Algebra» Appunti» Dis & Equazioni logaritmiche EQUAZIONI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algebra» Appunti» Dis & Equazioni logaritmiche EQUAZIONI"

Transcript

1 MATEMATICA & FISICA E DINTORNI Pasquale Spiezia Algebra» Appunti» Dis & Equazioni logaritmiche DEFINIZIONE EQUAZIONI Per equazione logaritmica s intende ogni equazione nella quale l incognita è presente nell argomento di uno o più logaritmi. FORME CANONICHE Utilizzando le proprietà dei logaritmi ed operando algebricamente sugli argomenti dei logaritmi mediante opportune scomposizioni e sostituzioni, ogni equazione logaritmica può essere ricondotta nelle due forme fondamentali: (i) log a f(x) = k con k R (ii) log a f(x) = log a g(x) con k R METODI RISOLUTIVI (i) log a f(x) = k Ricordando la definizione di logaritmo, la soluzione di questa equazione logaritmica si ottiene risolvendo il seguente sistema: (ii) log a f(x) = log a g(x) f( x ) >0 f( x ) =a Ricordando le proprietà dei logaritmi, la soluzione di questa equazione logaritmica si ottiene risolvendo il seguente sistema: k f x >0 gx >0 f x =g x Pagina di

2 ESERCIZI Risolvere le seguenti equazioni logaritmiche del tipo log a f(x) = k ( ) log x 9 = x 9 > 0 x < x > ( ) log x 9 = x = ±5 x 9 = ( ) = 6 accettabili ( ) log x + x 5 = x x < 5 x > ( ) x + x 5 > 0 x + x 5 > 0 log x + x 5 = x x = 5 x + x 5 = x x 5 = 0 log ( x ) log ( x ) = L equazione non è in forma canonica. Essendo ( ) ( ) x log x log x = log, si x x ha pure log =. Dunque: x x > 0 x > ( ) ( ) x > log x log x = x > 0 x > x = x = x = x x Risolvere le seguenti equazioni logaritmiche del tipo log a f(x) = log a g(x) log ( x + ) = log ( x + 0 ) x + > 0 x > ( ) ( ) x > log x + = log x + 0 x + 0 > 0 x > 0 x = x + = x + 0 x = Pagina di

3 ( ) log x = log x log x = log x = log x, si ha: Poiché ( ) x > 0 ( ) ( ) log x = log x log x = log x x > 0 x = x x > 0 x > x < x > x = x = da scartare x x = 0 log x = log x + log 6 Bisogna dapprima cambiare base. Utilizzando la formula del cambiamento di base e sfruttando alcune proprietà dei logaritmi si ha: log x log x log x = = log x ; log x = = log x; log 6 = log = log log Dunque: log x = log x + log 6 log x = log x + log x = x > 0 x > 0 = 6 x x = 6 ln ( 6 x ) = ln ( x ) Moltiplicando ambo i membri per si ha ln ( 6 x ) = ln ( x ) = ln ( x ). Dunque: 6 x > 0 x < 6 < x < 6 ( ) ( ) ln 6 x = ln x x > 0 x > x = 0 x = 7 ( ) 6 x = x da scartare x 7x = 0 Pagina di

4 SISTEMI DI EQUAZIONI LOGARITMICHE Per risolvere un sistema di equazioni logaritmiche occorre anzitutto porre le condizioni di e- sistenza dei logaritmi, poi ricondursi mediante le proprietà dei logaritmi a un sistema di equazioni algebrico cui si applicano le ordinarie tecniche risolutive ed infine confrontare le soluzioni trovate con le condizioni di esistenza per stabilire se sono accettabili. Diamo qualche esempio. ESERCIZI Risolvere i seguenti sistemi di equazioni logaritmiche log x log y = log ( x y ) = Condizioni di esistenza: x>0 y>0 x y>0. Dunque: log x log y = log x = x y = x=y x=8 y log ( x y ) = ( ) y y= log x y = y= x y= log ( x + ) log y = log x + log ( y + ) = Condizioni di esistenza: x>0 y>0 x>0 y>0 x>0 y>0. Dunque: x + > 0 y + > 0 x > y > ( ) x+ log x + log y = log = x+ = y y log x + log ( y + ) = ( ) log x y + = x ( y+ ) = x = y x = y x = y x= ( y ) ( y + ) = y= y= y + y = 0 y = da scartare Pagina di

5 log ( x + y ) = log log x + = 9 log y Condizioni di esistenza: x>0 x+y>0 x>0 y>0 y y>0y Per semplificare i calcoli è preferibile passare ai logaritmi in base. Applicando la formula del cambiamento di base, si ha: ( x + y) log log ( x + y ) = ; log log 9 x = log log x x = ; log =. Dunque: y log y log ( ) ( x + y) log x + y = log = log log log x + = log x 9 log + = log y y ( ) ( ) log x + y = log log x + y = log log log x log y = log y log x = log ( ) log x + y = log x + y = x= x = impossibile y y log = log = y= y = x x x da scartare log x log y = 5 + =5 log log 5 x y ( x>0 x ey>0 y ) Per la formula del cambiamento di base si ha: = log x ; = log log 5 x y log y 5 Dunque: log x log y = log x log y = 5 5 log x = x=8 log x + log y = =5 log y = y = 5 log log 5 5 x y log x + / / = 6 Pagina 5 di

