Meccanica dei fluidi

Documenti analoghi
I fluidi solido liquido gas

F p = A. Si definisce PRESSIONE: il rapporto tra una forza agente su una superficie infinitesima da e la superficie stessa:

Meccanica dei fluidi

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 15

1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido.

Densita. FLUIDI : liquidi o gas. macroscop.:

V in A? V in B? V in C?

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia

Meccanica dei Fluidi 1

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi)

Meccanica dei Fluidi: statica e dinamica

Lezione 9. Statica dei fluidi

Equilibrio dei Fluidi

Meccanica dei Fluidi. stati di aggregazione della materia: solidi liquidi gas. fluidi assumono la forma del contenitore

Stati di aggregazione della materia:

Stati di aggregazione della materia:

MECCANICA DEI FLUIDI

Applicando al pistone una forza esterna, si esercita una pressione p ext sul fluido immediatamente sottostante al pistone.

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli).

Meccanica Meccanica dei fluidi

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica

Meccanica dei fluidi

Solidi, liquidi e gas. 0 In natura le sostanze possono trovarsi in tre stati di aggregazione:

STATICA E DINAMICA DEI FLUIDI

STATICA EQUILIBRIO DEI FLUIDI

Legge di Stevino ( d.c.)

Meccanica dei Fluidi. Fisica con Elementi di Matematica 1

Cap Fluidi

Meccanica dei Fluidi - Fluidostatica -

Meccanica Dinamica dei fluidi

Unità didattica 4. Quarta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Lezione 9 Statica dei fluidi. Densità e pressione. Legge di Stevin. Conseguenze della legge di Stevin.

Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera

PRESSIONE IN UN FLUIDO IN QUIETE

Meccanica dei fluidi (1) Statica dei fluidi Lezione 10, 6/11/2018, JW

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica

Moto di un sistema di particelle. determinare la velocità del centro di massa integrando il vettore posizione del CM: d! r i dt.

La lezione di oggi. La densità La pressione L equazione di continuità Il teorema di Bernoulli. Stenosi e aneurismi

Modulo B Unità 3 Equilibrio dei fluidi Pagina 1. Solidi, liquidi, aeriformi

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica

Dr. Andrea Malizia Prof. Maria Guerrisi. Corsi di Laurea in Tecnici di Laboratorio Biomedico, Dietistica e Tecnici della Prevenzione.

Meccanica dei Fluidi

STATI DI AGGREGAZIONE DELLA MATERIA E PROPRIETÀ DEI FLUIDI

PRESSIONE ATMOSFERICA

CORSO DI FISICA dispensa n.2 MECCANICA DEI FLUIDI

IDROSTATICA leggi dell'equilibrio. IDRODINAMICA leggi del movimento

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO

Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore

Fisica Applicata, Area Infermieristica, M. Ruspa MECCANICA DEI FLUIDI. Fluidostatica: fluidi in quiete Fluidodinamica: fluidi in moto

Riassunto. Familiarizzare con i concetti fisici

ELEMENTI DI STATICA DEI FLUIDI

Problematiche. 1 ) Esercizi. «Fissiamo poco le formule e facciamo tutto in maniera sperimentale»

I FLUIDI. Archimede Pascal Stevino Torricelli

1. Statica dei fluidi

I fluidi Approfondimento I

Fisica per Medicina. Lezione 7 - Statica e dinamica dei fluidi. Dr. Cristiano Fontana

Idrodinamica. Equazione di con0nuità Equazione di Bernoulli

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1

Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido.

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013

Densità e volume specifico

Proprieta meccaniche dei fluidi

Meccanica dei fluidi

MODULO 3. La pressione

Dinamica del fluidi. A.Stefanel Fisica Cs AGR-SAN Dinamica dei fluidi. A. Stefanel - Fluidodinamica 1

Caratteristiche energetiche di un onda

1 bar = 10 Pa = 10 barie PRESSIONE PRESSIONE. N 10 dyn dyn. m 10 cm cm. Solido. Liquido. Gassoso. (pascal) m. kg 1000.

