Scheda - Integrali indeniti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Scheda - Integrali indeniti"

Transcript

1 Scheda - Integrali indeniti Ricordiamo un pò di teoria.. Il calcolo delle primitive di una funzione Immaginiamo di avere una funzione, ad esempio f() = 2 e di voler calcolare un'altra funzione F () che, quando la derivo, mi fornisce la funzione f(). Una funzione che ha questa caratteristica si chiama primitiva di f(). Dopo averci pensato un pò, ci può venire in mente la funzione F () = 2 E sembra quasi che abbiamo risolto completamente il problema che avevamo ma poi ci ricordiamo che la derivata di una costante additiva è zero e quindi capiamo che le primitive che possiamo trovare sono tante.. F 1 () = 2 ; F 2 () = 2 +1; F 3 () = 2 +3; F 4 () = 2 12; Se volessimo raggruppare tutte le funzioni che sono primitive di f(), potremmo scriverle in questa forma: F () = 2 dove con C intendiamo una qualsiesi costante additiva. L'insieme di tutte le primitive di una funzione f() si chiama integrale indenito di f() e si indica con la seguente scrittura: f() Quindi, riprendendo l'esempio di prima possiamo scrivere che l'insieme di tutte le primitive della funzione f() = 2 si possono scrivere così: 2 oppure, utilizzando la notazione matematica, possiamo scrivere che 2 = 2 1

2 Integrali delle principali funzioni elementari 1 = ; a = a+1 a + 1 ; 1 = log ; e = e ; sin = cos ; cos = sin ; Le due proprietà di linearità degli integrali La prima proprietà aerma che se all'interno di un integrale è presente una costante moltiplicativa k, essa può essere portata fuori dal segno di integrale: k f() = k f() La seconda proprietà aerma che, se all'interno di un integrale è presente una somma, allora l'integrale della somma equivale alla somma degli integrali: f() + g() = f() + g() Esempi di integrali immediati 3 Se guardo la tabella degli Integrali delle funzioni elementari, mi accorgo subito che tale integrale appartiene alla famiglia: a 2

3 quindi posso risolvere l'esercizio applicando la formula in cui a = 3, ovvero scrivo: 3 = = 4 4 ; Esempi di applicazioni delle proprietà di linearità: il trasporto di una costante moltiplicativa fuori dal segno di integrale 2 2 Se guardo la tabella degli integrali delle funzioni elementari, mi accorgo che l'integrale che voglio calcolare, non appartiene a nessuna delle famiglie che sono riportate. Allora devo lavorare un pò sul mio integrale in modo da poterlo riscrivere in una forma che possa essere associabile alle famiglie di integrali elementari. Così, mi accorgo che il 2 che sta davanti ad 2 è una costante moltiplicativa e quindi, posso portarla fuori dal segno di integrale, scrivendo: 2 2 = 2 2 Adesso, se mi concentro solo sull'integrale (e tralascio il 2 che sta fuori a moltiplicare) mi accorgo subito che tale integrale appartiene alla famiglia: a quindi posso risolvere l'esercizio applicando la formula in cui a = 2, ovvero scrivo: 2 2 = = = 23 3 Esempi di applicazioni delle proprietà di linearità: una somma equivale alla somma degli integrali ( 2 + ) l'integrale di Se guardo la tabella degli integrali delle funzioni elementari, mi accorgo che l'integrale che voglio calcolare, non appartiene a nessuna delle famiglie che sono riportate. Allora devo lavorare un pò sul mio integrale in modo da poterlo riscrivere in una forma che possa essere associabile alle famiglie di 3

4 integrali elementari. Così, mi accorgo che, usando la seconda proprietà di linearità, posso spezzare in due l'intagrale e scrivere: ( 2 + ) = 2 + Adesso, procedendo come ho fatto prima, utilizzo le formule degli integrali elementari per risolvere tali integrali e scrivo: 2 + = = Integrazione per decomposizione Immaginiamo di voler calcolare il seguente integrale indenito ( ) Bisogna procedere in modo da decomporre l'integrale (mediante le due proprietà di linearità), no ad ottenerne delle parti su cui possiamo applicare le formule degli integrali fondamentali. Allora usiamo la seconda proprietà in modo da spezzare la somma in due parti: ( ) = Adesso usiamo la prima proprietà in modo da portare fuori dal segno di integrale le costanti che moltiplicano, ovvero: = Adesso, applico le formule degli integrali indeniti: = =