6 DISEQUAZIONI DEFINIZIONE Per disequazione logaritmica s intende ogni disequazione nella quale l incognita è presente nell argomento di uno o più logaritmi. FORME CANONICHE Utilizzando le proprietà dei logaritmi, ogni disequazione logaritmica può essere ricondotta nelle seguenti forme fondamentali: METODI RISOLUTIVI (i) (i) log a f(x) < k e log a f(x) > k (k R) (ii) log a f(x) < log a g(x) e log a f(x) > log a g(x) (k R) log a f(x) < k ; log a f(x) > k Le soluzioni di queste disequazioni logaritmiche dipendono dal valore della base a. Dalla definizione e dalle proprietà di monotònia (crescenza e decrescenza) del logaritmo, si ricava che le soluzioni della disequazione log a f(x) < k si ottengono risolvendo uno dei seguenti due sistemi: f( x ) >0 f( x ) >a k 0<a< f( x ) >0 f( x ) <a k a> Per la disequazione log a f(x) > k, invece, le soluzioni si ottengono risolvendo uno dei seguenti due sistemi: (ii) f( x ) >0 f( x ) <a k 0<a< log a f(x) < log a g(x) ; log a f(x) > log a g(x) f( x ) >0 f( x ) >a k a> Anche le soluzioni di queste disequazioni logaritmiche dipendono dal valore della base a. Sempre dalla definizione e dalle proprietà di monotònia del logaritmo, si ricava che le soluzioni della disequazione log a f(x) < log a g(x) si ottengono risolvendo uno dei seguenti due sistemi: f( x ) >0 g( x ) >0 f( x ) >g( x) 0<a< f( x ) >0 g( x ) >0 a> f( x ) <g( x) Per la disequazione log a f(x) > log a g(x), invece, le soluzioni si ottengono risolvendo uno dei seguenti due sistemi: f( x ) >0 g( x ) >0 f( x ) <g( x) 0<a< f( x ) >0 g( x ) >0 a> f( x ) >g( x) Pagina 6 di

7 ESERCIZI Risolvere le seguenti disequazioni logaritmiche del tipo log a f(x) k log ( ) 5x > Essendo la base >, si ha: 5x > 0 x < ( ) 5 7 log 5x > x < 5x > 7 5 x < 5 ( ) log x < Essendo la base >, si ha: ( ) x > 0 x > x < x > log x < x < x < 9 < x < <x< log ( x + ) > Essendo la base <, si ha: <x< x + > 0 x > ( ) 7 log x + > 7 < x < x + < ( ) x < ( ) log x + < Essendo la base <, si ha: x + > 0 ( ) x + > 0 log x + < 6 x R x + > ( ) x + > 0 7 Pagina 7 di

8 Risolvere le seguenti disequazioni logaritmiche del tipo log a f(x) log a g(x) log ( x ) > log ( x + ) Essendo la base >, si ha: x > 0 x < ( ) ( ) log x > log x + x + > 0 x > x > x + x < 0 < x < 0 log x + x < log x Essendo la base 0>, si ha: x + x > 0 0 < x < log x + x < log x x > 0 x > 0 x + x < x x < 0 x > < x < 5 5 ( ) ( ) log x < log x Essendo la base <, si ha: 5 x < x > 0 ( ) ( ) log x < log x x > 0 x < 5 5 x > x x x < 0 < x < x < <x< < x < + Pagina 8 di

9 ( ) log x + < log x Essendo la base <, si ha: x + > 0 x R x R ( ) log x + < log x x > 0 x > 0 x > 0 x + > x x x + > 0 x < x > x> 5 8 log x + log x 0 8 Per l esistenza dei logaritmi deve essere x>0. Inoltre, per la formula del cambiamento di base si ha: log x = log x = log x. Dunque: 8 ( ) 8 log x + log x 0 8 log x + log x 0 log x + log x 0 8 Posto log x = y, si ha y + y 0 y y y y impossibile Passando ai logaritmi e notando che la base <, si ha: log x x x 0<x x log x x Pagina 9 di

10 SISTEMI DI DISEQUAZIONI LOGARITMICHE Per risolvere un sistema di disequazioni) logaritmiche occorre anzitutto porre le condizioni di esistenza dei logaritmi, poi ricondursi mediante le proprietà dei logaritmi a un sistema di disequazioni algebrico cui si applicano le ordinarie tecniche risolutive ed infine confrontare le soluzioni trovate con le condizioni di esistenza per stabilire se sono accettabili. Diamo qualche esempio. ESERCIZI Risolvere i seguenti sistemi di disequazioni logaritmiche log ( x ) log ( x ) Condizione di esistenza: x >0 x>. Dunque: log ( x ) x x x ( ) x 9 log x x x x 9 log x log x + log x Condizione di esistenza: x>0; Per la formula del cambiamento di base si ha: x>0 x>0 x>0 x log x 0 x log x = log x. Dunque: log x log x + log x log x log x x + log x + log x + log x log x log x log x log x + log x Studiamo il segno della frazione log x Pagina 0 di

11 + log x 0 log x x 0 log x > 0 log x > 0 x> + log x 0 x <. Quindi: log x log x log x + x x x< log x log x + log ( x ) log ( x ) 0 Condizioni di esistenza: x>0 x>0 x >0 x> x> x >0 x> log x + log ( x ) ( ) ( ) log x x x x x x 0 log ( x ) 0 x x x x x da scartare x x ( ) ln x 0 ln x ln x 0 Condizioni di esistenza: N x >0 x > x< x> x> x>0 x>0 x>0 ( ) ln x 0 x x x x da scartare ln x ln x 0 0 ln x x e x e D x <x e x e Pagina di

Si definisce equazione esponenziale ogni equazione nella quale l incognita è presente nell esponente di una o più potenze.

