ESERCIZIO 7 - TUTORATO PROPAGAZIONE A.A. 06/07

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZIO 7 - TUTORATO PROPAGAZIONE A.A. 06/07"

Transcript

1 ESERIIO 7 - UORAO PROPAAIONE A.A. 6/7 -/4/7 Esercizio ( punti / 8) Prova scritta di propaazione ( parte) V l d f 5Hz V V z mm ( ) d mm (4) Nel circuito in fiura, alimentato alla frequenza di 5 Hz, le linee sono tutte riempite con dielettrico costante ε. r Si determinino il valore di e di e, indipendentemente, il valore minimo di z ed il corrispondente valore minimo di, in modo che il carico assorba tutta la potenza disponibile dal eneratore, indipendentemente dalla lunhezza del tratto di linea centrale di impedenza. Si calcoli poi tale potenza massima. SOLUIONI.5 nf. z mm mm P D 5.65 W

2 A) alcolo di e. La richiesta che il carico assorba la massima potenza disponibile dal eneratore indipendentemente dalla lunhezza del tratto di linea centrale di impedenza, sinifica che a valle di tale impedenza il suo carico deve essere ancora paria a ovvero a 5. Ricadiamo in questo modo nel caso in cui una linea di impedenza caratteristica (enerico) risulta chiusa su un carico (enerico); in tal caso l impedenza di inresso della linea è ancora pari a qualunque sia la sua lunhezza L (vedi appunti teoria), in quanto trattasi di linea adattata. Di conseuenza e l impedenza vala 5 possono essere calcolati richiedendo che a valle della linea, cioè: 5.6 mm d mm d 5 (4 ) onviene innanzitutto ridurre la linea chiusa sul suo carico (noti) ad un'unica impedenza equivalente di inresso alla linea IN con la solita formula del trasporto di impedenza: IN tan tan ( β d ) ( β d ) Serve determinare la lunhezza elettrica della linea per il calcolo della tanente, ovvero lunhezza d onda e costante di propaazione della linea.

3 Nel vuoto abbiamo che m s π λ β 4.7 [ m ] f [ mm] 9 λ ma essendo tutte le linee riempite con un dielettrico di costante dielettrica ε allora si ha λ π λ [ mm] e β [ m ] ε λ on quei valori [ m ] [ m] rad β d tan( β d ). 56 Infine l impedenza di inresso alla della linea vale IN tan tan ( β d ) ( β d ) R ( ) [ X ( ) ( ) ] X i siamo ricondotti a IN 5.6 mm

4 L impedenza IN viene ora a trovarsi in serie con la reattanza capacitiva X, e ω questa serie si può poi trasportare oltre la linea conducendo ad una nuova impedenza di inresso IN. Prima di applicare la formula del trasporto di impedenza ci occorre al solito la lunhezza elettrica della linea : [ m ].6 [ m].5698 rad ( ) β d tan( β d ). I calcoli sopra mostrano che la linea può essere considerata con buona approssimazione una linea λ / 4, per cui la sua impedenza di inresso vale IN Re IN X IN X dove si è posto IN Re IN ImIN impedenza di inresso alla linea che in serie alla reattanza capacitiva è diventato il carico della linea. Questa nuova impedenza di inresso IN è a sua volta in serie con la seconda reattanza capacitiva, e tale serie deve essere reale di valore pari a 5 ; cioè: Re IN X IN X X La relazione sopra è una equazione complessa nelle due inconite X e,che può scriversi come un sistema di due equazioni reali in due inconite reali, dop averne fatto il minimo comune multiplo: 4

5 ( Re X X ) X ( X X ) Re IN IN IN IN Re IN IN X ( X X ) ( X X ) IN X Re IN X Re IN Im Re X IN IN ( X X ) IN X 7,965, Resta da determinare il valore della capacità :.5 nf con ω X ω π f 9 rad.4 sec 5

