B0 1 C A A C A , x y a h g 1 0 g f c 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "B0 1 C A A C A , x y a h g 1 0 g f c 1"

Transcript

1 Questa è una breve raccolta di esercizi, che verrà aggiornata man mano che andremo avanti nel corso. Se il testo di alcuni esercizi non vi è chiaro, non spaventatevi, e venite a parlarne con me. Prometto che la chiarezza degli esercizi negli esoneri e nell esame finale sarà ineccepibile! 1. OPERAZIONI TRA MATRII (1) alcolare i prodotti delle matrici seguenti: B A, B A B A A, A , A (2) alcolare il prodotto di matrici x y a h g 1 h b x 1 ya g f c 1 (3) Se e partendo da questo risultato esprimere in maniera matriciale le equazioni x 2 + 9xy + y 2 + x + 5y + 2 = x 2 /α 2 + y 2 /β 2 = 1 xy = α 2 y 2 = 4αx mostrare che ma che A =, B = (A + B) 2 A 2 + 2AB + B 2 (A + B) 3 = A 3 + 3A 2 B + 3AB 2 + B 3. (4) Trovare tutte le matrici 2 2 M con la proprietà che: M 2 = id, M 2 = id, M 2 =. (5) Mostrare che una matrice 2 2 a b c d si può scrivere come prodotto della forma x u v y se e solo se ad bc =. (6) Se A e B sono matrici n n, definiamo l operazione [A, B] = AB BA. Questa operazione si chiama commutatore di A e B, e chiaramente [A, B] = soltanto quando A e B commutano. Mostrare che valgono le seguenti relazioni: [A, B] = [B, A], [[A, B], ] + [[B, ], A] + [[, A], B] =, [A + B, ] = [A, ] + [B, ], [[[A, B], ], D] + [[[B, ], D], A] + [[[, D], A], B] + [[[D, A], B], ] =. Mostrare con un esempio che in generale [[A, B], ] [A, [B, ]]

2 2 2. AMPI (1) Mostrare che esiste un unico campo con quattro elementi, 1, α, β e che in tale campo si ha: α + 1 = β, =, α + α =, α α = β. (2) Mostrare che non esistono campi con sei elementi. (3) In questo esercizio costruiamo, rigorosamente, il campo delle funzioni razionali a coefficienti in un campo dato K. onsideriamo l insieme F dei simboli del tipo a(x)/b(x) dove a(x), b(x) K[x] e b(x). Definiamo su F la relazione a(x) b(x) c(x) a(x)d(x) = b(x)c(x). d(x) Mostrare che la relazione definita è una relazione di equivalenza (valgono le proprietà riflessiva, simmetrica e transitiva); Mostrare che le usuali operazioni di somma e prodotto definite sulle frazioni sono ben definite: in altre parole, il risultato di somma e prodotto dipende soltanto dalle classi di equivalenza che si vanno a sommare, e non dalla scelta dei rappresentanti scelti di ciascuna classe di equivalenza; Mostrare che l insieme K(x) := F/ è un campo rispetto alle operazioni di somma e prodotto sopra definite, individuando gli elementi neutri additivo e moltiplicativo. (4) I quaternioni reali sono espressioni del tipo a + bi + cj + dk dove a, b, c, d sono numeri reali. Si sommano sommando i termini corrispondenti (multipli di i con multipli di i, di j con multipli di j, ecc...) e si moltiplicano ricordando che 1 = 1 + i + j + k si comporta come elemento neutro rispetto al prodotto, e che i 2 = j 2 = k 2 = 1, ij = k = ji, jk = i = kj, ki = j = ik, e sfruttando la distributività del prodotto rispetto alla somma. Mostrare che l insieme H dei quaternioni reali soddisfa tutte le proprietà di un campo, tranne la commutatività del prodotto. Un oggetto algebrico di questo tipo si dice corpo. (5) ostruiamo ora un oggetto algebrico 1 simile al corpo dei quaternioni reali, ma scegliendo i coefficienti nel campo F p, con p un numero primo, e non tra i numeri reali. Mostrate allora che l anello così ottenuto NON è un corpo (provate con p = 2, 3, 5 e cercate di capire quale sia il problema in generale...) 3. SPAZI VETTORIALI, SOTTOSPAZI E APPLIAZIONI LINEARI (1) Una successione reale è un applicazione a : N R, solitamente indicata per mezzo della notazione a = (a, a 1, a 2,..., a n,... ) dove a(n) = a n. Mostrare che l insieme S di tutte le successioni reali è uno spazio vettoriale (reale) rispetto alle operazioni di somma e prodotto per uno scalare definite da: (a + b)(n) = a n + b n, (λa) n = λa n. (2) Una successione reale a si dice successione di Fibonacci se a n+2 = a n+1 + a n per ogni n. In altre parole ogni elemento della successione (tranne i primi due) si può ottenere sommando i due precedenti. Mostrare che l insieme F delle successioni di Fibonacci è un sottospazio vettoriale dello spazio vettoriale S definito nell esercizio precedente. Mostrare inoltre che l applicazione T : F F tale che (T a) n = a n+1 è lineare. (3) Dire se sono sottospazi di S i seguenti sottoinsiemi l insieme di tutte le successioni a termini positivi; l insieme di tutte le successioni limitate (per le quali, cioè, tutti i termini siano in valore assoluto minori di K per qualche K); l insieme di tutte le successioni convergenti; l insieme di tutte le successioni crescenti (cioè tali che a n+1 a n); l insieme di tutte le successioni a quadrato sommabile (tali cioè che P n= a2 n sia finito). 1 Dovrei dire: un anello! Questo è un insieme con due operazioni di somma e prodotto, che soddisfano tutte le proprietà di un campo, tranne la richiesta di invertibilità degli elementi non nulli rispetto al prodotto...