Si definisce equazione esponenziale ogni equazione nella quale l incognita è presente nell esponente di una o più potenze. MATEMATICA & FISICA E DINTORNI Pasquale Spiezia Algebra» Appunti» Equazioni esponenziali DEFINIZIONE Si definisce equazione esponenziale ogni equazione nella quale l incognita è presente nell esponente

Dettagli

EQUAZIONI E DISEQUAZIONI LOGARITMICHE. Prof.ssa Maddalena Dominijanni

EQUAZIONI E DISEQUAZIONI LOGARITMICHE. Prof.ssa Maddalena Dominijanni EQUAZIONI E DISEQUAZIONI LOGARITMICHE Definizione e proprietà dei logaritmi Il logaritmo in base a, con a > 0 e a, del numero b è l esponente da attribuire alla base a per ottenere il numero b. x x log

Dettagli

Algebra» Appunti» Disequazioni con valori assoluti

Algebra» Appunti» Disequazioni con valori assoluti MATEMATICA & FISICA E DINTORNI Pasquale Spiezia Algebra» Appunti» Disequazioni con valori assoluti DEFINIZIONE Il valore assoluto (o modulo) di un numero k R è un numero indicato con la notazione k e definito

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

7. Le funzioni elementari: esercizi

7. Le funzioni elementari: esercizi 7. Le funzioni elementari: esercizi Esercizio 7.7. Risolvere le disequazioni. 8 log (3x + ) log 4(3x + );. log x + log / x > 4; 3. log x + log x log(3x); 4. log 7 3 x log 9 x 3 > 5 9 ; 5. log 3 x + + log

Dettagli

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)

Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 21 Novembre Logaritmi e Proprietà

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 21 Novembre Logaritmi e Proprietà Esercitazioni di Matematica Generale A.A. 016/017 Pietro Pastore Lezione del 1 Novembre 016 Logaritmi e Proprietà Quando scriviamo log a b = c che leggiamo logaritmo in base a di b uguale a c, c è l esponente

Dettagli

Verica di Matematica su equazioni e disequazioni esponenziali e logaritmiche [COMPITO 1]

Verica di Matematica su equazioni e disequazioni esponenziali e logaritmiche [COMPITO 1] Verica di Matematica su equazioni e disequazioni esponenziali e logaritmiche [COMPITO ]. Risolvere le seguenti equazioni esponenziali: (a) 3 x = 3 x ; (b) e x 0e x + = 0; (c) x x 40 = 0.. Risolvere le

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 2 Dicembre Dominio di Funzioni

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 2 Dicembre Dominio di Funzioni Esercitazioni di Matematica Generale A.A. 06/07 Pietro Pastore Lezione del Dicembre 06 Dominio di Funzioni Determinare il dominio delle seguenti funzioni ) x +3x. fx) =. Il dominio si trova considerando

Dettagli

RICHIAMI di MATEMATICA ESERCIZI: equazioni e disequazioni esponenziali e logaritmiche

RICHIAMI di MATEMATICA ESERCIZI: equazioni e disequazioni esponenziali e logaritmiche RICHIAMI di MATEMATICA ESERCIZI: equazioni e disequazioni esponenziali e logaritmiche Linguaggio e notazioni: a x esponenziale di base a, a > 0, e di esponente x R. log a x logaritmo in base a, a > 0 e

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0

Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0 Equazione esponenziale a x = b con 00 Proprietà delle potenze: a n. b n = ( a. b ) n a n : b n = ( a : b ) n a n. a m = a n+m a n : a m = a n-m ( a n ) m = a n a n/m n a = a -n/m

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

Soluzioni delle Esercitazioni II 24 28/09/2018 = 1 2 = 1±3 4. t = 1± 1 4

Soluzioni delle Esercitazioni II 24 28/09/2018 = 1 2 = 1±3 4. t = 1± 1 4 oluzioni delle Esercitazioni II 4 8/09/08 A Equazioni intere i ha: + = 3 4 Portando a sinistra le e a destra le costanti diventa 6 =, = 3 + = 0 Raccogliendo si può riscrivere come ( + ) = 0, che ha per

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 7 Novembre Disequazioni irrazionali

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 7 Novembre Disequazioni irrazionali Esercitazioni di Matematica Generale AA 016/017 Pietro Pastore Lezione del 7 Novembre 016 Disequazioni irrazionali Risolvere le seguenti disequazioni 1 3x + 1 < x + 7 La disequazione é equivalente al seguente

Dettagli

Matematica Esempio esame Unità 1-6

Matematica Esempio esame Unità 1-6 Matematica Esempio esame Unità 1-6 Giuseppe Vittucci Marzetti Dipartimento di Sociologia e Ricerca Sociale Università degli Studi di Milano-Bicocca Corso di Laurea in Scienze dell Organizzazione Novembre

Dettagli

Matematica. 5. Funzioni, equazioni e disequazioni esponenziali e logaritmiche. Giuseppe Vittucci Marzetti 1