Corso di Idraulica Agraria ed Impianti Irrigui

Supponiamo di avere un oggetto immerso in un fluido (ad es. acqua) sottoposto alla gravità

GLI STATI DI AGGREGAZIONE DELLA MATERIA

Main training FISICA. Lorenzo Manganaro. Lezione 7 Fluidostatica e Fluidodinamica

Lez. 6 Corso di Elementi di Fisica UniMC Prof. M. Bellesi LEZIONE 6 I FLUIDI -Pressione e pressione atmosferica - Principio di Pascal -Legge di Stevin

I D R O S T A T I C A

Stati di aggregazione della materia, la pressione e i fluidi in quiete

Eq. bilancio quantità di moto

Meccanica dei fluidi

DINAMICA DEI FLUIDI D I LU I G I B O S C A I N O B I B L I O GRAFIA:

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013

Statica ed equilibrio dei corpi

Corso di Idraulica Agraria ed Impianti Irrigui

DOMANDE ED ESERCIZI SULLA PRESSIONE E IN GENERALE SUI FLUIDI

Dinamica dei Fluidi. Moto stazionario

Lezione 5. L equilibrio dei corpi. Lavoro ed energia.

Alcuni valori della densita'

III Modulo Corso Istruttori I Livello. Meteorologia 1

EQUILIBRIO DEI FLUIDI

METODOLOGIE DIDATTICHE PER L INSEGNAMENTO DELLA TECNOLOGIA

Equazione di continuità Consideriamo un fluido ideale che scorre all interno di un tubo a sezione variabile

Terza prova parziale di Fisica Data: 15 Dicembre Fisica. 15 Dicembre Test a risposta singola

1) Che cos é la pressione? Qual è la sua unità di misura nel S.I.?

Applicazioni. Ogni corpo immerso in un fluido riceve da questo una spinta dal basso verso l'alto pari al peso del volume di fluido spostato

Lez 11 08/11/2016. Lezioni in didattica_fisica/did_fis1617/ E. Fiandrini Fis Sper e Appl Did 1617

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica

I fluidi. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

CORSO DI FISICA GENERALE II (L-Z) 1MO MODULO ING. CIVILE - AMBIENTALE

La meccanica dei fluidi

CAPITOLO 5 IDRAULICA

Corsi di Laurea dei Tronchi Comuni 2 e 4 Dr. Andrea Malizia Prof. Maria Guerrisi

Transcript:

Meccanica dei fluidi Definizione di fluido: liquido o gas La pressione in un fluido Equilibrio nei fluidi: legge di Stevino Il rincipio di ascal Il barometro di Torricelli Il principio di Archimede luidodinamica: fluido ideale Regime stazionario. ortata Il teorema di Bernulli

I fluidi La materia può presentarsi in tre stati: Solido, liquido e gassoso: Un solido ha una forma ed un volume ed è incomprimibile Un liquido ha un volume definito, non ha una forma propria ed è incomprimibile Le proprietà dei liquidi e dei solidi dipendono dal loro struttura microscopica, ovvero dal legame tra le molecole. Un gas non ha né volume ne forma definiti ed è comprimibile Queste definizioni sono in realtà un artificio, più in generale lo stato in cui si presenta la materia viene determinato in funzione del tempo necessario a quella materia per cambiare la sua forma sotto l azione di una forza esterna Una sostanza che non è dotata di forma propria è detta fluido. I fluidi assumono la forma del recipiente che li contiene. I fluidi sono un insieme di molecole sistemate casualmente legate da deboli forze di coesione e forze esercitate da pareti del contenitore Sono fluidi : le sostanze liquide - che hanno volume definito ed una superficie limite le sostanze gassose - che non hanno un volume definito e tendono ad occupare tutto il volume a disposizione. Dal punto di vista meccanico un fluido si può pensare composto da elementi infinitesimi di massa dm = dv, che scorrono tra loro in una qualunque direzione.