6 ) alcolo di z e. La scelta di X e fatta al punto precedente a permesso di avere come carico alla linea un impedenza di valore pari all impedenza caratteristica della linea stessa. Questo sinifica che l impedenza di inresso della linea, qualsiasi sia la sua lunhezza vale sempre 5. Il circuito si semplifica allora come seue: N LO V f 5Hz V V ( ) z Le inconite z e possono ora essere calcolate sfruttando la teoria dell adattamento coniuato a sinolo Stub. Essendo uno stub in parallelo conviene lavorare in termini di ammettenze. La sezione ideale per l adattamento è quella tratteiata. onviene calcolare a sinistra di questa sezione il eneratore equivalente di Norton (per l adattamento basta solo l ammettenza interna del eneratore equivalente di Norton). N 6

7 dove 5 ms ( ) ( ) S 4 ( ) ms tan β ( ) Mentre a destra abbiamo un carico che è dato dal parallelo della reattanza dello stub con una ammettenza / : LO ( z) tan β A questo punto per il calcolo di z e, bisona imporre la condizione di adattamento coniuato alla sezione tratteiata cioè: * [ ( ) ( )] ( z ) N N LO LO equazione complessa nelle due inconite z e reali; separando parte reale e immainaria si ottenono due equazioni reali in due inconite reali: N LO ( z) N LO 7

8 8 Serve sviluppare allora l ammettenza interna del eneratore di norton in parte reale ed immainaria: N N N [ ] Separando parte reale e immainaria si ha: N N Imponendo poi la condizione di adattamento coniuato:

9 9 Dalla prima si ricava, e una volta noto quest ultimo si può ricavare z dalla seconda: Sviluppando la prima: Equazione di secondo rado in, le cui soluzioni sono ± M P I corrispondenti valori di z valono: m p m p

10 rovate le possibili soluzioni per le tanenti tan ( β ) e tan ( β z) ricavare le lunhezze inconite z e ; infatti: z, si possono ora arctan( z ) n π z β arctan β n π La prima soluzione fornisce z e minimi di valore pari a arctan(.589) arctan(.794) π z mm mm La seconda soluzione fornisce, viceversa, z e minimi di valore pari a arctan(.589) π z mm arctan(.8746) π mm Poiché il testo chiede di determinare il minimo valore di z e il corrispondente valore di, sinifica che la soluzione cercata è la prima: z mm mm

11 Per quanto riuarda il calcolo della potenza massima sul carico, essendo riusciti a imporre la condizione di adattamento coniuato e non essendoci altri elementi dissipativi tra il eneratore ed il carico non è assolutamente necessario, come ià accennato, calcolasi il eneratore equivalente di Norton alla sezione dell adattamento e calcolare poi la potenza risolvendo il circuito secondo i principi di Kirchoff. In condizioni di adattamento coniuato la potenza massima dissipata è semplicemente tutta la potenza disponibile dal eneratore: P D 8 V R W 8

Circuiti equivalenti di Thevenin e Norton in presenza di linee di trasmissione

Circuiti equivalenti di Thevenin e Norton in presenza di linee di trasmissione Circuiti equivalenti di Thevenin e orton in presenza di linee di trasmissione Capita spesso, nei circuiti contenenti linee di trasmissione, di schematizzare la rete di alimentazione attraverso un eneratore

Dettagli

Adattamenti Considerazioni Generali

Adattamenti Considerazioni Generali Adattamenti Considerazioni Generali ADATT in Assenza di onda riflessa in, out out Max trasferimento di potenza in * *, out Proprietà: se la rete di adattamento è priva di perdite ( composta da elementi

Dettagli

Fisica dei mezzi trasmissivi Prof. C. Capsoni Prova dell 1 settembre 2011

Fisica dei mezzi trasmissivi Prof. C. Capsoni Prova dell 1 settembre 2011 Fisia dei mezzi trasmissivi rof.. apsoni rova dell settembre 0 3 4 non srivere nella zona soprastante OGNOME E NOME MTRIOL FIRM Eserizio Un eneratore, la ui tensione varia nel tempo ome indiato in fiura,