5 Esercizio 1 Calcola i seguenti integrali indeniti: a) b) c) d) e) ( 5) f) g) + 5 log h) i) l) ( ) (4 + 2 ) Esercizio 2 Calcola i seguenti integrali indeniti: a) c) e) g) i) m) 2 (2 + 3) ( 3 + 1) ( 1)( + 2) log b) d) f) h) l) n) ( + 2) ( + 1) ( ) Integrali delle principali funzioni composte Ricordando la formula della derivata di una funzione composta ed usandola in senso inverso, possiamo scrivere le seguenti formule che ci serviranno per integrare le funzioni composte: f() a f () = f()a+1 a + 1 5

6 f () = logf() ; f() f () e f() = e f() ; f () sinf() = cosf() ; f () cosf() = sinf() ; Esempi di applicazioni degli integrali delle funzioni composte Esempio ( 3 + 2) 2 Ci accorgiamo subito che, indicando con f() = 3 + 2, possiamo riscrivere l'integrale così: f () f() a E quindi possiamo utilizzare la formula degli integrali delle funzioni composte, ovvero: f() a f () = f()a+1 = a ( 3 + 2) 2 = (3 + 2) 3 3 Esempio 2 sin 2 Ci accorgiamo subito che, indicando con f() = 2, il fattore non è proprio la derivata di 2. Per esserlo gli manca un fattore 2, ma per quanto riguarda i fattori moltiplicativi possiamo farli comparire noi grazie alla proprietà di linearità e quindi possiamo scrivere: sin 2 = sin 2 in modo da essere in grado di usare la seguente formula f () sinf() = cosf() ; 6

7 E quindi scriviamo: sin 2 = 1 2 ( cos2 ) = 1 2 cos2 Esercizio 3 Calcola i seguenti integrali indeniti utilizzando le formule di integrazione delle funzioni composte: a) 5( 4) 4 c) 2(2 + 5) 6 e) g) i) 4e 4 m) e ( 4) 5 (2 + 5) log( ) log(2 5) e 4 e b) d) f) h) l) n) ( + 3) ( + 3) (2 4( ) ) log( 2 + ) log( 4 + 1) 3e 3 1 e e e3+1

Scheda - Integrali deniti

Scheda - Integrali deniti Scheda - Integrali deniti L'area compresa tra il graco di una funzione e l'asse x Dopo aver fatto la grande fatica di imparare gli integrali delle funzioni elementari, la propietà di linearità dell'integrale

Dettagli

Esercitazione del Analisi I

Esercitazione del Analisi I Esercitazione del 0-- Analisi I Dott.ssa Silvia Saoncella silvia.saoncella 3[at]studenti.univr.it a.a. 0-0 Integrale di funzioni razionali Supponiamo di voler calcolare un integrale del tipo P () Q() d

Dettagli

2 + 4 x 4 ) Soluzione Occorre calcolare l integrale della somma di più funzioni. Applichiamo il teorema di linearità, in base al quale si ha: dx =

2 + 4 x 4 ) Soluzione Occorre calcolare l integrale della somma di più funzioni. Applichiamo il teorema di linearità, in base al quale si ha: dx = CAPITOLO 1 Integrali 1.1 Integrali indefiniti 1.1.1. Esercizi svolti 1 Calcolare: ( 3 3 + 5 3 3 + 4 4 ) d Occorre calcolare l integrale della somma di più funzioni. Applichiamo il teorema di linearità,

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

Definizione algebrica di integrale: l'integrale indefinito

Definizione algebrica di integrale: l'integrale indefinito Definizione algebrica di integrale: l'integrale indefinito L'integrale indefinito E' possibile definire semplicemente l'integrale dal punto di vista algebrico come operazione inversa della operazione di

Dettagli

Esercizi 10: Calcolo Integrale Integrali indefiniti. Calcolare i seguenti integrali indefiniti, verificando i risultati indicati.