Densità Con i fluidi non ha molto senso parlare di massa, ma piuttosto di densità ( o massa volumica). Se consideriamo un elemento di volume V di un fluido intorno ad un certo punto e misuriamo la sua massa m la densità è data dal rapporto: La densità ( o massa volumica) di un corpo (o fluido) è una grandezza scalare ed è pari alla massa per l unità di volume. L unità di misura della densità è il kg/m 3 La densità di un fluido varia ( anche se debolmente) con la temperatura poichè al variare della temperatura varia il volume. La densità dei liquidi = M/V è molto maggiore di quella dei gas (di circa un fattore 0 3 ) m V m V Dove m e V sono massa e volume di un campione di fluido Densità Dal punto di vista meccanico un fluido si può pensare composto da elementi infinitesimi di massa dm = dv, che scorrono tra loro in una qualunque direzione.

Tabella densità

ressione L unità di misura è il a (pascal) : a= N/m - Un suo multiplo importante è bar = 0 5 a ( più precisamente: bar = 0 5 a - La pressione atmosferica atm =,035 bar NB: la pressione e la forza sono due grandezze diverse, si può avere una pressione molto alta anche con una forza relativamente piccola se la superficie è ridotta ( es: la pressione esercitata da un ago), oppure una pressione ridotta se la superficie è ampia ( es: le zampe del cammello => pianta larga non affonda nella sabbia del deserto) Le differenze di pressione tra l interno e l esterno di una superficie vengono usate come collanti potenti I fluidi non possono sopportare forze tangenziali, in un fluido sottoposto ad una forza parallela alla sua superficie, le molecole scivolano le une sulle altre, per cui il solo tipo di forza che può esistere in un fluido è quella perpendicolare alla superficie. La pressione viene definita come il rapporto tra una forza agente su una superficie infinitesima da e la superficie stessa: p d Se la forza esercitata su una superficie estesa è uniforme si può scrivere: da pressione La pressione è una grandezza scalare (non ha proprietà direzionali ed anche se la forza è un vettore, solo la sua intensità contribuisce alla peressione) p A

luidostatica (equilibrio dei fluidi)-stevino() Determiniamo ora come varia la pressione all interno di un fluido a riposo Definiamo: -forze di volume: le forze che, come la forza peso, vengono applicate a tutto il volume V dell elemento di fluido g = g m = g V -forze di superficie, le forze che agiscono sulla superficie infinitesima dell elemento di fluido, sono le forze che determinano la pressione: p=d/ds Si consideri un fluido in quiete, ovvero un fluido in cui tutti i sui elementi di volume non subiscono spostamenti ed hanno quindi velocità ed accelerazione nulle, ed un campione di tale fluido racchiuso in una cilindro ideale di base A ed altezza h posto ad una profondità d dalla superficie del liquido. In questo caso, la somma delle forze ( di volume e di superficie) agenti sul fluido deve essere nulla ( legge di Newton ) v 0 s Il liquido esterno esercita forze su tutta la superficie del campione ( perpendicolarmente ad essa) Le forze agenti sulla superficie laterale del cilindro si elidono a coppie Solo tre forze rimango ad agire sul corpo: ) la forza gravitazionale g gah ˆj ) La forza Aj ˆ 0 che agisce sulla superficie superiore del cilindro ( rivolta verso il basso) 3) La forza Aj ˆ che agisce sulla superficie inferiore del cilindro (rivolta verso l alto) v s g 0 V cilindro Ah

luidostatica (equilibrio dei fluidi)-stevino() er la seconda legge di Newton si ha che sul campione di fluido a riposo la somma delle forze deve essere nulla: ˆ ˆ ˆ v s g gah j 0 Aj Aj 0 oiché le forze agenti sono tutte parallele all asse z possiamo togliere la notazione vettoriale: gah 0 A A 0 0 gh Legge di Stevino Legge di Stevino: la pressione in un liquido a densità costante cresce linearmente con la profondità. Conseguenze: La pressione di un punto del fluido all equilibrio dipende solo dalla profondità del punto La pressione lungo superfici orizzontali è costante ( superficie isobare o isobariche): la superficie libera di un liquido in quiete deve essere orizzontale. Se consideriamo di prendere l elemento di volume con la superficie superiore corrispondente alla superficie libera del liquido ( d=0) 0 è proprio la pressione atmosferica Un corpo immerso in acqua alla profondità di 0 m subisce una pressione : 3 4 gh 9.8 m s 000 kg m 0m atm 9.8 0 a atm atm atm atm 0