3 3 (4) Mostrare che l insieme P dei polinomi p(t) R[t] tali che p(t) = p( t) è un sottospazio vettoriale di R[t]. (5) Mostrare che l insieme D dei polinomi p(t) R[t] tali che p(t) = p( t) è un sottospazio vettoriale di R[t]. (6) Mostrare che P D = () e che P + D = R[t]. (7) Dire quali delle seguenti applicazioni sono lineari, e scriverne in tal caso la matrice corrispondente: φ : R 3 R 2, φ(x, y, z) = (xy + z, yz x) φ : R 3 R, φ(x, y, z) = (x + y) 2 (x y) 2 + z φ : R 2 R 2, φ(x, y) = (z + 1, y 1) φ : R R 3, φ(x) = (x, 2x, 4x) φ : R 2 R 2, φ(x, y) = (x + 2y, y 2x) φ : R 3 R 2, φ(x, y, z) = (x + y + z, x y 1, z + x) () Dire quali delle applicazioni precedenti sono iniettive, e quali suriettive, calcolando nel caso di quelle lineari nucleo ed immagine. (9) E data l applicazione lineare F : R 2 R 4 di matrice 1 3 B2 1 1A. 3 Determinare F (1, 2), F (3, 4), F (1, 1), e stabilire se F sia o meno iniettiva. (1) onsiderata l applicazione lineare G : R 4 R 3 di A, 1 3 e l applicazione F vista nell esercizio precedente, dire quale tra le composizioni F G e G F risulti definita, e scriverne la relativa matrice. (11) Sia X un insieme qualsiasi, e V X il suo insieme delle parti, cioè l insieme i cui elementi sono tutti e soli i sottoinsiemi di X. Ad esempio, se X = {a, b} allora V X = {φ, {a}, {b}, X}. La differenza simmetrica di due sottoinsiemi A, B di X è il sottoinsieme A + B = A \ B B \ A. Mostrare che V X è uno spazio vettoriale sul campo F 2 rispetto alle operazioni di somma appena introdotta, e di prodotto per uno scalare definita da A = φ, 1 A = A. (12) Secondo la notazione dell esercizio precedente, definiamo, per ogni sottoinsieme A X le applicazioni I A, U A : V X V X tali che I A (Y ) = A Y, U A (Y ) = A Y, per ogni Y X. Determinare se tali applicazioni siano lineari, ed in tal caso calcolarne nucleo ed immagine. (13) Una funzione f : R R si dice a supporto compatto se si annulla identicamente al di fuori di un intervallo. In altre parole, se esiste R > tale che f(x) = quando x > R. Mostrare che gli insiemi (R), (R) delle funzioni a supporto compatto continue ed infinitamente derivabili sono spazi vettoriali rispetto alle normali operazioni di somma e prodotto di funzioni. Mostrare inoltre che l applicazione di derivazione D : (R) (R) tale che (Df)(x) = f (x) è lineare. Quali sono la sua immagine ed il suo nucleo? (14) L applicazione φ : R 3 R è definita da φ(x) = u x, dove u = (1, 2, 3) e indica il prodotto scalare. Mostrare che φ è lineare, e scriverne la matrice associata.

4 4 (15) Sull insieme R + dei numeri reali positivi definiamo le operazioni x y = xy, λ x = x λ per ogni scelta di x, y R + e di λ R. Mostrare che R +, dotato di tali operazioni, è uno spazio vettoriale reale. (16) Siano U, V spazi vettoriali. Definiamo sul prodotto cartesiano un operazione di somma data da ed un prodotto per scalari dato da U V = {(u, v) u U, v V } (u 1, v 1 ) + (u 2, v 2 ) = (u 1 + u 2, v 1 + v 2 ) λ(u, v) = (λu, λv). Mostrare che queste operazioni definiscono su U V una struttura di spazio vettoriale (che di solito si indica con U V, e si chiama somma diretta di U e V ). Mostrare inoltre che se u 1,..., u m è una base di U e v 1,...v n è una base di V, allora gli m + n elementi della forma (u i, ) o (, v j ) formano una base di U V. (17) Sia U uno spazio vettoriale, V, W due suoi sottospazi vettoriali. Mostrare che l applicazione T : V W U definita da T (v, w) = v + w è lineare. (1) Sia U uno spazio vettoriale, V, W due suoi sottospazi vettoriali. Mostrare che l intersezione di V e W è ancora un sottospazio vettoriale di U. Mostrare che il sottoinsieme V + W composto da tutti gli elementi di U che si scrivono come somma di qualche elemento di V con qualche elemento di W è un sottospazio vettoriale di U. È vero che V + W è isomorfo a V W? (No. Perché?) (19) Sia T : U V un applicazione lineare, X : U U un isomorfismo. Mostrare che u ker T se e solo se Xu ker(xt X 1 ). Applicare questa informazione al caso particolare in cui se T indica l operatore di differenziazione U = V = (R), T (f(x)) = f (x), ed X l operatore di moltiplicazione definito da X(f(x)) = e 3x f(x). (2) Determinare tutte le soluzioni dell equazione differenziale y ay =. 4. DIPENDENZA ED INDIPENDENZA LINEARE, E SISTEMI DI EQUAZIONI LINEARI (1) Decidere se gli elementi (1, 2, 3, 4), (1, 1, 1, 1), (2, 3, 4, 5), (2, 3, 2, 3) siano o meno linearmente indipendenti in R 4. (2) Determinare tutti i sottoinsiemi linearmente indipendenti della famiglia di vettori di R 3 : (1, 1, ), (1, 1, 2), (1,, 1), (1, 1, 1). (3) Determinare se l applicazione lineare T : R 3 R 2 di matrice sia iniettiva (risp. suriettiva, invertibile). (4) Determinare se l applicazione lineare S : R 2 R 3 di A 2 sia iniettiva (risp. suriettiva, invertibile). (5) Il sistema lineare ( 2x y + 2t = 1 x + y + 2z = è risolubile? In caso affermativo determinarne tutte le soluzioni.