Matematica. 5. Funzioni, equazioni e disequazioni esponenziali e logaritmiche. Giuseppe Vittucci Marzetti 1 Matematica 5. Funzioni, equazioni e disequazioni esponenziali e logaritmiche Giuseppe Vittucci Marzetti 1 Corso di laurea in Scienze dell Organizzazione Dipartimento di Sociologia e Ricerca Sociale Università

Dettagli

Verica di Matematica (recupero) su equazioni e disequazioni esponenziali e logaritmiche [COMPITO 1]

Verica di Matematica (recupero) su equazioni e disequazioni esponenziali e logaritmiche [COMPITO 1] Verica di Matematica (recupero) su equazioni e disequazioni esponenziali e logaritmiche [COMPITO 1] 1. Risolvere la seguente equazione esponenziale: 10 2 2x 9 2 x 1 = 0. 2. Risolvere la seguente equazione

Dettagli

Le proprietà che seguono valgono x, y > 0, a > 0 a 1, e b qualsiasi. Da queste si possono anche dedurre le seguenti uguaglianze log a 1 = 0

Le proprietà che seguono valgono x, y > 0, a > 0 a 1, e b qualsiasi. Da queste si possono anche dedurre le seguenti uguaglianze log a 1 = 0 Corso di Potenziamento a.a. 009/00 I Logaritmi Fissiamo un numero a > 0, a. Dato un numero positivo t, l equazione a x = t ammette un unica soluzione x che si chiama logaritmo in base a di t e si scrive

Dettagli

COMPENDIO ESPONENZIALI LOGARITMI

COMPENDIO ESPONENZIALI LOGARITMI TORINO SETTEMBRE 2010 COMPENDIO DI ESPONENZIALI E LOGARITMI di Bart VEGLIA 1 ESPONENZIALi 1 Equazioni esponenziali Un espressione in cui l incognita compare all esponente di una o più potenze si chiama

Dettagli

FUNZIONE LOGARITMO. =log,, >0, 1 : 0,+ log

FUNZIONE LOGARITMO. =log,, >0, 1 : 0,+ log FUNZIONE LOGARITMO =log,,>0, 1 : 0,+ log a è la base della funzione logaritmo ed è una costante positiva fissata e diversa da 1 x è l argomento della funzione logaritmo e varia nel dominio Funzione logaritmo

Dettagli

Analisi Matematica 1 - Canale Sd-Z Foglio di esercizi n. 1-4 Ottobre 2018 SOLUZIONI

Analisi Matematica 1 - Canale Sd-Z Foglio di esercizi n. 1-4 Ottobre 2018 SOLUZIONI Analisi Matematica 1 - Canale Sd-Z Foglio di esercizi n. 1-4 Ottobre 018 SOLUZIONI Esercizio 1.a 1 x + 1 x 1 + 1 x+ < 0 sommiamo le frazioni e otteniamo 3x +x x(x 1)(x+) < 0. Studiamo il segno di numeratore

Dettagli

Docente: Vincenzo Pappalardo Materia: Matematica. Algebra. Disequazioni valore assoluto

Docente: Vincenzo Pappalardo Materia: Matematica. Algebra. Disequazioni valore assoluto Docente: Vincenzo Pappalardo Materia: Matematica Algebra Disequazioni valore assoluto DEFINIZIONI Il valore assoluto di un numero è uguale al numero stesso se il numero è positivo o nullo, è l opposto

Dettagli

Disequazioni esponenziali e logaritmiche

Disequazioni esponenziali e logaritmiche Disequazioni esponenziali e logaritmiche Saranno descritte alcune principali tipologie di disequazioni esponenziali e logaritmiche, riportando un esempio per ciascuna di esse. Daniela Favaretto Università

Dettagli

1 Le equazioni con il valore assoluto

1 Le equazioni con il valore assoluto 1 Le equazioni con il valore assoluto Si definisce valore assoluto di x IR x = x x 0 x x < 0 In base a tale definizione è possibile risolvere equazioni e disequazioni in cui compaia il valore assoluto

Dettagli

Programma svolto: Matematica Docente: Prof. Gionatha Massini Anno Scolastico: 2018/19 Classe: 2 A I.T.T.

Programma svolto: Matematica Docente: Prof. Gionatha Massini Anno Scolastico: 2018/19 Classe: 2 A I.T.T. IISSTIITUTO SSTATALE dd IISSTRUZIIONE SSUPERIIORE Ennrri iccoo Maatttteei i Istituto Professionale per l Industria e l Artigianato Istituto Tecnico Commerciale Istituto Tecnico Industriale Liceo Scientifico

Dettagli

Matematica per le scienze sociali Equazioni e disequazioni. Domenico Cucina

Matematica per le scienze sociali Equazioni e disequazioni. Domenico Cucina Matematica per le scienze sociali Equazioni e disequazioni Domenico Cucina University of Roma Tre D. Cucina (domenico.cucina@uniroma3.it) 1 / 19 Outline 1 Equazioni algebriche 2 Equazioni di primo grado

Dettagli

MODULI DI MATEMATICA (SECONDO BIENNIO)

MODULI DI MATEMATICA (SECONDO BIENNIO) DIPARTIMENTO SCIENTIFICO Asse* Matematico Scientifico - tecnologico Triennio MODULI DI MATEMATICA (SECONDO BIENNIO) SUPERVISORE DI AREA Prof. FRANCESCO SCANDURRA MODULO N. 1 MATEMATICA Matematico TERZA

Dettagli

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x.