Consideriamo la legge di Stevino: rincipio di ascal gh 0 Osservando questa relazione che lega la pressione in un punto del fluido posto ad una profondità h dalla superficie, se si varia la pressione 0 in superficie, anche dovrà variare. Si ha quindi che ogni variazione della pressione alla superficie si ripercuote su tutti i punti del fluido. Questo proprietà dei fluidi fu formulata come principio da ascal: rincipio di ascal: Una variazione della pressione applicata ad un fluido chiuso è trasmessa integralmente ad ogni punto del fluido stesso Quindi se la pressione esterna varia dal valore p 0 al valore p 0 la pressione interna varierà dal valore p al valore p secondo la relazione: p p' p' p' ext gh p p' ext p pext gh gh p ext gh Esempio: remiamo con le dita su due lati opposti di esso, notiamo che, allo schiacciamento causato dalla pressione delle dita, corrisponderà un rigonfiamento nelle altre zone che aumenterà in relazione all'aumento della pressione da noi esercitata. Questo fenomeno, facilmente riscontrabile da chiunque possieda un palloncino, è giustificato dal fatto che la pressione da noi esercitata si trasmette all'intera massa di fluido contenuto nell'involucro (che in questo caso sarà aria). p' ext p ext p p ext

Esempio -Vasi comunicanti Si chiamano vasi comunicanti due o più recipienti uniti da un tubo di comunicazione. Consideriamo due vasi comunicanti riempiti con lo stesso liquido ed esaminiamo cosa accade su una superficie S di liquido posta nel tubo di collegamento. S Se l altezza h A del liquido nel recipiente di sinistra è maggiore di h B, anche la pressione ( per la legge di stevino) che agisce su S da sinistra è maggiore di quella da destra. S Quindi la superficie S è spinta verso destra: si ha così un flusso di liquido dal recipiente in cui il liquido ha un altezza maggiore verso l altro Soltanto quando la quota del liquido è la stessa nei due recipienti, le due pressioni che agiscono su S sono uguali e il liquido è in equilibrio Quindi: un liquido versato in un sistema di vasi comunicanti raggiunge in tutti i recipienti lo stesso livello. Questa proprietà è valida qualunque sia la forma dei recipienti, purché siano abbastanza ampi. Infatti, il modello dei vasi comunicanti ha un campo di validità limitato: cessa di essere valido quando i recipienti sono dei tubi molto sottili (detti capillari). S

Martinetto idraulico (pressa idraulica) Un martinetto idraulico è costituito da due pistoni di sezione molto differente collegati mediante un vaso comunicante nei quali è contenuto un fluido, il pistone ha superficie A molto più piccola della superficie del pistone : A A Sul pistone viene esercitata una forza verso il basso che servirà a sollevare un oggetto pesante sul pistone ( esempio un automobile) La forza produce sul pistone una pressione pari a A La pressione si trasmette per il principio di ascal attraverso il liquido fino al pistone. Sul pistone viene quindi esercitata una forza verso l alto pari a: Si ha quindi che A A A A A Cioè la forza risulta essere maggio di per un fattore moltiplicativo A A A A oiché nei due pistoni deve essere spostato un ugual volume di liquido si avrà : V x A x A x x x A Il lavoro compiuto dal pistone sarà comunque uguale al lavoro svolto sul pistone : L A A x x x L A A A Il pistone si solleverà di meno di quanto si abbassa il pistone

Il barometro di Torricelli Torricelli fu il primo a sostenere che l atmosfera esercita una pressione e fu il primo a misurarne il valore. Lo strumento utilizzato fu un barometro a mercurio: Un tubo con un estremità chiusa, pieno di mercurio viene rovesciato in un bicchiere anch esso pieno di mercurio. Nell estremità superiore si forma una regione di vuoto ( in cui la pressione può essere considerata nulla) La pressione nel punto A e nel punto B deve essere la stessa( legge di Stevino) e quindi pari alla pressione atmosferica. Si ha quindi che il peso della colonnina di mercurio di altezza h deve determinare una pressione sul fluido pari a quella atmosferica 0 g Hgh Nel suo esperimento Torricelli osservò che la colonnina di mercurio nelle condizioni di 3 3 equilibrio si innalza di 760 mm. Si ha quindi, considerando che 3.596 0 Kg m : 0 Hg g 3 5 9.8 3,596 0.760 0 a.030 a atm 0 Hg h