5 5 (6) Risolvere il sistema omogeneo (7) Discutere il sistema lineare >< 3x + z = 4x + y = x + y + z = x y + 2z = 3 >< 3x 2y + z = 4 4x 7y + 5z = 9 3x 7y + z = 7 e determinarne le eventuali soluzioni. () Si consideri il sistema lineare ( x y 1 = x + y z + 1 = e si determini t reale in modo che tutte le soluzioni del sistema soddisfino l equazione tx + y =. (9) Esaminare i due sistemi di equazioni lineari seguenti, verificarne la compatibilità ed in caso affermativo risolverli: >< x + y + z = 1 >< x + y + z = 5 2x + 4y 3z = 9 2x y + z = 7 3x + 5y 2z = 11 3x + y 5z = 13 (1) Esprimere la condizione affinché il sistema seguente sia un sistema compatibile e, nel caso che questa condizione sia verificata, trovarne la soluzione: >< x + y + z = 1 ax + by + cz = d a 3 x + b 3 y + c 3 z = d 3 (11) Dire se il seguente sistema è compatibile, ed in tal caso trovarne le soluzioni x 1 + 2x 2 5x 3 + 4x 4 + x 5 = 4 >< 3x 1 + 7x 2 x 3 3x 4 + 2x 5 = 1 x 2 13x 3 2x 4 + x 5 = 14 x 3 16x 4 + 2x 5 = 11 2x 4 + 5x 5 = 12 (12) Dire se il seguente sistema è compatibile, ed in tal caso trovarne le soluzioni x 1 5x 3 + 2x 6 = 6 2x 2 + x 4 + 3x 5 = 6 >< 2x 1 7x 3 + 3x 6 = 4 3x 2 + 2x 4 + 4x 5 = 7 2x 1 x 3 + x 6 = 12 4x 2 + 3x 4 + x 5 = 9 (13) Studiare i sistemi seguenti, tenendo conto che λ indica un parametro reale: >< x + y + λz = 1 x + λy + z = 1 λx + y + z = 1 >< x + y + λz = 2 x + λy + z = 1 λx + y + z = 1

6 6 >< λx + y + z = 5x + y 2z = 2 2x 2y + z = 3 (14) Risolvere, al variare del parametro k R, il sistema di equazioni: ( (k + 2)x + ky + 2z = 4 kx + (k 1)y + (3 k)z = 4 k (15) Dire se il seguente sistema è compatibile, ed in tal caso trovarne le soluzioni >< x 1 + 2x 2 + x 3 = 1 x 1 + x 2 + 2x 3 = 3x 1 x 2 + x 3 = 2 (16) Determinare una base per le soluzioni del sistema lineare omogeneo, e scriverne la soluzione generale. >< x 1 x 2 + 2x 3 x 4 + x 5 = x 2 + x 3 3x 4 = 2x 1 x 2 + 5x 3 5x 4 + 2x 5 =

Esercizi di Geometria e Algebra Lineare

Esercizi di Geometria e Algebra Lineare Esercizi di Geometria e Algebra Lineare 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}) 2) Nello spazio vettoriale R 3 sul campo R, sia

Dettagli

Esame di Geometria - 9 CFU (Appello del 26 gennaio 2016)

Esame di Geometria - 9 CFU (Appello del 26 gennaio 2016) Esame di Geometria - 9 CFU (Appello del 26 gennaio 206) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Al variare del parametro α R, si considerino la retta { x + y z = r : 2x + αy + z = 0 ed

Dettagli

Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I

Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I Esercizi di GEOMETRIA I - Algebra Lineare. Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = 2 0 0 2 D = ( 0 ) E = ( ) 4 4 2 C = 2 0 5 F = 4 2 6 2. Data la matrice A = 0

Dettagli

Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale)

Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale) Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = C = 2 2 0 0 2 D = ( 0

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale

Dettagli

Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare

Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare Esercizi di Geometria Spazi vettoriali e sottospazi - indipendenza lineare 1. Quali dei seguenti sottoinsiemi sono sottospazi di R 3? Motivare la risposta. (a) {(x, y, 1) x, y R} (b) {(0, y, 0) y R} (c)

Dettagli

1. Esercizi (1) Calcolare + ( 1) + 3 2, 2. (2) siano X, Y, Z R 3. Dimostrare che se X +Y = X +Z, allora Y = Z;

1. Esercizi (1) Calcolare + ( 1) + 3 2, 2. (2) siano X, Y, Z R 3. Dimostrare che se X +Y = X +Z, allora Y = Z; Esercizi () Calcolare 4 + () + () siano X Y Z R Dimostrare che se X +Y = X +Z allora Y = Z; () dimostrare che i vettori sono linearmente dipendenti; (4) dimostrare che i vettori 4 sono linearmente indipendenti;

Dettagli

Esercizi di GEOMETRIA (Ing. Ambientale e Civile - Curriculum Civile) 1. Tra le seguenti matrici, eseguire tutti i prodotti possibili:

Esercizi di GEOMETRIA (Ing. Ambientale e Civile - Curriculum Civile) 1. Tra le seguenti matrici, eseguire tutti i prodotti possibili: Esercizi di GEOMETRIA (Ing. Ambientale e Civile - Curriculum Civile). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = C = 2 2 0 0 2 D = ( 0 ) E = ( ) 4 4 2 0 5 F = 4 2

Dettagli

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza.