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x. 1 Soluzioni esercizi 1.1 Equazioni di 1 e grado Risolvere le seguenti equazioni di 1 grado: 1) 3x 5x = 1 x. Abbiamo: 3x + x 5x = 1 + x = 1 + 4 x = 5. ) x + 3 x = + 3x. Facciamo il m.c.m. : 4x + 6 x = 4

Dettagli

Matematica per le scienze sociali Equazioni e disequazioni. Francesco Lagona

Matematica per le scienze sociali Equazioni e disequazioni. Francesco Lagona Matematica per le scienze sociali Equazioni e disequazioni Francesco Lagona University of Roma Tre F. Lagona (francesco.lagona@uniroma3.it) 1 / 19 Outline 1 Equazioni algebriche 2 Equazioni di primo grado

Dettagli

Parte I. Matematica per le Applicazioni Economiche

Parte I. Matematica per le Applicazioni Economiche Parte I Matematica per le Applicazioni Economiche Capitolo 1 Disequazioni 1.1. Definizioni Una disequazione è una disuguaglianza fra due espressioni contenenti una o più incognite. Nel caso di una sola

Dettagli

Classe TERZA A inf. MATEMATICA : COMPITI VACANZE E SOSPENSIONE DEL GIUDIZIO

Classe TERZA A inf. MATEMATICA : COMPITI VACANZE E SOSPENSIONE DEL GIUDIZIO Classe TERZA A inf. MATEMATICA : COMPITI VACANZE E SOSPENSIONE DEL GIUDIZIO RICORDA: Nelle disequazioni di primo grado a>b o a

Dettagli

Corso di Laurea in Scienze Biologiche Prova scritta di Matematica del 26/01/2007

Corso di Laurea in Scienze Biologiche Prova scritta di Matematica del 26/01/2007 Corso di Laurea in Scienze Biologiche Prova scritta di Matematica del 6/0/007 COGNOME NOME MATRICOLA 3 sin( ) e 3 + ) Determinare ( cos()) Possibile svolgimento Il ite proposto si presenta nella forma

Dettagli

Identità ed equazioni

Identità ed equazioni Matematica e-learning - Identità ed equazioni Prof. erasmo@galois.it A.A. 2009/2010 1 Generalità sulle equazioni Si consideri un uguaglianza tra due espressioni algebriche A = B Se si sostituiscono al

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA III Parziale - Compito C 6/5/5 A. A. 4 5 ) Studiare la seguente funzione polinomiale:

Dettagli

UNITÀ FORMATIVA DISCIPLINARE: N. 9 Titolo: SCOMPOSIZIONI POLINOMI

UNITÀ FORMATIVA DISCIPLINARE: N. 9 Titolo: SCOMPOSIZIONI POLINOMI UNITÀ FORMATIVA DISCIPLINARE: N. 9 Titolo: SCOMPOSIZIONI POLINOMI N. ore previste 35 Periodo di realizzazione SETTEMBRE OTTOBRE 2017 in termini di competenze, abilità e conoscenze Monomi Polinomi Prodotti

Dettagli

Matematica www.mimmocorrado.it 1

Matematica www.mimmocorrado.it 1 Equazioni letterali fratte di I grado Un equazione letterale fratta è un equazione fratta che contiene, oltre la lettera che rappresenta l incognita dell equazione, altre lettere, dette parametri, che

Dettagli

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizi 06/7 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizio. Risolvere la seguente equazione: Soluzione. ) x+ ) x 7 x = 0 7 L equazione è definita per ogni x 0, valore in cui

Dettagli

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI Notiamo che lo studio delle funzioni assegnate f,..., f 4 si riduce a considerare

Dettagli

1 Funzioni algebriche fratte

1 Funzioni algebriche fratte 1 Funzioni algebriche fratte 1.1 Esercizio svolto y = x 1 x 11x + 10 (generalizzazione) La funzione è del tipo y = f(x) g(x) con f(x) e g(x) polinomi reali in x. Per determinare il dominio D della funzione

Dettagli

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x? A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento

Dettagli

Δ > 0, f(x)<0 quindi valori interni 0<x<4. Δ <0 f(x)>0 quindi sempre verificata

Δ > 0, f(x)<0 quindi valori interni 0<x<4. Δ <0 f(x)>0 quindi sempre verificata Classe TERZA A inf. MATEMATICA attività di rinforzo anno 011/1 Nella verifica di settembre dovrai dimostrare di riconoscere l'equazione della retta, della circonferenza, della parabola con asse parallelo

Dettagli

Esercizi sulle disequazioni a cura del Dott. Simone Vazzoler

Esercizi sulle disequazioni a cura del Dott. Simone Vazzoler Esercizi sulle disequazioni a cura del Dott. Simone Vazzoler 1 ottobre 009 1 Valore assoluto Esercizio 1.1. < 1 x + 1 Svolgimento: Abbiamo i due sistemi: (i) x + 1 0 x + 1 < 1 x + 1 (ii) x + 1 < 1 Le soluzioni

Dettagli

Esercitazione 2 - Soluzioni

Esercitazione 2 - Soluzioni Esercitazione - Soluzioni Francesco Davì ottobre 0 Esercizio (a) Si deve avere + x 0 x, che è verificato x R, in quanto il valore del modulo di un espressione non è mai negativo. L espressione al numeratore