Dettagli

Elettrotecnica Esercizi di riepilogo

Elettrotecnica Esercizi di riepilogo Elettrotecnica Esercizi di riepilogo Esercizio 1 I 1 V R 1 3 V 2 = 1 kω, = 1 kω, R 3 = 2 kω, V 1 = 5 V, V 2 = 4 V, I 1 = 1 m. la potenza P R2 e P R3 dissipata, rispettivamente, sulle resistenze e R 3 ;

Dettagli

Esercizi aggiuntivi Unità A2

Esercizi aggiuntivi Unità A2 Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1 A2 ircuiti in corrente alternata monofase 1 Un circuito serie, con 60 Ω e 30 mh, è alimentato con tensione V 50 V e assorbe la corrente 0,4 A. alcolare:

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria

Università degli Studi di Bergamo Facoltà di Ingegneria Università degli Studi di Bergamo Facoltà di Ingegneria Piatti Marina _ RISOLUZIONE TEMA D ESAME CORSO DI ELETTROTECNICA A.A. 1995/96 SCRITTO 26 SETTEMBRE 1996_ Esercizio n 1 Dato il circuito in figura,

Dettagli

= 300mA. Applicando la legge di Ohm su R4 si calcola facilmente V4: V4 = R4

= 300mA. Applicando la legge di Ohm su R4 si calcola facilmente V4: V4 = R4 AI SEZIONE DI GENOVA orso di teoria per la patente di radioamatore, di Giulio Maselli IZASP Soluzioni degli Esercizi su resistenze, condensatori, induttanze e reattanze ) a) Le tre resistenze sono collegate

Dettagli

Esame di Teoria dei Circuiti 13 Febbraio 2015 (Soluzione)

Esame di Teoria dei Circuiti 13 Febbraio 2015 (Soluzione) Esame di eoria dei Circuiti 13 Febbraio 2015 Soluzione) Esercizio 1 γi 3 V 3 I 1 1 βi 1 I 2 I 2 I 3 V 4 g αi 2 2 3 V 5 Con riferimento al circuito di figura si assumano i seguenti valori: 1 = 2 = 3 = 2

Dettagli

ESERCIZIO 11 - TUTORATO PROPAGAZIONE A.A. 06/07

ESERCIZIO 11 - TUTORATO PROPAGAZIONE A.A. 06/07 ESERO - TUTORTO PROPGONE.. 6/7 8-9/5/7 Eserciio ( punti / 8) Prova scritta di propagaione ( parte) - 6 6 5 R R Ω R 5mΩ R ε r 5mΩ.pF f ris 5GH Nel risuonatore di figura tutte le linee sono riempite con

Dettagli

Esercitazione 7 Dicembre 2012 Potenze e rifasamento monofase

Esercitazione 7 Dicembre 2012 Potenze e rifasamento monofase Esercitazione 7 Dicembre 0 Potenze e rifasamento monofase Esercizio Con riferimento al circuito riportato in Fig, calcolare la potenze attiva P e la potenza reattiva Q erogate dal generatore o R C o 0

Dettagli

Corso di Microonde Esercizi su Linee di Trasmissione

Corso di Microonde Esercizi su Linee di Trasmissione Corso di Microonde Esercizi su Linee di Trasmissione Tema del 6.7.1999 Il carico resistivo R L è alimentato alla frequenza f =3GHz attraverso una linea principale di impedenza caratteristica Z 0 = 50 Ω

Dettagli

Esercizi sulle reti elettriche in corrente alternata (parte 1)

Esercizi sulle reti elettriche in corrente alternata (parte 1) Esercizi sulle reti elettriche in corrente alternata (parte ) Esercizio : alcolare l andamento nel tempo delle correnti i, i 2 e i 3 del circuito in figura e verificare il bilancio delle potenze attive