Esercizi 10: Calcolo Integrale Integrali indefiniti. Calcolare i seguenti integrali indefiniti, verificando i risultati indicati. Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in Farmacia - anno acc / docente: Giulia Giantesio, gntgli@unifeit Esercizi : Calcolo Integrale Integrali indefiniti

Dettagli

Integrali indefiniti fondamentali. Integrali indefiniti riconducibili a quelli immediati. a dx ax c. log. e dx e c. cos xdx senx c.

Integrali indefiniti fondamentali. Integrali indefiniti riconducibili a quelli immediati. a dx ax c. log. e dx e c. cos xdx senx c. Integrali indefiniti fondamentali Integrali indefiniti riconducibili a quelli immediati d f ( c d f ( c a d a c n n d c con n - n a a d log k e d e k k e c a c e d e c d log c send cos c cos d sen c senhd

Dettagli

Lezione 5: Introduzione al calcolo integrale

Lezione 5: Introduzione al calcolo integrale Lezione 5: Introduzione al calcolo integrale PARTE 2 1 Integrazione per Sostituzione Utilizzando i metodi esposti nella Parte 1 di questa dispensa, non saremmo in grado di risolvere un integrale del tipo

Dettagli

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito FORMULARIO: tavola degli integrali indefiniti Definizione Proprietà dell integrale indefinito Integrali indefiniti fondamentali Integrali notevoli Integrali indefiniti riconducibili a quelli immediati:

Dettagli

Integrali. Primitive di una funzione di una variabile

Integrali. Primitive di una funzione di una variabile Integrali Paolo Montanari Appunti di Matematica Integrali 1 Primitive di una funzione di una variabile Sia f() una funzione definita in un intervallo X R. Una primitivadi f()su Xè una qualunque funzione

Dettagli

Integrale indefinito

Integrale indefinito Integrale indefinito 1 Primitive di funzioni Definizione 1.1 Se f: [a, b] R è una funzione, una sua primitiva è una funzione derivabile g: [a, b] R tale che g () = f(). Ovviamente la primitiva di una funzione,

Dettagli

Integrali indefiniti, definiti e impropri - teoria

Integrali indefiniti, definiti e impropri - teoria Integrali indefiniti, definiti e impropri - teoria Primitiva Data una funzione si dice primitiva di tale f. la f. che ha per derivata, ovvero. Le primitive di una f. sono infinite e tutte uguali a meno

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

NUMERI INTERI E POTENZE

NUMERI INTERI E POTENZE Saper operare con le potenze di numeri interi - Prof. Di Caprio 1 Obiettivo NUMERI INTERI E POTENZE In questa lezione richiameremo alcune proprietà dei numeri interi, e impareremo a operare con le potenze.

Dettagli

Argomento 8 Integrali indefiniti

Argomento 8 Integrali indefiniti 8. Integrale indefinito Argomento 8 Integrali indefiniti Definizione 8. Assegnata la funzione f definita nell intervallo I, diciamo che una funzione F con F : I R è una primitiva di f in I se i) F è derivabile

Dettagli

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x? A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento

Dettagli

Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti

Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti A.M. Bigatti e G. Tamone Esercizi Una funzione g() derivabile su un intervallo (a, b) si dice primitiva della funzione f() se f() =

Dettagli

Metodi di Integrazione. Integrazione per decomposizione in somma

Metodi di Integrazione. Integrazione per decomposizione in somma Metodi di Integrazione Integrazione per decomposizione in somma Integrazione per parti Integrazione per sostituzione Integrazione per decomposizione in somma In molti casi il calcolo dell integrale indefinito

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f).

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f). Teoremi sui iti Quando non espressamente detto, intendiamo che: f : R R 0 R è punto di accumulazione per dom(f). Teorema di unicità del ite. Supponiamo che f ammetta ite l (finito o infinito) per 0. Allora

Dettagli

Richiami sullo studio di funzione

Richiami sullo studio di funzione Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o

Dettagli

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1 Calcolare le seguenti potenze di i: NUMERI COMPLESSI Esercizi svolti a) i b) i 7 c) i d) i e) i f) i 9 Semplificare le seguenti espressioni: a) i) i i) b) + i) i) + ) 0 i c) i) i) i) d) i) Verificare che

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 21 Novembre Logaritmi e Proprietà