Dettagli

Δ > 0, f(x)<0 quindi valori interni 0<x<4. Δ <0 f(x)>0 quindi sempre verificata

Δ > 0, f(x)<0 quindi valori interni 0<x<4. Δ <0 f(x)>0 quindi sempre verificata Classe TERZA A inf. MATEMATICA : SOSPENSIONE DEL GIUDIZIO Devi svolgere su di un quaderno tutti gli esercizi di queste pagine, anche quelli già risolti come esempio e consegnarmelo il giorno della prova

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Università di Trieste Facoltà d Ingegneria Esercitazioni per la preparazione della prova scritta di Matematica Dott Franco Obersnel Lezione 8: estremi vincolati Esercizio 1 Scomporre il numero 411 nella

Dettagli

Liceo Scientifico Severi Salerno

Liceo Scientifico Severi Salerno Liceo Scientifico Severi Salerno VERIFICA SCRITTA MATEMATICA Docente: Pappalardo Vincenzo Data: 20/10/2018 Classe: IV D 1. Risolvere le seguenti equazioni e disequazioni esponenziali: 3 2 x 5 4 x 1 = 20

Dettagli

LEZIONI ED ESERCITAZIONI DI FISICA Prof. Francesco Marchi 1 Esercitazione su: angoli, funzioni e formule goniometriche Indice 1 Goniometriche 1.1 Introduzione.............................. 1. La soluzione

Dettagli

Dr. Erasmo Modica

Dr. Erasmo Modica UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI PRIMO GRADO Dr. Erasmo Modica erasmo@galois.it IDENTITÀ ED EQUAZIONI Si consideri un uguaglianza

Dettagli

DISCIPLINA MATEMATICA. LIBRO DI TESTO Bergamini Barozzi Matematica multimediale.azzurro voll.2,3 ZANICHELLI

DISCIPLINA MATEMATICA. LIBRO DI TESTO Bergamini Barozzi Matematica multimediale.azzurro voll.2,3 ZANICHELLI DISCIPLINA MATEMATICA LIBRO DI TESTO Bergamini Barozzi Matematica multimediale.azzurro voll.2,3 ZANICHELLI DOCENTE GENNA FRANCESCA Classe III Sezione G Indirizzo LINGUSTICO Marsala lì 30/10/2017 Firma

Dettagli

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.

Dettagli

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione

Dettagli

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R. ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori

Dettagli

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

ESERCIZI SVOLTI DI RIEPILOGO SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI ALCUNI CONCETTI DI BASE SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI

ESERCIZI SVOLTI DI RIEPILOGO SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI ALCUNI CONCETTI DI BASE SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI ESERCIZI SVOLTI DI RIEPILOGO SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI ALCUNI CONCETTI DI BASE SU EQUAZIONI E DISEQUAZIONI IRRAZIONALI EQUAZIONI IRRAZIONALI Una equazione si definisce irrazionale quando

Dettagli

ESERCITAZIONE 8 : FUNZIONI LINEARI

ESERCITAZIONE 8 : FUNZIONI LINEARI ESERCITAZIONE 8 : FUNZIONI LINEARI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 27 Novembre 2012 Le funzioni lineari

Dettagli

Liceo Scientifico Statale. Leonardo Da Vinci

Liceo Scientifico Statale. Leonardo Da Vinci Liceo Scientifico Statale Leonardo Da Vinci Via Possidonea, 8-89100 Reggio Calabria - Tel: 0965-29911 / 312063 www.liceovinci.rc.it Anno Scolastico 2005-2006 Disequazioni Esponenziali e Logaritmiche Prof.

Dettagli

MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013

MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013 MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013 Soluzioni 1. Due sperimentatori hanno rilevato rispettivamente 25 e 5 misure di una certa grandezza lineare e calcolato le medie che sono risultate

Dettagli

3 5 x 25 5 x = 1 5 x (3 25) = x = 1. 5 x = x 8x 8 = 0 2 x (23 ) x. = x (2x ) 3. = x (2 x ) 3 = 0.

3 5 x 25 5 x = 1 5 x (3 25) = x = 1. 5 x = x 8x 8 = 0 2 x (23 ) x. = x (2x ) 3. = x (2 x ) 3 = 0. Anno Scolastico 014/15 - Classe 3B Soluzioni della verifica di matematica del 9 Maggio 015 Risolvere le seguenti equazioni esponenziali o logaritmiche. Dove è necessario, scrivere le condizioni di esistenza

Dettagli

IIS Algarotti, Venezia a.s. 2017/18 Classe 1C Turistico Materia: Fisica PROGRAMMA SVOLTO

IIS Algarotti, Venezia a.s. 2017/18 Classe 1C Turistico Materia: Fisica PROGRAMMA SVOLTO IIS Algarotti, Venezia a.s. 2017/18 Classe 1C Turistico Materia: Fisica Le grandezze fisiche e la loro misurazione: Il metodo scientifico Misure e unità di misura; il Sistema Internazionale Gli strumenti

Dettagli

Algebra» Appunti» Disequazioni esponenziali

Algebra» Appunti» Disequazioni esponenziali MATEMATICA & FISICA E DINTORNI Psqule Spiezi Algebr» Appunti» Disequzioni esponenzili DEFINIZIONE Si definisce disequzione esponenzile ogni disequzione nell qule l incognit è presente nell esponente di

Dettagli

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Matematica di base Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Calendario 21 Ottobre Aritmetica ed algebra elementare 28 Ottobre Geometria elementare 4 Novembre Insiemi

Dettagli

Equazioni esponenziali e logaritmi

Equazioni esponenziali e logaritmi Copyright c 2008 Pasquale Terrecuso Tutti i diritti sono riservati. Equazioni esponenziali e logaritmi 2 equazioni esponenziali..................................................... 3 casi particolari............................................................