Dettagli

Esercitazioni di Elettrotecnica

Esercitazioni di Elettrotecnica Esercitazioni di Elettrotecnica a cura dell Ing ntonio Maffucci Parte II: ircuiti in regime sinusoidale /3 Esercitazioni di Elettrotecnica /3 Maffucci ESEIZIONE N7: Fasori ed impedenze ESEIZIO 7 Esprimere

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica 18.01.013 Problema 1 Con riferimento al circuito in figura, nel quale l interruttore si chiude all istante t = 0, determinare l espressione di i 3 (t) per ogni istante di tempo t, e rappresentarne graficamente

Dettagli

Compito di Elettrotecnica, Ing. Civile, Pisa, 8 Gennaio vista dai morsetti 1-2 del bipolo in figura (A, B da tabella)

Compito di Elettrotecnica, Ing. Civile, Pisa, 8 Gennaio vista dai morsetti 1-2 del bipolo in figura (A, B da tabella) Compito di Elettrotecnica, Ing. Civile, Pisa, 8 Gennaio 214 Allievo... 1) Calcolare la R eq vista dai morsetti 1-2 del bipolo in figura (A, B da tabella) 2) Calcolare la E th (tensione di Thevenin) ai

Dettagli

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica 7.09.0 Problema L interruttore indicato nel circuito in figura commuta nell istante t 0 dalla posizione AA alla posizione BB. Determinare le espressioni delle tensioni v (t) ev (t) per ogni istante di

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica UNIVESITÀ DEGLI STUDI DI PAVIA CAMPI ELETTOMAGNETICI E CICUITI I 23.01.2015 Problema 1 Con riferimento al circuito in figura, determinare le espressioni di i L (t) e v C (t) (per ogni istante di tempo

Dettagli

Esercizio 1. CALCOLO DEI PARAMETRI DEL CIRCUITO EQUIVALENTE DI UN TRASFORMATORE MONOFASE E DEL SUO RENDIMENTO MASSIMO

Esercizio 1. CALCOLO DEI PARAMETRI DEL CIRCUITO EQUIVALENTE DI UN TRASFORMATORE MONOFASE E DEL SUO RENDIMENTO MASSIMO Conversione Elettromeanica A.A. 22/23 Esercizio 1. CALCOLO DEI AAMETI DEL CICUITO EQUIVALENTE DI UN TASFOMATOE MONOFASE E DEL SUO ENDIMENTO MASSIMO Si consideri un trasformatore monofase di cui sono noti

Dettagli

Esame di Teoria dei Circuiti 15 Gennaio 2015 (Soluzione)

Esame di Teoria dei Circuiti 15 Gennaio 2015 (Soluzione) Esame di eoria dei Circuiti 15 ennaio 2015 (Soluzione) Esercizio 1 I 1 R 2 I R2 R 4 αi R2 βi R3 + V 3 I 3 R 1 V 2 I 4 I R3 Con riferimento al circuito di figura si assumano ( i seguenti ) valori: 3/2 3/2

Dettagli

ESERCIZIO 1. Soluzione. Per risolvere il problema utilizzo il modello di Ebers-Moll, grazie al quale potrò calcolare L E, W, L C, infatti so che

ESERCIZIO 1. Soluzione. Per risolvere il problema utilizzo il modello di Ebers-Moll, grazie al quale potrò calcolare L E, W, L C, infatti so che ESERCIZIO Su un transistor BJT pnp caratterizzato da N E = 0 8 cm 3 N B = 0 6 cm 3 N C = 0 5 cm 3 A = mm 2 vengono effettuate le seguenti misure: Tensione V CB negativa, emettitore aperto: I C = 0nA Tensione

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica Soluzione del Problema Per t < 0 il circuito da considerare è il seguente: gv v R Applicando la KCL al nodo superiore si ottiene l equazione: Si ha inoltre v (0 ) gv (0 ) v (0 ) v (0 ) R 0 R g 0 00 00

