: se >0: Non sono definite: Csi prticolri: Le proprietà delle
I segnali nelle telecomunicazioni
I segli elle telecouiczioi Geerlità I segli ossoo essere rresetti el doiio del teo edite u grfico crtesio vete i scisse il teo e i ordite i vlori isttei dell'iezz del segle cosiderto. Tle grfico, detto
Dimensioni Unità di misura. Lezione di fisica
Dimensioni Unità di misura Lezione di fisica Argomenti della lezione Grandezze fisiche Dimensioni Unità di misura Il sistema internazionale - SI Taratura Le misure La Fisica, dall antico greco φύσις, è