Dettagli

Per risolvere un equazione letterale fratta occorre: 1. Scomporre in fattori i denominatori e calcolare il m.c.m.

Per risolvere un equazione letterale fratta occorre: 1. Scomporre in fattori i denominatori e calcolare il m.c.m. Equazioni letterali fratte di II grado Un equazione letterale fratta è un equazione fratta che contiene, oltre la lettera che rappresenta l incognita dell equazione, altre lettere, dette parametri, che

Dettagli

EQUAZIONI E SISTEMI DI 2 GRADO

EQUAZIONI E SISTEMI DI 2 GRADO EQUAZIONI E SISTEMI DI GRADO Prof. Domenico RUGGIERO In questa breve trattazione vengono esposti la formula risolutiva di equazioni di secondo grado ed il procedimento risolutivo, per sotituzione, di sistemi

Dettagli

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO DISCIPLINA: MATEMATICA per i Licei RESPONSABILE: CONFORTI U. CLASSE: prima Liceo Artistico e Musicale Utilizzare le tecniche e le procedure

Dettagli

Esercizi 2017/18 - Analisi I - Ingegneria Edile Architettura - 3. x 15. x x = 0.

Esercizi 2017/18 - Analisi I - Ingegneria Edile Architettura - 3. x 15. x x = 0. Esercizi 01/18 - Analisi I - Ingegneria Edile Architettura - Esercizio 1. Risolvere la seguente equazione: ( ) 9 15 1 ( 15 9 ) = 0. Gli esponenti esistono per 1 e 0. Per risolvere l eqauazione portiamo

Dettagli

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO DISCIPLINA: MATEMATICA per i Licei RESPONSABILE: CONFORTI U. CLASSE: prima Liceo Artistico e Musicale Comunicazione nella madrelingua Competenza

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 64555 - Fax +39 09 64558 Analisi Matematica Testi d esame e Prove parziali a prova - Ottobre

Dettagli

Istituto Tecnico Statale per il Turismo "Francesco Algarotti" Classe: 3 Sez. A A. S. 2018/19 PROGRAMMA DI MATEMATICA

Istituto Tecnico Statale per il Turismo Francesco Algarotti Classe: 3 Sez. A A. S. 2018/19 PROGRAMMA DI MATEMATICA Classe: 3 Sez. A A. S. 2018/19 Libro di testo: Bergamini Trifone Barozzi Matematica.bianco (2 vol.) Bergamini Trifone Barozzi Matematica.rosso (vol. 3s) Volume 2 Ripasso. Scomposizione in fattori primi

Dettagli

SCHEDA PROGRAMMA SVOLTO A.S. 2017/18 Classe 1^ e 2^ Ps (serale)

SCHEDA PROGRAMMA SVOLTO A.S. 2017/18 Classe 1^ e 2^ Ps (serale) Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti

Dettagli

3. Segni della funzione (positività e negatività)

3. Segni della funzione (positività e negatività) . Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della

Dettagli

PIANO DI STUDIO DELLA DISCIPLINA DISCIPLINA: MATEMATICA PIANO DELLE UDA 2 ANNO IPSIA SETTORE IP Anno 2016/2017

PIANO DI STUDIO DELLA DISCIPLINA DISCIPLINA: MATEMATICA PIANO DELLE UDA 2 ANNO IPSIA SETTORE IP Anno 2016/2017 DISCIPLINA: MATEMATICA PIANO DELLE 2 ANNO IPSIA SETTORE IP Anno 2016/2017 COMPETENZE della ABILITA n. 1 RECUPERO E POTENZIAMENTO Ore: 12 settembre forma grafica M 3 Individuare le strategie appropriate

Dettagli

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO

Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO Protocollo dei saperi imprescindibili ORDINE DI SCUOLA: LICEO DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima Liceo Artistico e Musicale - Numeri naturali, interi, razionali

Dettagli

PROGRAMMA SVOLTO A. S. 2015/ 2016

PROGRAMMA SVOLTO A. S. 2015/ 2016 Nome docente Borgna Giorgio Materia insegnata Matematica Classe II B Servizi Socio Sanitari ore complessive di insegnamento Numero ore di insegnamento 33 settimane X 4 ore =132 ore Nome Ins. Tecn. Pratico

Dettagli

Corsi di laurea in Fisica, Fisica ed Astrofisica Analisi A.A Foglio 4 1. Data la funzione

Corsi di laurea in Fisica, Fisica ed Astrofisica Analisi A.A Foglio 4 1. Data la funzione Corsi di laurea in Fisica, Fisica ed Astrofisica Analisi A.A. 007-008 Foglio 4 1. Data la funzione x 6x + 8 x 0, 8 cos(x) x < 0, dire se è continua in 0. Affinché la funzione sia continua in zero, deve

Dettagli

Analisi Matematica 1 - a.a. 2017/ Secondo appello

Analisi Matematica 1 - a.a. 2017/ Secondo appello Analisi Matematica - a.a. 27/28 - Secondo appello Soluzione del test Test A 2 3 4 5 6 7 8 9 D D A B C B A E D D Test B 2 3 4 5 6 7 8 9 B A C C B E D E A A Test C 2 3 4 5 6 7 8 9 A C B E E D C B B C Test

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI Esercizi risolti Classi quarte La presente dispensa riporta la risoluzione di alcuni esercizi inerenti equazioni e disequazioni esponenziali risolte con l'ausilio del calcolo logaritmico.