Dettagli

CIRCUITI IN REGIME SINUSOIDALE

CIRCUITI IN REGIME SINUSOIDALE IUITI IN EGIME SINUSOIDALE 9.1. Nel circuito della figura il voltaggio alternato è V = V 0 cost con = 314 rad/s, V 0 = 311 V, L = 0.9 H, = 6.96 F. Se il fattore di potenza del circuito è pari a 0.98, la

Dettagli

Rappresentazione doppi bipoli

Rappresentazione doppi bipoli Rappresentazione doppi bipoli ntroduzione 3 Cosa c è nell Unità 5 n questa sezione si affronteranno introduzione alle rappresentazioni dei doppi bipoli le sei rappresentazioni classice tabella di trasformazione

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica 22.0.206 Problema Con riferimento al circuito in figura, nel quale entrambi gli interruttori si aprono all istante t = 0, determinare l espressione di i(t) (per ogni istante di tempo t) e rappresentarne

Dettagli

Adattamenti: Considerazioni Generali

Adattamenti: Considerazioni Generali Adattamenti: Considerazioni Generali g ADATT in Assenza onda di potenza riflessa in g, out out Max trasferimento di potenza in * g *, out Proprietà: se la rete di adattamento è priva di perdite ( composta

Dettagli

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ 9.8 Con la LKT si scrive l equazione seguente: di L Ri cos( t) () dt La costante di tempo èτ L / R ms / 5s ; la soluzione della () è 5t i( t) Ke Acos(t θ ) () Sia A θ il fasore corrispondente alla risposta

Dettagli

Compito di Elettrotecnica, Ing. Gestionale, Pisa, 5 Giugno vista dai morsetti 1-2 del bipolo in figura (A da tabella)

Compito di Elettrotecnica, Ing. Gestionale, Pisa, 5 Giugno vista dai morsetti 1-2 del bipolo in figura (A da tabella) Compito di Elettrotecnica, Ing. Gestionale, Pisa, 5 Giugno 214 Allievo... 1) Calcolare la R eq vista dai morsetti 1-2 del bipolo in figura (A da tabella) 2) Calcolare la E th (tensione di Thevenin) ai

Dettagli

Elettromagnetismo Applicato

Elettromagnetismo Applicato Elettromagnetismo Applicato Prova scritta del 23 febbraio 2017 Il candidato risponda ai quesiti riportando i risultati negli appositi spazi sul secondo foglio. 1. Un onda sinusoidale si propaga in un mezzo

Dettagli

. Applicando la KT al percorso chiuso evidenziato si ricava v v v v4 n Applicando la KC al nodo si ricava: i i i4 i n i i : n i v v v v 4 : n i 4 v v i i.7 Dalla relazione tra le correnti del trasformatore

Dettagli

CORSO DI ELETTRONICA DELLE TELECOMUNICAZIONI

CORSO DI ELETTRONICA DELLE TELECOMUNICAZIONI CORSO DI ELETTRONICA DELLE TELECOMUNICAZIONI Prima prova in itinere - 5 MAGGIO 005 DOMANDE DI TEORIA 1) Qual è il vantaio di un ricevitore zero-if rispetto alla struttura a supereterodina? ) Che utilità

Dettagli

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione)

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esercizio 1 3 3 γv 5 r 1 2 2 4 V 5 3 V 1 β 4 4 1 5 V 2 α 3 4 Con riferimento al circuito di figura si assumano i seguenti valori: 1 = 2 = 3 = 3

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001 Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. / Esame del gennaio Soluzione a cura di: Bellini Matteo Es. n Data la rete in figura determinare tutte le correnti

Dettagli

Compito di Elettrotecnica, Ing. Gestionale, Pisa, 1 Giugno vista dai morsetti 1-2 del bipolo in figura (A, B da tabella)