Il principio di Archimede Sappiamo per esperienza che ci sono alcuni corpi che in acqua galleggiano ed altri no. Andiamo ora a vedere le cause del galleggiamento che è dovuto ad una forza rivolta verso l alto che si esercita su un corpo immerso in un fluido. Consideriamo un fluido sottoposto alla gravità, ed isoliamone idealmente un volume finito V di forma qualsiasi. oiché il volume di fluido è all equilibrio, la risultante delle forze esercitate sul volume V di fluido isolato deve essere nulla La risultante delle forze di pressione che il fluido circostante il volume isolato esercita sul volume isolato ( B ) deve essere uguale ed opposta alla forza peso esercitata del volume stesso. B B g 0 sarà quindi rivolta verso l alto e pari in modulo alla forza peso del volume di fluido B g g fluido V Sostituiamo ora il volume di fluido con un ugual volume di una qualsiasi altra sostanza di densità => la risultante delle forze di pressione è la stessa, ( B ) ma la forza peso cambia con la densità della sostanza. => Non vi e più una condizione di equilibrio. B g 0 B g V g V g V gv 0 corpo 0 0 fluido corpo fluido corpo B fluido g fluido V corpo risultante delle forze di pressione fluido corpo Risulta una forza verso l alto ( il corpo sale) Risulta una forza verso il basso minore della forza peso (il corpo scende nel fluido In entrambi i casi vale il rincipio di Archimede : un corpo immerso in un fluido riceve un spinta verso l alto ( spinta di Archimede) pari a al peso del fluido spostato

Esempio- corpo galleggiante Abbiamo visto esplicitato il caso di un corpo completamente immerso in un liquido. Vediamo cosa succede nel caso il corpo, in equilibrio statico galleggi sulla superficie del liquido. In questo caso solo una frazione del corpo è immerso nel liquido. oiché il corpo è solo parzialmente immerso, il volume di fluido spostato è solo una frazione del volume totale V 0 del corpo. Tale frazione corrisponde proprio alla parte di corpo immerso. L oggetto è in equilibrio => la risultante delle forze agenti sul corpo è nulla La Spinta di Archimede deve equilibrare la forza peso => B g g g fluido V corpo V immerso 0 g fluido V immerso g corpo V 0 V immerso V 0 corpo fluido La frazione di corpo immerso è pari al rapporto fra la densità del corpo e la densità del liquido

Il peso apparente Se si misurasse il peso ( inteso come forza-peso) di un corpo in acqua con una bilancia esso risulterebbe sicuramente minore del peso misurato fuori dall acqua. Questo peso minore è detto peso apparente ed in realtà è dovuto alla somma vettoriale della forza peso del corpo con la spinta di Archimede app g B app g B y Es: Un corpo di massa m=0kg volume dm 3 viene immerso in acqua. Determinare il suo peso apparente 3 3 app mg B mg gh OV 9.8 0N 9.8 m s kg dm dm 98N 9.8N 88N

luidodinamica-moto dei fluidi In generale lo studio della fluidodinamica è molto complesso, poiché i fluidi reali sono soggetti a moti turbolenti Noi studieremo perciò il moto dei fluidi ideali, più semplice da trattare matematicamente. Caratteristiche che identificano i fluidi ideali: Moto laminare (o stazionario) => la velocità del fluido in ogni punto fissato non cambia nel tempo né in direzione né in intensità. In questo tipo di moto i cammini seguiti da ciascuna particella di fluido non si intersecano mai luido Incomprimibile => come nel caso statico il fluido è incomprimibile, quindi la sua densità è costante ed uniforme lusso non viscoso => il fluido non si oppone allo spostamento l attrito interno è trascurabile luido irrotazionale => cioè se il momento angolare del fluido è nullo, un oggetto immerso in un fluido irrotazionale non ruota intorno al suo centro di massa Linee di flusso ( o linee di corrente) => sono le traiettorie percorse dalle particelle nel fluido. Ciascuna paraticella di fluido ha velocità sempre tangente alla linea di flusso( che non si intersecano mai) Le linee di flusso che attraversano una certa sezione vengono dette tubo di flusso