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Geometria I lezione del 30 settembre 2013 Presentazione del corso. Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Insiemi numerici: i numeri naturali, gli interi, i numeri

Dettagli

1 Cenni di teoria degli insiemi

1 Cenni di teoria degli insiemi 1 Cenni di teoria degli insiemi 1.1. Siano A, B, C,... insiemi. Scriveremo a A, a / A per affermare rispettivamente che l elemento a appartiene all insieme A e che l elemento a non appartiene ad A. Diremo

Dettagli

ESERCIZI DI ALGEBRA LINEARE (D) A = A = A = R 2,2. D5 Dire come bisogna scegliere i parametri h e k affinché la

ESERCIZI DI ALGEBRA LINEARE (D) A = A = A = R 2,2. D5 Dire come bisogna scegliere i parametri h e k affinché la ESERCIZI DI ALGEBRA LINEARE (D) D1 Nello spazio vettoriale R 2,2 si consideri l insieme { V = X R 2,2 XA = AX, A = ( 1 1 1 2 )} delle matrici che commutano con A. Verifiare che V = L(I 2, A). Verificare

Dettagli

ESERCIZI DI ALGEBRA LINEARE (D) V = 1 2. Verificare che V è un sottospazio e determinarne una base. A =

ESERCIZI DI ALGEBRA LINEARE (D) V = 1 2. Verificare che V è un sottospazio e determinarne una base. A = ESERCIZI DI ALGEBRA LINEARE (D) D1 Nello spazio vettoriale R 2,2 si consideri l insieme V = { X R 2,2 XA = AX, A = ( 1 1 1 2 )} delle matrici che commutano con A. Verifiare che V = L(I 2, A). Verificare

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

1. Esercizi (1) Porre in forma trigonometrica i seguenti numeri complessi: 5, 2 i2, 1 + i. (2) Calcolare le seguenti radici: 2 2i,

1. Esercizi (1) Porre in forma trigonometrica i seguenti numeri complessi: 5, 2 i2, 1 + i. (2) Calcolare le seguenti radici: 2 2i, . Esercizi () Porre in forma trigonometrica i seguenti numeri complessi: 5, i, + i. () Calcolare le seguenti radici: 3 i, 5 i, 5. (3) Risolvere le seguenti equazioni: z z + 3 = ; z z = i; z + z =. (4)

Dettagli

A. Languasco - Esercizi Matematica B - 2. Spazi Vettoriali e Trasformazioni lineari 1

A. Languasco - Esercizi Matematica B - 2. Spazi Vettoriali e Trasformazioni lineari 1 A. Languasco - Esercizi Matematica B - 2. Spazi Vettoriali e Trasformazioni lineari 1 A: Spazi vettoriali e sottospazi Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A1. Provare che l

Dettagli

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte Politecnico di Torino Facoltà di Architettura Raccolta di esercizi proposti nelle prove scritte relativi a: algebra lineare, vettori e geometria analitica Esercizio. Determinare, al variare del parametro

Dettagli

Esercizi per il corso di Algebra e Geometria L.

Esercizi per il corso di Algebra e Geometria L. Esercizi per il corso di Algebra e Geometria L AA 2006/2007 1 Foglio 1 In tutti gli esercizi che seguiranno lo spazio ambiente sarà il piano cartesiano a valori nel campo dei numeri reali, dove supporremo

Dettagli

Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17

Dettagli

Esercizi proposti. Si dica quali dei precedenti sono sottospazi vettoriali dello spazio vettoriale quadrate di ordine n.

Esercizi proposti. Si dica quali dei precedenti sono sottospazi vettoriali dello spazio vettoriale quadrate di ordine n. Esercizi proposti 1. astratti 1.1 Si consideri lo spazio R [x] dei polinomi nella variabile x con coefficienti reali. Si dica se il suo sottoinsieme S formato dai polinomi privi del termine di grado 2

Dettagli

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007

I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 A I VERIFICA DI GEOMETRIA 1 CORSO DI LAUREA IN MATEMATICA - 4 DICEMBRE 2007 ESERCIZIO 1. Si consideri il seguente sistema di equazioni lineari x + y + 2z = 1 2x + ky + 4z = h 2x 2y + kz = 0 (a) Determinare,

Dettagli

I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio.

I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio. I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio. A [8] Sono date le matrici A M 34 (IR) e b M 31 (IR) A = 1 0 2 2 0 k 1 k, b = 1

Dettagli

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007 ESERCIZI DI MATEMATICA DISCRETA ANNO 6/7 //7 () Ridurre la seguente matrice ad una a scala ridotta utilizzando il metodo di Gauss-Jordan. Soluzione. () Determinare quante e quali sono le matrici a scala

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

Altri esercizi assegnati negli esoneri degli scorsi anni

Altri esercizi assegnati negli esoneri degli scorsi anni Altri esercizi assegnati negli esoneri degli scorsi anni Esercizi sul principio di induzione 1. Utilizzando il principio di induzione si dimostri che, per ogni numero naturale positivo n, risulta: Esercizi

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

1. Esercizi 3 + ( 1) , z 3 = 1., z 2 = 3

1. Esercizi 3 + ( 1) , z 3 = 1., z 2 = 3 () Calcolare [ [ () Siano z = z z z z ; z z + z z ; z z ;. Esercizi + ( ) z = + z = ] ; ]. Calcolare z z z z. () Nel piano complesso individuare i numeri + i ( i) + i i ; (4) scrivere la forma trigonometrica

Dettagli

Appunti del Corso di GEOMETRIA PER INGEGNERIA INDUSTRIALE. Daniele Bartoli

Appunti del Corso di GEOMETRIA PER INGEGNERIA INDUSTRIALE. Daniele Bartoli Appunti del Corso di GEOMETRIA PER INGEGNERIA INDUSTRIALE Daniele Bartoli A.A. 2016/2017 2 Indice 1 Nozioni Preliminari 7 1.1 Insiemi e funzioni........................ 7 1.2 Operazioni e Strutture Algebriche..............