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 21 Novembre Logaritmi e Proprietà Esercitazioni di Matematica Generale A.A. 016/017 Pietro Pastore Lezione del 1 Novembre 016 Logaritmi e Proprietà Quando scriviamo log a b = c che leggiamo logaritmo in base a di b uguale a c, c è l esponente

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari. (c) e5 e 4 e (2x 3y) dx + (1 + x)dx +

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari. (c) e5 e 4 e (2x 3y) dx + (1 + x)dx + UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte (sintetiche) agli esercizi del 5.XI.7. Gli integrali richiesti valgono: (a) + ( e ) (b) (c) e5 e e + (d)

Dettagli

FRAZIONI e NUMERI RAZIONALI

FRAZIONI e NUMERI RAZIONALI FRAZIONI e NUMERI RAZIONALI Frazioni Come per i numeri naturali, anche per gli interi relativi si definisce l'operazione di divisione come operazione inversa della moltiplicazione: Divisione di numeri

Dettagli

EQUAZIONI DI II GRADO

EQUAZIONI DI II GRADO RICHIAMI SULLE EQUAZIONI DI PRIMO E SECONDO GRADO PROF.SSA ROSSELLA PISCOPO Indice 1 EQUAZIONI DI I GRADO --------------------------------------------------------------------------------------------------

Dettagli

Equazioni differenziali

Equazioni differenziali 1 Equazioni differenziali Definizioni introduttive Una equazione differenziale è una uguaglianza che contiene come incognita una funzione f x, insieme con le sue derivate rispetto alla variabile indipendente

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 00/ Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica e TWM Esercizi di Analisi Matematica Esercizi sul primo semestre del

Dettagli

Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 7 Struttura metrica in R n Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 27 Introduzione Gli esercizi di questo capitolo riguardano i seguenti argomenti: Data

Dettagli

Corso di Laurea in Ingegneria delle Telecomunicazioni ANALISI MATEMATICA 1. Prova scritta del 24 luglio 2018

Corso di Laurea in Ingegneria delle Telecomunicazioni ANALISI MATEMATICA 1. Prova scritta del 24 luglio 2018 Corso di Laurea in Ingegneria delle Telecomunicazioni ANALISI MATEMATICA Prova scritta del 4 luglio 08 Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 5)

Dettagli

Esercizi svolti sugli integrali

Esercizi svolti sugli integrali Esercizio. Calcolare il seguente integrale indefinito x dx. Soluzione. Poniamo da cui x = t derivando rispetto a t abbiamo t = x x = t dx dt = quindi ( t x dx = ) poiché t = t, abbiamo t dt = = in definitiva:

Dettagli

SCHEMI DI MATEMATICA

SCHEMI DI MATEMATICA SCHEMI DI MATEMATICA SCHEMA 1: somme algebriche tra numeri ( ci sono sia somme che sottrazioni) Obiettivo dello schema1: saper risolvere espressioni come : -3-6 Metodo: se il segno dei due numeri è uguale

Dettagli

INSIEME N. L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi.

INSIEME N. L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi. INSIEME N L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi. N = {0;1;2;3... Su tale insieme sono definite le 4 operazioni di base: l'addizione (o somma), la sottrazione, la moltiplicazione

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 2 luglio 2004: soluzioni Data la funzione f() = 3 2 2 arctan + 0, si chiede di: a) calcolare il dominio

Dettagli

Esercizi sulle trasformate di Fourier

Esercizi sulle trasformate di Fourier Esercizi sulle trasformate di Fourier Corso di Fisica Matematica, a.a. 3-4 Dipartimento di Matematica, Università di Milano 8 Novembre 3 Questi esercizi richiederanno il calcolo di integrali a volte non

Dettagli

5. CALCOLO INTEGRALE. 5.1 Integrali indefiniti

5. CALCOLO INTEGRALE. 5.1 Integrali indefiniti 5. CALCOLO INTEGRALE Il calcolo integrale nasce, da un lato per l esigenza di calcolare l area di regioni piane o volumi e dall altro come operatore inverso del calcolo differenziale. 5. Integrali indefiniti

Dettagli

Tutorato architettura degli elaboratori modulo I (lezione 1)

Tutorato architettura degli elaboratori modulo I (lezione 1) Tutorato architettura degli elaboratori modulo I (lezione 1) Moretto Tommaso 13 October 2017 1 Conversione 1.1 Conversione da base b a base 10 Prima di tutto ricordiamo che dato un numero di n cifre espresso

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 5 febbraio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 5 febbraio 2018 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 7-8 Scritto del secondo appello, 5 febbraio 8 Testi Prima parte, gruppo.. Trovare r > e α [ π, π] per cui vale l identità 3 sin 3 cos = r sin( + α)..