Dettagli

1 La funzione logaritmica

1 La funzione logaritmica Liceo Scientico Paritario Ven. A. Luzzago di Brescia - A.S. 2011/2012 Equazioni e disequazioni logaritmiche - Simone Alghisi 1 La funzione logaritmica Si è dimostrato che l'equazione esponenziale in forma

Dettagli

ESERCITAZIONE 17 : CORREZIONE DEL COMPITINO

ESERCITAZIONE 17 : CORREZIONE DEL COMPITINO ESERCITAZIONE 17 : CORREZIONE DEL COMPITINO e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114 9 Aprile 2013 Esercizio

Dettagli

Matematica I, Funzione inversa. Funzioni elementari (II).

Matematica I, Funzione inversa. Funzioni elementari (II). Matematica I, 02.10.2012 Funzione inversa. Funzioni elementari (II). 1. Sia f : A B una funzione reale di variabile reale (A, B R); se f e biiettiva, allora la posizione f 1 (b) = unico elemento a A tale

Dettagli

Sistemi di 1 grado in due incognite

Sistemi di 1 grado in due incognite Sistemi di 1 grado in due incognite Problema In un cortile ci sono polli e conigli: in totale le teste sono 7 e zampe 18. Quanti polli e quanti conigli ci sono nel cortile? Soluzione Indichiamo con e con

Dettagli

Espressioni algebriche: espressioni razionali

Espressioni algebriche: espressioni razionali Espressioni algebriche: espressioni razionali definizione: Il rapporto fra due polinomi si dice espressione razionale. Le espressioni razionali in una sola variabile si scrivono nella forma generale esempio:

Dettagli

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA (V anno)

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA (V anno) Modulo n.1: Insiemi numerici e funzioni DURATA PREVISTA Ore in presenza 12 Ore a distanza 5 Totale ore 17 Risultato atteso individuare le caratteristiche di un insieme numerico; classificare le funzioni,

Dettagli

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi Sia p 5 un numero primo. Allora, p è sempre divisibile per 4. Scriviamo p (p ) (p + ). Ora, p 5 è primo e, quindi, dispari. Dunque, p e p + sono entrambi pari. Facciamo vedere anche che uno tra p e p +

Dettagli

La funzione esponenziale

La funzione esponenziale La funzione esponenziale Potenze con esponente reale La potenza a x è definita: x R se a > 0, x R + se a = 0, x Z se a < 0, Funzione esponenziale Si chiama funzione esponenziale ogni funzione del tipo:

Dettagli

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale 1. Risolvere, nel campo reale, le seguenti equazioni di secondo grado: (a) 81x 0; (b) (x 1) 7x ; (c)

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. 19 L aspirina viene eliminata dai reni in ragione del 0% del farmaco presente ogni ½ ora. Dopo quanto tempo nel corpo è rimasto il 10% dell aspirina inizialmente somministrata? 0 Un capitale iniziale di

Dettagli

RIPASSO PROPEDEUTICO AL V ANNO. Disciplina: MATEMATICA

RIPASSO PROPEDEUTICO AL V ANNO. Disciplina: MATEMATICA RIPASSO PROPEDEUTICO AL V ANNO Disciplina: MATEMATICA Testi consigliati : - BOOK IN PROGRESS MATEMATICA, ALGEBRA PRIMO ANNO, tomo n http://www.itistulliobuzzi.it/buzziwebsite/studenti/matematica/tomo%0_algebra%0buzzi%

Dettagli

SCHEDA PROGRAMMA SVOLTO Classe 1^ Ps (serale)

SCHEDA PROGRAMMA SVOLTO Classe 1^ Ps (serale) Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti

Dettagli

Appunti di Matematica

Appunti di Matematica Appunti di Matematica Funzioni economiche problemi di ottimizzazione Massimo Pasquetto IPSEOA Angelo Berti classe 5AS 16-17 febbraio 2017 massimo pasquetto Appunti di Matematica 16-17 febbraio 2017 1 /

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Istituto d Istruzione Superiore Francesco Algarotti

Istituto d Istruzione Superiore Francesco Algarotti Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione

Dettagli

ESPONENZIALI E LOGARITMI Equazioni e disequazioni - Classe quarta

ESPONENZIALI E LOGARITMI Equazioni e disequazioni - Classe quarta ESPONENZIALI E LOGARITMI Equazioni e disequazioni - Classe quarta L'argomento degli esponenziali e logaritmi verrà arontato LIMITATAMENTE al problema delle equazioni e delle disequazioni. 1 Richiami teorici

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

3 Equazioni e disequazioni.

3 Equazioni e disequazioni. 3 Equazioni e disequazioni. 3. Equazioni. Una equazione algebrica è un uguaglianza tra espressioni letterali soddisfatta per alcuni valori attribuiti alle lettere che vi compaiono. Tali valori sono detti

Dettagli

La funzione esponenziale e logaritmica

La funzione esponenziale e logaritmica La funzione esponenziale e logaritmica Roberto Boggiani Versione 4. 8 aprile 24 Le potenze dei numeri reali. Potenza con esponente intero di un numero reale Diamo la seguente Definizione. Sia a R ed n

Dettagli