Dettagli

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof. Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si

Dettagli

Lezione 11. Somma di matrici Prodotto di una matrice per uno scalare Prodotto di matrici Determinante Sistemi lineari in forma matriciale

Lezione 11. Somma di matrici Prodotto di una matrice per uno scalare Prodotto di matrici Determinante Sistemi lineari in forma matriciale Lezione Somma di matrici Prodotto di una matrice per uno scalare Prodotto di matrici Determinante Sistemi lineari in forma matriciale Matrici. Somma Date due matrici n x m, A = A ij e B = B ij, con i =,,,

Dettagli

CORSO DI MATEMATICA II Prof. Paolo Papi ESERCIZI. 1). Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali. (a) V = R 3.

CORSO DI MATEMATICA II Prof. Paolo Papi ESERCIZI. 1). Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali. (a) V = R 3. CORSO DI MATEMATICA II Prof Paolo Papi ESERCIZI ) Stabilire quali dei seguenti sottoinsiemi di V sono sottospazi vettoriali (a) V = R 3 () W = {(x,,x 3 ) x,x 3 R} (2) W 2 = {(x,,x 3 ) x,x 3 R} (3) W 3

Dettagli

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3 Esercitazione di Geometria I 13 dicembre 2008 a. Completa la seguente definizione: i vettori v 1, v 2,..., v n del K-spazio vettoriale V si dicono linearmente dipendenti se... b. Siano w 1, w 2, w 3 vettori

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 9 febbraio 2007 Traccia I 1 In R 3 si consideri il sottoinsieme H = {(a, b, 2a + b) a, b R}. Stabilire se H è un sottospazio vettoriale di R 3 e, in caso affermativo, determinarne la dimensione

Dettagli

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile

Dettagli

Definizione 1 Un insieme (V, +, ) dotato delle due operazioni: - + somma di elementi v 1 V, v 2 V ;

Definizione 1 Un insieme (V, +, ) dotato delle due operazioni: - + somma di elementi v 1 V, v 2 V ; Spazi vettoriali Definizione Un insieme (V, +, ) dotato delle due operazioni: - + somma di elementi v V, v V ; - prodotto per uno scalare λ K, (K campo); e chiuso rispetto ad esse, è uno spazio vettoriale

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 26 febbraio 2007 Traccia I COG 1 In R 3 sono assegnati i vettori: u 1 = (2, h, 0), u 2 = (1, 0, h), u 3 = (h, 1, 2). Stabilire se esistono valori reali del parametro h per cui S = {u 1, u 2,

Dettagli

Esame di GEOMETRIA 27 giugno ore 11

Esame di GEOMETRIA 27 giugno ore 11 Esame di GEOMETRIA 27 giugno 2011 - ore 11 Istruzioni: Scrivere cognome, nome, matricola in STAMPATELLO negli appositi spazi. Per ogni quiz nella prima parte, indicare l affermazione giudicata corretta

Dettagli

Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica

Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica Foglio di esercizi numero 2 Corso di Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale e Meccanica Esercizio 1. Sia f l endomorfismo di R 4 definito nel modo seguente: f(x, y, z, w) = (w,

Dettagli

QUADERNI DIDATTICI. Dipartimento di Matematica. Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica

QUADERNI DIDATTICI. Dipartimento di Matematica. Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica Università ditorino QUADERNI DIDATTICI del Dipartimento di Matematica E Abbena, G M Gianella Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica Quaderno # 6 - Aprile 003 Gli esercizi proposti

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI GENNAIO 2015 DOCENTE: M. LONGO 1. Domande Domanda 1. Dire quando una funzione f : X Y tra dee insiemi X ed Y si dice iniettiva.

Dettagli

Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno.

Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno. Sistemi lineari Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno. La discussione di un sistema si imposta in questo modo: 1 studiare il rango della matrice

Dettagli

Corso di Matematica 2 (mod.a) per la Laurea in Matematica - esercizi per casa del 6 ottobre Cognome... Nome... Matricola...

Corso di Matematica 2 (mod.a) per la Laurea in Matematica - esercizi per casa del 6 ottobre Cognome... Nome... Matricola... 6.1.25-M2A-E1 Corso di Matematica 2 (mod.a per la Laurea in Matematica - esercizi per casa del 6 ottobre 25 Lo studente è tenuto a consegnare l elaborato svolto e firmato non più tardi di Lunedì 1 ottobre

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

CORSO DI MATEMATICA DISCRETA I (ALGEBRA) Prof. Paolo Papi ESERCIZI

CORSO DI MATEMATICA DISCRETA I (ALGEBRA) Prof. Paolo Papi ESERCIZI CORSO DI MATEMATICA DISCRETA I (ALGEBRA) Prof. Paolo Papi ESERCIZI ). Siano A, B, C insiemi. Provare che (A B) C = A (B C) A (B C) =(A B) (A C) C(A B) =C(A) C(B). 2). Definiamo la differenza simmetrica

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Appendice A Richiami di Algebra Lineare In questo capitolo sono presentati alcuni concetti di algebra lineare L algebra lineare è quella branca della matematica che si occupa dello studio di vettori, spazi

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI - - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle

Dettagli

Elementi di Algebra Lineare. Spazio Vettoriale (lineare)

Elementi di Algebra Lineare. Spazio Vettoriale (lineare) Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi

Dettagli

Soluzioni primi compitini - Geometria 1

Soluzioni primi compitini - Geometria 1 Soluzioni primi compitini - Geometria Caterina Vernieri Ottobre 7 Le soluzioni proposte non sono state riviste dai professori Soluzioni Primi Compitini - G I compitino 7//3 Esercizio Al variare di α R

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

LAUREA IN INGEGNERIA MECCANICA Corso di Matematica 2 I a prova parziale Padova Docenti: Cantarini Fiorot TEMA n.1

LAUREA IN INGEGNERIA MECCANICA Corso di Matematica 2 I a prova parziale Padova Docenti: Cantarini Fiorot TEMA n.1 LAUREA IN INGEGNERIA MECCANICA Corso di Matematica 2 I a prova parziale Padova 15-02-08 Docenti: Cantarini Fiorot TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti affermazioni sono vere o

Dettagli

Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi.

Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi. 1 Esercizi 1.1 Spazi vettoriali Studiare gli insiemi definiti di seguito, e verificare quali sono spazi vettoriali e quali no. Per quelli che non lo sono, dire quali assiomi sono violati. x 1, x 2, x 3

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ

ESAME DI GEOMETRIA. 6 febbraio 2002 CORREZIONE QUIZ ESAME DI GEOMETRIA 6 febbraio CORREZIONE QUIZ. La parte reale di ( + i) 9 è positiva. QUIZ Si può procedere in due modi. Un primo modo è osservare che ( + i) =i, dunque ( + i) 9 =(+i)(i) 4 = 4 ( + i) :

Dettagli

Programma di Algebra 1

Programma di Algebra 1 Programma di Algebra 1 A. A. 2015/2016 Docenti: Alberto Canonaco e Gian Pietro Pirola Richiami su relazioni di equivalenza: definizione, classe di equivalenza di un elemento, insieme quoziente e proiezione

Dettagli

EQUAZIONI DIFFERENZIALI

EQUAZIONI DIFFERENZIALI EQUAZIONI DIFFERENZIALI 1 Primo ordine - variabili separabili Sia dato il problema di Cauchy seguente: { y = a(x)b(y) Si proceda come segue y(x 0 ) = y 0 (1) Si calcolino le radici dell equazione b(y)

Dettagli

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro

ESERCIZI DI ALGEBRA LINEARE. Vincenzo Di Gennaro ESERCIZI DI ALGEBRA LINEARE Vincenzo Di Gennaro Sono raccolti, in ordine cronologico, gli esercizi di Algebra Lineare proposti nelle prove scritte per i vari corsi di Geometria 1 che ho tenuto presso la

Dettagli

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/12/2004

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/12/2004 Algebra Lineare. a.a. 004-05. Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/1/004 Esercizio 1. Siano V e W due spazi vettoriali e sia F : V W un isomorfismo (quindi F è lineare e

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (08/07/20) Università di Verona - Laurea in Biotecnologie - A.A. 200/ Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O, P-Z) (08/07/20)

Dettagli

Esercizi Applicazioni Lineari

Esercizi Applicazioni Lineari Esercizi Applicazioni Lineari (1) Sia f : R 4 R 2 l applicazione lineare definita dalla legge f(x, y, z, t) = (x + y + z, y + z + t). (a) Determinare il nucleo di f, l immagine di f, una loro base e le

Dettagli

Geometria della programmazione lineare

Geometria della programmazione lineare Geometria della programmazione lineare p. 1/39 Geometria della programmazione lineare Mariantonia Cotronei Facoltà di Ingegneria Università degli Studi Mediterranea di Reggio Calabria Geometria della programmazione

Dettagli

APPUNTI DI ALGEBRA LINEARE

APPUNTI DI ALGEBRA LINEARE APPUNTI DI ALGEBRA LINEARE. Definizione Si dice spazio vettoriale (sul campo dei numeri reali R) un insieme V per il quale siano definite l operazione interna di somma (che ad ogni coppia di vettori e

Dettagli

GEOMETRIA. 17 FEBBRAIO ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi.

GEOMETRIA. 17 FEBBRAIO ore. Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. GEOMETRIA 7 FEBBRAIO 2009 2 ore Istruzioni: Scrivere cognome, nome, numero di matricola in stampatello negli appositi spazi. Trascrivere i risultati dei quiz della prima parte nella tabella in questa pagina.

Dettagli

Gruppi, spazi e sottospazi vettoriali

Gruppi, spazi e sottospazi vettoriali CAPITOLO 3 Gruppi, spazi e sottospazi vettoriali Esercizio 3.1. Dimostrare che l insieme { a G = b forma un gruppo rispetto al prodotto tra matrici. a,b R, a,b Esercizio 3.2. Sia R[x] l insieme dei polinomi

Dettagli

A = e 1 = e 2 + e 3, e 2 = e 1 + e 3, e 3 = e 1, ; e 3 =

A = e 1 = e 2 + e 3, e 2 = e 1 + e 3, e 3 = e 1, ; e 3 = aa -6 Soluzioni Esercizi Applicazioni lineari Sia data l applicazione lineare F : R R, F X A X, dove A i Sia {e, e, e } la base canonica di R Far vedere che i vettori e e + e, e e + e, e e, formano una

Dettagli

1 o COMPITO DI ARITMETICA 13 novembre Determinare tutti i numeri naturali n che soddisfano contemporaneamente le seguenti

1 o COMPITO DI ARITMETICA 13 novembre Determinare tutti i numeri naturali n che soddisfano contemporaneamente le seguenti 1 o COMPITO DI ARITMETICA 13 novembre 2001 1. Dimostrare che, per ogni numero intero n 0, 7 3n 1 è divisibile per 3 n+1. 2. Determinare tutti i numeri naturali n che soddisfano contemporaneamente le seguenti

Dettagli

Corsi di laurea in Matematica e Matematica per le Applicazioni Esame scritto di Algebra Lineare del 7/2/2002

Corsi di laurea in Matematica e Matematica per le Applicazioni Esame scritto di Algebra Lineare del 7/2/2002 Esame scritto di Algebra Lineare del 7/2/2002 Esercizio 1 Sia h R e sia f : R[x] 3 R 3 l applicazione lineare tale che f(1) = (1, 1, h) f(1 + x) = (h + 2, 0, h) f(x 2 ) = (0, 0, 1) f(1 + x + x 3 ) = (h