Dettagli

1 Integrazione per parti

1 Integrazione per parti Integrazione per parti Un pò di teoria Date le funzioni f, g : [a, b] R con f, g C [a, b] la regola di integrazione per parti per gli integrali definiti è: b a f(g ( d = f(bg(b f(ag(a b a f (g( d la regola

Dettagli

CALCOLO INTEGRALE per Informatica Risoluzione dell'esercitazione n.4, 8 aprile 2013

CALCOLO INTEGRALE per Informatica Risoluzione dell'esercitazione n.4, 8 aprile 2013 CALCOLO INTEGRALE per Informatica Risoluzione dell'esercitazione n., 8 aprile Es.. Calcolare i seguenti integrali indeniti (cioé le funzioni primitive o antiderivate), con l'aiuto del metodo di sostituzione,

Dettagli

1 + 2 x) x. e x + e x e x e x. lim

1 + 2 x) x. e x + e x e x e x. lim Esame per il corso di Matematica per CTF Prof G Gaeta) Febbraio 24 Tempo a disposizione: due ore e mezza; non sono ammessi ausili libri, appunti, etc) I diversi esercizi hanno lo stesso peso in termini

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari. (c) e5 e 4 e (2x 3y) dx + (1 + x)dx +

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari. (c) e5 e 4 e (2x 3y) dx + (1 + x)dx + UNIVERIÀ DI ROMA OR VERGAA Analisi Matematica II per Ingegneria Prof. C. inestrari Risposte sintetiche) agli esercizi dell.xi.8. Gli integrali richiesti valgono: a) + e ) 4 b) c) e5 e 4 e + d) e + e 4

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 10 2.11.2016 Equazione di Poisson Metodo delle cariche immagine Anno Accademico 2016/2017 Equazione di Poisson Tramite

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A (ST) V foglio di esercizi ESERCIZIO. Siano f(t) = t t + per ogni t R ed F una primitiva di f. Se F () =, si calcoli F (). Le primitive di f(t) sono tutte della forma

Dettagli

Qualche informazione su gruppi e anelli

Qualche informazione su gruppi e anelli Qualche informazione su gruppi e anelli 1. Gruppi e sottogruppi: prime proprietà Cominciamo subito scrivendo la definizione formale di gruppo. Definizione 0.1. Un gruppo G è un insieme non vuoto dotato

Dettagli

LOGARITMI ED ESPONENZIALI

LOGARITMI ED ESPONENZIALI 1 LOGARITMI ED ESPONENZIALI 1. (Da Veterinaria 2013) Riscrivendo 9 3x+2 nel formato 3 y, quale sarà il valore di y? a) 3x b) 3x + 4 c) 6x + 2 d) 6x + 4 e) 9x + 6 2. (Da Odontoiatria 2009) Qual è la soluzione

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A ST) V I foglio di esercizi ESERCIZIO. Si calcoli + sin t) dt t cos t + log + t))dt e + tg t + e t )dt cos t dt t. Calcoliamo il primo dei due. Si tratta di un ite della

Dettagli

41 POLINOMI DI TAYLOR

41 POLINOMI DI TAYLOR 4 POLINOMI DI TAYLOR DERIVATE DI ORDINI SUCCESSIVI Allo stesso modo della derivata seconda si definiscono per induzione le derivate di ordine k: la funzione derivata 0-ima di f si definisce ponendo f (0

Dettagli

Corso di Analisi Matematica. Polinomi e serie di Taylor

Corso di Analisi Matematica. Polinomi e serie di Taylor a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Polinomi e serie di Taylor Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Integrazione di Funzioni Razionali. R(x) = P 0 (x) + P 1(x) Q(x)