Compito di Elettrotecnica, Ing. Gestionale, Pisa, 1 Giugno vista dai morsetti 1-2 del bipolo in figura (A, B da tabella) Compito di Elettrotecnica, Ing. Gestionale, Pisa, 1 Giugno 2012 1) Calcolare la R eq vista dai morsetti 1-2 del bipolo in figura (A, B da tabella) Allievo... 2) Calcolare la E th (tensione di Thevenin)

Dettagli

4 Luglio 2012 Esame di Teoria dei Circuiti V 1 V 2. I R1 = 1 R 1 + R 2 (1 α) + R 3 V 1. I 2 = I R3 = 1 α 1 + β I R1 = V α

4 Luglio 2012 Esame di Teoria dei Circuiti V 1 V 2. I R1 = 1 R 1 + R 2 (1 α) + R 3 V 1. I 2 = I R3 = 1 α 1 + β I R1 = V α Esame di Teoria dei Circuiti 4 Luglio 202 () Esercizio I R R I R3 R 3 I 2 V αi R V 4 I 4 βi R3 Con riferimento al circuito di figura si assumano ( i seguenti ) valori: 0 Ω R R 3 kω, 5 kω,, α /2, β 2, V

Dettagli

MACCHINE ELETTRICHE 11 gennaio 2006 Elettrotecnica _ Energetica _

MACCHINE ELETTRICHE 11 gennaio 2006 Elettrotecnica _ Energetica _ MACCHINE ELETTRICHE 11 gennaio 2006 Elettrotecnica _ Energetica _ DOMANDE DI TEORIA 1) Diagrammi di Blondel e delle due reattanze. 2) Motore asincrono trifase: regolazione della velocità. 3) Motore a corrente

Dettagli

MACCHINE ELETTRICHE 23 giugno 2005 Elettrotecnica _ Energetica _

MACCHINE ELETTRICHE 23 giugno 2005 Elettrotecnica _ Energetica _ MACCHINE ELETTRICHE 23 giugno 2005 Elettrotecnica _ Energetica _ DOMANDE DI TEORIA 1) Circuiti equivalenti di un trasformatore monofase e considerazioni relative ai vari parametri. 2) Diagramma polare

Dettagli

scaricato da

scaricato da A. Maffucci: ircuiti in regime sinusoidale ver - 004 ES.. Esprimere la corrente i(t) in termini di fasore nei seguenti tre casi: a) i(t) = 4sin(ωt.4) b) i(t) = 0sin(ωt π) c) i(t) = 8sin(ωt π / ) isultato:

Dettagli

(corrente di Norton) ai morsetti 1-2 del circuito in figura (A, B, C da tabella)

(corrente di Norton) ai morsetti 1-2 del circuito in figura (A, B, C da tabella) Compito di Elettrotecnica, Ing. Civile, Pisa, 5 Giugno 2013 1) Calcolare la R eq vista dai morsetti 1-2 del bipolo in figura (A, B, C, D da tabella) Allievo... 2) Calcolare la E th (tensione di Thevenin)

Dettagli

Esame di Teoria dei Circuiti 25 Febbraio 2011 (Soluzione)

Esame di Teoria dei Circuiti 25 Febbraio 2011 (Soluzione) Esame di Teoria dei Circuiti 25 Febbraio 20 Soluzione) Esercizio I I R R I R2 R 2 V 3 I 3 V V 2 αi R βi R2 V I Con riferimento al circuito di figura si assumano i seguenti valori: R = kω, R 2 = kω, = 2

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria Prova teorica di Elettrotecnica del 18 gennaio 2006

Università degli Studi di Bergamo Facoltà di Ingegneria Prova teorica di Elettrotecnica del 18 gennaio 2006 Università degli Studi di Bergamo Facoltà di Ingegneria Prova teorica di Elettrotecnica del 8 gennaio 2006 Cognome: Nome: Corso di Laurea e n. matr.: La risposta corretta di ogni domanda vale punti, la