Dettagli

Programma di Algebra 1

Programma di Algebra 1 Programma di Algebra 1 A. A. 2017/2018 Docente: Alberto Canonaco Richiami su insiemi e funzioni: composizione di funzioni e associatività della composizione; immagine attraverso una funzione di un sottoinsieme

Dettagli

Esercizi 1 Spazi vettoriali. { (x, y, z) R 3 (x, y, z) (2, 2, 2) } ;

Esercizi 1 Spazi vettoriali. { (x, y, z) R 3 (x, y, z) (2, 2, 2) } ; Esercizi 1 Spazi vettoriali Esercizio. Si dica quali dei seguenti sottoinsiemi di R 3 sono sottospazi vettoriali su R: { (x y z R 3 x y z Z } ; { (x y z R 3 x y z Q } ; { (x y z R 3 (x y z (2 2 2 } ; {

Dettagli

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica.

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica. 1. Applicazioni lineari Esercizio 1.1. Sia T : R 2 R 3 l applicazione lineare definita sulla base canonica di R 2 nel seguente modo: T (e 1 ) = (1, 2, 1), T (e 2 ) = (1, 0, 1). a) Esplicitare T (x, y).

Dettagli

Algebra lineare Geometria 1 15 luglio 2009

Algebra lineare Geometria 1 15 luglio 2009 Algebra lineare Geometria 1 15 luglio 2009 Esercizio 1. Nello spazio vettoriale reale R 3 [x] si considerino l insieme A k = {1 + x, k + (1 k)x 2, 1 + (k 1)x 2 + x 3 }, il vettore v k = k + kx x 3 e la

Dettagli

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio Algebra lineare Laboratorio di programmazione e calcolo CdL in Chimica Pierluigi Amodio Dipartimento di Matematica Università di Bari pierluigi.amodio@uniba.it http://dm.uniba.it/ amodio A.A. 2016/17 P.

Dettagli

Compito di Matematica I A.A.2008/09 - C.d.L. in Chimica 16 Novembre 2009 Prof. Elena Comparini

Compito di Matematica I A.A.2008/09 - C.d.L. in Chimica 16 Novembre 2009 Prof. Elena Comparini A.A.2008/09 - C.d.L. in Chimica 6 Novembre 2009 Prof. Elena Comparini f(x) = x x 2 x +, Esercizio 2. Data la funzione dell esercizio precedente, calcolare l area della regione di piano compresa tra il

Dettagli

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof FPodestà, aa 003-004 Sia V uno spazio vettoriale e sia f : V V una applicazione lineare una tale applicazione da uno spazio vettoriale in se stesso è chiamata

Dettagli

2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima.

2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima. 2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima. 3. Fra tutti i cilindri a base rotonda inscritti in una sfera, determinare quello di volume massimo. 4. Dimostrare

Dettagli

Algebra Prof. A. D Andrea Quinto scritto

Algebra Prof. A. D Andrea Quinto scritto Algebra Prof. A. D Andrea Quinto scritto 20 SETTEMBRE 2018 Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 1 7 2 7 3 7 4 12 Totale 33 Occorre motivare le risposte. Una soluzione corretta

Dettagli

Minimi quadrati. Sistemi iperdeterminati. 27 novembre 2008

Minimi quadrati. Sistemi iperdeterminati. 27 novembre 2008 Minimi quadrati 27 novembre 2008 In questa nota si indicherà sempre con V uno spazio vettoriale reale di dimensione finita n. Definizione 1. Una norma su V è una funzione : V R tale che x, y V e λ R: 1.

Dettagli

ESERCIZI sui VETTORI

ESERCIZI sui VETTORI ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di

Dettagli

Corso Matematica Discreta Anno accademico Lista domande per l orale breve.

Corso Matematica Discreta Anno accademico Lista domande per l orale breve. Corso Matematica Discreta Anno accademico 2015-2016 Lista domande per l orale breve. 1. Dimostrare una delle leggi che coinvolgono l intersezione, l unione, il complementare di insiemi contenute nel Teorema

Dettagli

r 2 r 2 2r 1 r 4 r 4 r 1

r 2 r 2 2r 1 r 4 r 4 r 1 SPAZI R n 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x, y, z)

Dettagli

Esercizi di Geometria 1 - Foglio 3bis

Esercizi di Geometria 1 - Foglio 3bis Esercizi di Geometria - Foglio 3bis Alessandro Rubin (alex.rubin@outlook.com) Si ringrazia Ricardo Tzantzoglou per il codice L A TEX condiviso dicembre 7 Esercizio. Sia f : V W un applicazione e G = {(v,

Dettagli

Esercizi di Algebra commutativa e omologica

Esercizi di Algebra commutativa e omologica Esercizi di Algebra commutativa e omologica Esercizio 1. Sia A un anello non nullo. Dimostrare che A è un campo se e solo se ogni omomorfismo di A in un anello non nullo B è iniettivo. Esercizio 2. Sia

Dettagli

Geometria BAER A.A. Canale I Foglio esercizi 4

Geometria BAER A.A. Canale I Foglio esercizi 4 Geometria BAER A.A. Canale I Foglio esercizi 4 Esercizio. Si trovino basi degli spazi delle soluzioni dei seguenti sistemi lineari Soluzione: Sol(S ) = L[ x + 3x x 3 + 5x 4 = S : x + 3x x 3 + x 4 = S x

Dettagli

1 Soluzione degli esercizi del capitolo 4

1 Soluzione degli esercizi del capitolo 4 "Introduzione alla matematica discreta /ed" - M. G. Bianchi, A. Gillio degli esercizi del capitolo 4 Esercizio 4. (pag. 47) Sia X =,,3,4} e sia R la relazione su X così definita: R = (,),(,),(,),(,),(,4),(3,3),(4,)}.