Integrazione di Funzioni Razionali. R(x) = P 0 (x) + P 1(x) Q(x) Integrazione di Funzioni Razionali Un polinomio di grado n N è una funzione della forma P () = a 0 + a +... + a n n dove a 0, a,..., a n sono costanti reali e a n 0. Una funzione della forma R() = P ()

Dettagli

In questo capitolo descriveremo il sistema numerico internazionale e le operazioni in esso definite. Indice del capitolo

In questo capitolo descriveremo il sistema numerico internazionale e le operazioni in esso definite. Indice del capitolo Capitolo 1 Operare con i Numeri In questo capitolo descriveremo il sistema numerico internazionale e le operazioni in esso definite Indice del capitolo 1.1 Mettiamoci d accordo!!!................. 2 1.1.1

Dettagli

Risoluzione del compito n. 4 (Giugno 2014)

Risoluzione del compito n. 4 (Giugno 2014) Risoluzione del compito n. 4 Giugno 2014) PROBLEMA 1 Determinate le soluzioni z, w), con z, w C,delsistema { z = w 2 w i Dalla prima equazione ricaviamo 2iz +4i z = w 2. che sostituito nella seconda la

Dettagli

Equazioni di 2 grado

Equazioni di 2 grado Equazioni di grado Antonino Leonardis Introduzione Solitamente per trovare la formula risolutiva delle equazioni di secondo grado si utilizza il completamento del quadrato Adesso vedremo un modo leggermente

Dettagli

1 ANALISI MATEMATICA A - Esercizi della settimana 3

1 ANALISI MATEMATICA A - Esercizi della settimana 3 1 ANALISI MATEMATICA A - Esercizi della settimana 3 1.1 Esercizio Una funzione f : R R si dice pari se f (x) = f ( x) per ogni x R; una funzione g : R R si dice dispari se g(x) = g( x) per ogni x R. 1.

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 6 aprile 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 6 aprile 2018 Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A Pisa, 6 aprile cos ) sin se Domanda Sia f) = Allora se =. A) non ha derivata in = ) è derivabile C) ha un punto di cuspide D) ha

Dettagli

25 IL RAPPORTO INCREMENTALE - DERIVATE

25 IL RAPPORTO INCREMENTALE - DERIVATE 25 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

Capitolo 5 Applicazioni lineari Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 5 Applicazioni lineari Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 5 Applicazioni lineari Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 27 Introduzione Gli esercizi di questo capitolo riguardano i seguenti argomenti: Data un

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 9.7.8 Esercizio Si consideri la funzione TEMA f log e. i Si determini il dominio D e si studi il segno di f; ii si determininio i iti

Dettagli

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A Matematica A Corso di Laurea in Chimica Prova scritta del 7..6 Tema A P) Data la funzione f(x) = ex+ x determinarne (a) campo di esistenza; (b) zeri e segno; (c) iti agli estremi del campo di esistenza

Dettagli

Dispense del corso di Analisi II

Dispense del corso di Analisi II Dispense del corso di Analisi II versione preliminare Paolo Tilli Dipartimento di Matematica Politecnico di Torino email: paolo.tilli@polito.it 8 gennaio 5 Capitolo 6 La trasformata di Fourier 6. Introduzione

Dettagli

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ). ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica

Dettagli

Calcolare il valore delle seguenti espressioni applicando le proprietà delle potenze e lasciando i risultati sotto forma di potenza:

Calcolare il valore delle seguenti espressioni applicando le proprietà delle potenze e lasciando i risultati sotto forma di potenza: Esercizio n.7 Calcolare il valore delle seguenti espressioni applicando le proprietà delle potenze e lasciando i risultati sotto forma di potenza: 3 x ] : x ]; 3 3 9 : 3 6 ] : 3 8 x 3 ]; { 3 : 3 x ] x

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 24 luglio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 24 luglio 2017 Testi 1 Scritto del sesto appello, luglio 7 Testi Prima parte, gruppo.. Determinare i punti di massimo e minimo assoluti della funzione f( := 3 e relativamente alla semiretta, specificando se non ne esistano..

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

1 Primitive e integrali indefiniti

1 Primitive e integrali indefiniti Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 2 CALCOLO INTEGRALE Primitive e integrali indefiniti. Definizione di primitiva e di integrale indefinito Data una funzione

Dettagli

1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO.