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è P 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica Soluzione el Problema Prima ell istante t 0 il circuito opera in regime stazionario e l inuttore si comporta come un corto circuito, come mostrato nella seguente figura: i(t) I 0 V V Poiché è cortocircuitata

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I prova in itinere 1 Novembre 008 SOLUZIONE - 1 - D1. (punti 8 ) Rispondere alle seguenti domande: punto per ogni risposta corretta, - 0.5 per ogni risposta

Dettagli

PROVA SCRITTA DI ELETTROTECNICA, 21 maggio 2003 CDL: Ing. Gestionale, Prof. C. Petrarca

PROVA SCRITTA DI ELETTROTECNICA, 21 maggio 2003 CDL: Ing. Gestionale, Prof. C. Petrarca OA SITTA DI EETTOTENIA, maggio D: Ing. Gestionale, rof.. etrarca Esercizio: Determinare la corrente ( t) i 4 applicando il teorema del gen. equivalente di tensione e la sovrapposizione degli effetti (Fig.).

Dettagli

Corso di LABORATORIO DI ELETTROMAGNETISMO E CIRCUITI A.A. 2013/2014 Prof. A. Di Domenico. Bibliografia dettagliata degli argomenti svolti a lezione

Corso di LABORATORIO DI ELETTROMAGNETISMO E CIRCUITI A.A. 2013/2014 Prof. A. Di Domenico. Bibliografia dettagliata degli argomenti svolti a lezione Corso di LABORATORIO DI ELETTROMAGNETISMO E CIRCUITI A.A. 2013/2014 Prof. A. Di Domenico Bibliografia dettagliata degli argomenti svolti a lezione MS : C. Mencuccini, V. Silvestrini, Fisica II, ed. Liguori

Dettagli

Le sei rappresentazioni classiche. Lezione 19 1

Le sei rappresentazioni classiche. Lezione 19 1 Le sei rappresentazioni classice Lezione 9 Rappresentazione con Ammettenze / ettore tensione inresso ettore corrente uscita Matrice ammettenze : Lezione 9 Rappresentazione con Ammettenze / Quando essa

Dettagli

Laurea di I Livello in Ingegneria Informatica

Laurea di I Livello in Ingegneria Informatica Laurea di I Livello in Ingegneria Informatica Sede di Mantova TEORIA DEI CIRCUITI II prova in itinere 3.2.2003 Problema I Nel circuito indicato in figura si ha v 1 = 10 cos (1000 t sec ) V Determinare

Dettagli

1 FORMA GENERALE DELLE ONDE PIANE

1 FORMA GENERALE DELLE ONDE PIANE 1 FORMA GENERALE DELLE ONDE PIANE Quando abbiamo ricavato le equazioni delle onde piane, abbiamo scelto il sistema di riferimento in direzione z, e questo ha condotto, per una onda che si propaga in direzione

Dettagli

Teoremi delle re* lineari

Teoremi delle re* lineari Teoremi delle re* lineari circuito o rete lineare se con-ene solo elemen- lineari e generatori indipenden- elemento ele2rico lineare se il rapporto eccitazione-risposta e lineare generatore indipendente

Dettagli

Esercizio 1: Determinare la misura del wattmetro W nella rete trifase simmetrica e equilibrata di Fig.1. I 2 I 1 P 1 Q 1. Fig.

Esercizio 1: Determinare la misura del wattmetro W nella rete trifase simmetrica e equilibrata di Fig.1. I 2 I 1 P 1 Q 1. Fig. Esercizio : Determinare la misura del wattmetro nella rete trifase simmetrica e equilibrata di Fig.. ( rit) ; 0Ω; 500 ; Q 000 ; 45 ; A 5; 0.7 ar E A Q Fig. l wattmetro legge la grandezza e con Nota la

Dettagli

Esame di Teoria dei Circuiti - 6 luglio 2009 (Soluzione)