Dettagli

Elementi di Algebra Lineare

Elementi di Algebra Lineare Elementi di Algebra Lineare Corso di Calcolo Numerico, a.a. 2009/2010 Francesca Mazzia Dipartimento di Matematica Università di Bari 13 Marzo 2006 Francesca Mazzia (Univ. Bari) Elementi di Algebra Lineare

Dettagli

2 Sistemi lineari. Metodo di riduzione a scala.

2 Sistemi lineari. Metodo di riduzione a scala. Sistemi lineari. Metodo di riduzione a scala. Esercizio.1 Utilizzando il metodo di eliminazione di Gauss, risolvere i seguenti sistemi lineari: 1. 3. x 1 x + 3x 3 = 1 x 1 x x 3 = x 1 + x + 3x 3 = 5 x 1

Dettagli

DIARIO DEL CORSO DI MATHEMATICS FOR DATA SCIENCE TRENTO, A.A. 2018/19 DOCENTI: ANDREA CARANTI, SIMONE UGOLINI

DIARIO DEL CORSO DI MATHEMATICS FOR DATA SCIENCE TRENTO, A.A. 2018/19 DOCENTI: ANDREA CARANTI, SIMONE UGOLINI DIARIO DEL CORSO DI MATHEMATICS FOR DATA SCIENCE TRENTO, A.A. 2018/19 DOCENTI: ANDREA CARANTI, SIMONE UGOLINI Nota. La descrizione di lezioni non ancora svolte si deve intendere come una previsione/pianificazione.

Dettagli

Esercizi Di Geometria 1 (BAER) Canale 1

Esercizi Di Geometria 1 (BAER) Canale 1 Esercizi Di Geometria 1 (BAER) Canale 1 SETTIMANA 9 (23 29 Novembre 2015) da consegnare Mercoledi 2 Dicembre. Esercizio 1. Sia E = (V,, ) uno spazio metrico finito dimensionale. sottospazio vettoriale

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Esercizi di Geometria

Esercizi di Geometria UNIVERSITÀ DEGLI STUDI DI TRENTO FACOLTÀ DI INGEGNERIA Marco Andreatta Luca Migliorini Gianluca Occhetta Davide Panizzolo Lorenza Tonetto Marina Avitabile Esercizi di Geometria Luglio 2000 2 1. Programma

Dettagli

f(xy) = f(x + y) ( f(x) + f(y) ) Problema 6 (WC15-5). Siano a, b, c reali positivi tali che ab + bc + ca = 1. Dimostrare che c + 6 3a 1

f(xy) = f(x + y) ( f(x) + f(y) ) Problema 6 (WC15-5). Siano a, b, c reali positivi tali che ab + bc + ca = 1. Dimostrare che c + 6 3a 1 Problema (WC5-). Siano a, b e c reali positivi tali che a 3 + b 3 + c 3 = a 4 + b 4 + c 4. vale: a a 2 + b 4 + c 4 + b a 4 + b 2 + c 4 + c a 4 + b 4 + c 2 Problema 2 (WC5-2old). Determinare tutte le funzioni

Dettagli

Esercizi per il corso di Algebra e Geometria L.

Esercizi per il corso di Algebra e Geometria L. Esercizi per il corso di Algebra e Geometria L. Alessandra Bernardi Il numero degli esercizi qui raccolti è volutamente elevato. Lo scopo è di fornire un ampio spettro di esercizi e la conseguente possibilità

Dettagli

Aritmetica 2009/10 Compitino 1/12/2009. (a) Contare gli elementi nilpotenti di A. (b) Contare gli elementi zero-divisori di A.

Aritmetica 2009/10 Compitino 1/12/2009. (a) Contare gli elementi nilpotenti di A. (b) Contare gli elementi zero-divisori di A. Aritmetica 2009/10 Compitino 1/12/2009 1. Sia A = Z2[x]/(x 5 + x 4 + 1). (a) Contare gli elementi nilpotenti di A. (b) Contare gli elementi zero-divisori di A. Possibile risoluzione: Il polinomio f(x)

Dettagli

FOGLIO 2 - Spazi vettoriali

FOGLIO 2 - Spazi vettoriali FOGLIO 2 - Spazi vettoriali Esercizio 1. Verificare se i seguenti sottoinsiemi sono dei sottospazi: (a) S 1 = {(x,y,z) R 3 : x 2y + z = 0} in R 3 ; (b) S 2 = {(a,a b + 1,b 1) : a,b R} in R 3 ; (c) S 3

Dettagli

Elementi di Algebra Lineare Applicazioni lineari

Elementi di Algebra Lineare Applicazioni lineari Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 18 index Applicazioni lineari 1 Applicazioni lineari

Dettagli

i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva;

i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva; 1 Spazi vettoriali 11 Definizioni ed assiomi Definizione 11 Un campo è un insieme K dotato di una operazione somma K K K, (x, y) x + y e di una operazione prodotto K K K, (x, y) xy tali che i) la somma

Dettagli

Prova scritta di Matematica Discreta del 15/2/2005

Prova scritta di Matematica Discreta del 15/2/2005 Prova scritta di Matematica Discreta del 15/2/2005 1. a. Quante parole di 6 lettere si possono formare con un alfabeto contenente 25 lettere? b. Quante se sono proibite le doppie (ossia lettere uguali

Dettagli

APPLICAZIONI. Im f = {b B a A tale che f (a) = b}.

APPLICAZIONI. Im f = {b B a A tale che f (a) = b}. APPLICAZIONI Diremo applicazione (o funzione) da un insieme A ad un insieme B una legge f che associa ad ogni elemento a A uno ed un solo elemento b B. Scriviamo f : A B e il corrispondente o immagine

Dettagli