1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO. I NUMERI NATURALI DEFINIAMO NUMERI NATURALI I NUMERI A CUI CORRISPONDE UN INSIEME. 0 (ZERO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME VUOTO. A = (ALUNNI DI 4ª A CON I CAPELLI ROSSI) NESSUN ALUNNO HA

Dettagli

Soluzioni delle Esercitazioni VII 12-16/11/ x+c = 1 2 x4 3 2 x2 +x+c. + x4/3. x + 1 )

Soluzioni delle Esercitazioni VII 12-16/11/ x+c = 1 2 x4 3 2 x2 +x+c. + x4/3. x + 1 ) Soluzioni delle Esercitazioni VII -6//8 A. Integrali indefiniti. Si ha +)d. Si ha + )d. Si ha + d +. Si ha d 5. Si ha / + / )d / ) d d + ++c ++c. + / +c + +c. + ) d ln + / +c ln + +c. ) / d )/ +) / d +)/

Dettagli

In altri termini, il logaritmo in base a di b è quel numero c tale per cui a elevato a c è uguale a b. In simboli

In altri termini, il logaritmo in base a di b è quel numero c tale per cui a elevato a c è uguale a b. In simboli LOGARITMO Il logaritmo è un operatore matematico indicato generalmente con loga(b); detta a la base e b l'argomento, il logaritmo in base a di b è definito come l'esponente a cui elevare la base per ottenere

Dettagli

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI DERIVABILI Sia f : domf R una funzione e sia 0 domf di accumulazione per domf Chiamiamo derivata prima di

Dettagli

POCHE PAROLE E PIÙ INTEGRALI

POCHE PAROLE E PIÙ INTEGRALI Roronoa Lillo (lillo) POCHE PAROLE E PIÙ INTEGRALI 8 June 2012 Abstract Inizialmente non doveva esserci alcun articolo, ma dovevo solo sfruttare l'implementazione delle formule Latex per scrivermi un glossario,

Dettagli

Intersezione tra retta e parabola e tangenti

Intersezione tra retta e parabola e tangenti L equazione di una parabola è in generale: y = ax 2 + bx +c mentre quella di una retta y = mx + q Per trovare i punti di intersezione tra una retta e una parabola si parte dalla considerazione che i punti

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 5 - INTEGRAZIONE NUMERICA Lucio Demeio Dipartimento di Scienze Matematiche 1 Integrazione numerica: formule di Newton-Cotes semplici 2 3 Introduzione

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 27 giugno 2017 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 06/7 Corso di Analisi Matematica - professore Alberto Valli foglio di esercizi - ottobre 06 iti.

Dettagli

Appello del 16/2/2017 Matematica per l Economia lettere E-Z, a.a , compito A, prof. Gianluca Amato

Appello del 16/2/2017 Matematica per l Economia lettere E-Z, a.a , compito A, prof. Gianluca Amato Corso di Laurea in Economia e Management Appello del 16//017 Matematica per l Economia lettere E-Z, a.a. 016 017, compito A, prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

Esercizi di Matematica Classe IV A TGC Assegnati per Lunedì 5 Marzo (In preparazione alla verica di saldo debito)

Esercizi di Matematica Classe IV A TGC Assegnati per Lunedì 5 Marzo (In preparazione alla verica di saldo debito) Esercizi di Matematica Classe IV A TGC Assegnati per Lunedì 5 Marzo (In preparazione alla verica di saldo debito) Nota importante Per vericare l'esattezza dei tuoi procedimenti sul calcolo del mcm, del

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

La trasformata Z. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Universitá di Trento. anno accademico 2005/2006

La trasformata Z. (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi. DIMS Universitá di Trento. anno accademico 2005/2006 La trasformata Z (Metodi Matematici e Calcolo per Ingegneria) Enrico Bertolazzi DIMS Universitá di Trento anno accademico 2005/2006 La trasformata Z 1 / 33 Outline 1 La trasformata Z 2 Trasformazioni di

Dettagli

SOLUZIONE = p 4 x = 1 4 x2 +

SOLUZIONE = p 4 x = 1 4 x2 + SOLUIONE (a) Per rovare che F () = + arcsin è una rimitiva di f() = sull intervallo (, ) è su ciente rovare che F () =f(), er ogni (, ) F () = + + / / = + + = = + + = + = f() (b) Sicuramente G() è una