Equazione di continuità Consideriamo un fluido ideale che scorre all interno di un tubo a sezione variabile Si trova che la velocità del fluido nel tubo dipende dall area della sezione normale attraverso cui passa il fluido. Consideriamo quindi il tubo di flusso in figura. Nel punto la sezione ha area A e la velocità del fluido è Nel punto la sezione ha area A e la velocità del fluido è Il flusso va dal punto al punto Supponiamo che nell intervallo di tempo t passi attraverso la sezione A un volume di fluido V. oiché il fluido è incomprimibile nello stesso intervallo di tempo un uguale volume V deve attraversare la sezione A Se consideriamo le particelle di fluido che all istante iniziale attraversano la superficie A esse percorreranno nell intervallo di tempo t una distanza x data da: v v x vt e quindi il volume di fluido che avrà attraversato la sezione A sarà: V x A vta Analogamente si avrà che il volume che avrà attraversato nello stesso intervallo di tempo la sezione A sarà: Quindi: V V v x A vta ta vta v A va Equazione di continuità Questa equazione che lega la velocità del fluido alla sezione attraversata è nota come equazione di continuità, e da essa si evince che: il prodotto della velocità con la sezione attraversata è costante in un fluido ideale, per cui se la sezione aumenta la velocità diminuisce e viceversa

ortata Se un fluido scorre da un condotto largo ad uno stretto: il modulo della velocità nel tubo stretto è maggiore che nel tubo largo L equazione di continuità può anche essere riscritta: R va costante ORTATA La quantità R prodotto della velocità per la sezione attraversata è detta ORTATA. Si ha quindi che in un fluido ideale la portata rimane costante ESEMIO: Stringendo il tubo dell acqua riduciamo la sezione di uscita dell acqua ed aumentiamo la velocità del flusso

Teorema di Bernoulli Consideriamo un fluido a densità costante che scorre in regime stazionario attraverso il tubo di flusso ( o reale) a sezione variabile mostrato in figura. In un intervallo di tempo t una certa quantità di fluido m entra attraverso la superficie A con velocità v ed esce dalla superficie A con velocità v. Vogliamo ricavare la relazione tra velocità, pressione e quota del fluido alle varie sezioni del condotto. m V Cominciamo determinando il lavoro sul liquido: Nello spostamento l energia potenziale cambia solo per le parti del fluido che corrispondono ad una variazione globale di quota. Il lavoro della forza peso è pari a: Le forze di pressione dovute alle pareti compiono un lavoro nullo le forze di pressione esercitate sulle sezioni A ed A forniscono il lavoro: Ls x x A x Ax Il lavoro totale è quindi: L L g U V er il teorema dell energia cinetica tale lavoro è pari alla variazione di energia cinetica: T L g g y y L s V V Lg Ls V g y y V x v v V gy y V V V x A v t, V x x x A v t

T L Teorema di Bernoulli v v V gy y V V Semplificando il volume e raggruppando i termini in modo da avere a sinistra i termini associati al passaggio attraverso la superficie A ed a destra quelli associati all attraversamento della superficie A si ha: v gy v gy v gy costante Equazione di Bern0ulli Teorema di Bernoulli: In un fluido ideale in moto in regime stazionario la somma della pressione, della densità di energia potenziale per unità di volume e della densità di energia cinetica per unità di volume e costante lungo il condotto, ovvero lungo qualunque tubo di flusso. NB: il teorema di Bernoulli è una riformulazione della conservazione dell energia meccanica adattata alla meccanica dei fluidi

Equazione di Bernoulli-casi particolari luidi a riposo: In questo caso l energia cinetica è nulla e l equazione di Bernoulli si riduce alla legge di Stevino Tubo di flusso ad altezza costante y (y=0 per esempio) gy v gy v gy gy h y y g gy v gy v v v Se > allora v <v Se < allora v >v Se lungo una linea di flusso orizzontale aumenta la velocità di un fluido, deve diminuire la pressione e viceversa