Dettagli

Anno 5 Regole di derivazione

Anno 5 Regole di derivazione Anno 5 Regole di derivazione 1 Introduzione In questa lezione mostreremo quali sono le regole da seguire per effettuare la derivata di una generica funzione. Seguendo queste regole e conoscendo le derivate

Dettagli

Integrali doppi Formula di riduzione per rettangoli A=[a,b] [c,d]

Integrali doppi Formula di riduzione per rettangoli A=[a,b] [c,d] Integrali doppi Formula di riduzione per rettangoli =[a,b] [c,d] b f x, y dx dy = a d c d f x, ydy oppure c b dy a f x, y dx. Per prima cosa si calcola l'integrale definito tra c e d della funzione in

Dettagli

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini Istituzioni di Matematiche, Integrali fratti corso di laurea in Scienze geologiche. Mauro Costantini tipo: Il nostro obiettivo è studiare gli integrali (indefiniti e definiti delle funzioni razionali,

Dettagli

Esercitazione in vista della terza prova matematica

Esercitazione in vista della terza prova matematica Esercitazione in vista della terza prova matematica In vista dell Esame di stato è caldamente consigliato rifare le simulazioni già affrontae durante l anno. ) Stampa le pagine del testo ) Rifare gli esercizi,

Dettagli

Le equazioni di I grado

Le equazioni di I grado Scheda - Le basi della Matematica Le equazioni Le equazioni di I grado Ricordiamo che un'equazione è un'uguaglianza tra due espressioni letterali in cui compare almeno un'incognita (di solito essa si indica

Dettagli

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante

Dettagli

Decomposizione LU di una matrice quadrata

Decomposizione LU di una matrice quadrata Appendice al Cap. 5 Decomposizione LU di una matrice quadrata Una qualunque matrice quadrata M = {m ij } di ordine N, reale, invertibile, i cui minori principali siano tutti non nulli, si può sempre decomporre

Dettagli

I testi delle verifiche si possono anche scaricare all'indirizzo

I testi delle verifiche si possono anche scaricare all'indirizzo VERIFICA DI MATEMATICA 2^E Liceo Sportivo 5 aprile 208 Rispondere su un foglio protocollo e riconsegnare insieme al testo entro il 2 aprile 208 NOME E COGNOME Se acquisto kg di arance e kg di mele spendo

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti su misura e integrale di Lebesgue, spazi L p, operatori lineari continui

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti su misura e integrale di Lebesgue, spazi L p, operatori lineari continui Corso di Metodi Matematici per l Ingegneria A.A. 26/27 Esercizi svolti su misura e integrale di Lebesgue, spazi L p, operatori lineari continui Marco Bramanti Politecnico di Milano December 4, 26 Esercizi

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del (x y) log

Analisi Matematica II Corso di Ingegneria Gestionale Compito del (x y) log Analisi Matematica II Corso di Ingegneria Gestionale Compito del -6-4 Esercizio. punti Data la funzione { x y log +, fx, y = x +y 4 x, y,, x, y =, i dire in quali punti del dominio è continua; ii dire

Dettagli

TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE

TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 01-014 ESERCIZI DI TRIGONOMETRIA: EQUAZIONI TRIGONOMETRICHE Esercizio 1: Risolvere la seguente equazione Svolgimento: Poiché cos

Dettagli

I decibel e le taniche (J. Q.)

I decibel e le taniche (J. Q.) I decibel e le tanice (J. Q.) remessa: Scopo di questa nota e far capire la seguente cosa: In una tanica lineare se sommo due liquidi aventi lo stesso volume, l altezza si raddoppia. elle tanice ad imbuto,

Dettagli

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x

Dettagli

DERIVATA IN UN PUNTO E FUNZIONE DERIVATA

DERIVATA IN UN PUNTO E FUNZIONE DERIVATA DERIVATA IN UN PUNTO E FUNZIONE DERIVATA 1 V SCIENTIFICO a. s. 2016-2017 UN PROCEDIMENTO PER RISOLVERE TRE PROBLEMI 2 IL LIMITE DEL RAPPORTO INCREMENTALE Il rapporto incrementale varia al variare di ESEMPI

Dettagli