Esame di Teoria dei Circuiti - 6 luglio 2009 (Soluzione) Esame di Teoria dei Circuiti - 6 luglio 009 Soluzione) Esercizio 1 C T V C T 1 Con riferimento al circuito di figura si assumano i seguenti valori: r 1kΩ, C 1µF 10 6 F, 4V, ma. Per t < t 0 0sec l interruttore

Dettagli

MECCANICA APPLICATA ALLE MACCHINE L

MECCANICA APPLICATA ALLE MACCHINE L Università degli Studi di Bologna II Facoltà di Ingegneria con sede a Cesena MECCANICA ALICATA ALLE MACCHINE L Corso di Laurea in INGEGNEIA MECCANICA Corso di Laurea in INGEGNEIA AEOSAZIALE Anno Accademico

Dettagli

Moto parabolico. Mauro Saita Versione provvisoria, ottobre 2012.

Moto parabolico. Mauro Saita   Versione provvisoria, ottobre 2012. Moto parabolico. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, ottobre 2012. 1 Moto parabolico. Gli esercizi contrassenati con (*) sono più difficili. Problema 1.1 (Lancio di un proiettile.).

Dettagli

Soluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 07 Maggio 2018

Soluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 07 Maggio 2018 Soluzione Compitino Fisica Generale I In. Elettronica e Telecomunicazioni 07 Maio 018 Esercizio 1 1) Sulla massa m 1 aiscono la sua forza peso m 1, la forza di tensione T 1 e la reazione normale del blocco

Dettagli

Fisica II. 7 Esercitazioni

Fisica II. 7 Esercitazioni Esercizi svolti Esercizio 7.1 Il campo magnetico che agisce perpendicolarmente ad un circuito costituito da 3 spire di 3 cm di diametro, passa da un valore di.4t a -.65T in 18 msec. Calcolare la tensione

Dettagli

Strutture TEM. La costante di propagazione vale, per qualunque struttura TEM. β = β 0

Strutture TEM. La costante di propagazione vale, per qualunque struttura TEM. β = β 0 Strutture TEM La costante di propagazione vale, per qualunque struttura TEM β = β 0 dove β 0 è la costante di propagazione della linea in aria e ε r la costante dielettrica del materiale ce riempie la

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime sinusoidale

Esercitazioni di Elettrotecnica: circuiti in regime sinusoidale Università degli Studi di assino Esercitazioni di Elettrotecnica: circuiti in regime sinusoidale ntonio Maffucci ver settembre 004 Maffucci: ircuiti in regime sinusoidale ver - 004 Esercizi introduttivi

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica Soluzione del Problema 1 Prima dell istante t = 0 i generatori operano in regime stazionario e il circuito da considerare è il seguente: v 1 (0 - ) v 2 (0 - ) I 0 i(0 - ) R 3 V 0 R 4 È evidente che È inoltre

Dettagli

Circuito a costanti concentrate

Circuito a costanti concentrate Circuito a costanti concentrate periodo Il contributo dei cavetti di collegamento a resistenza, capacita' ed induttanza del circuito e' trascurabile: resistenza, capacita' (ed induttanza) sono solo quelle

Dettagli

Linee prive di perdite

Linee prive di perdite inee prive di perdite Una linea si dice priva di perdite se nel circuito equivalente risulta: R=G. Perché tale approssimazione sia valida deve risultare: α 1 essendo la lunghezza del tronco di linea che

Dettagli

Prova Scritta di ELETTROTECNICA - 12 gennaio 2015

Prova Scritta di ELETTROTECNICA - 12 gennaio 2015 Prova Scritta di ELETTROTECNIC - 12 gennaio 215 i3(t) = 2 2sin(1t); e4(t) = 1 2cos(1t)V R1=R2=R5= 5 Ω; Rab= 1 kω; L1=L2=2mH; C2 = 1µF; C5 = 2µF Per la rete in figura, operante in regime sinusoidale permanente,

Dettagli

Argomento 6: Derivate Esercizi. I Parte - Derivate

Argomento 6: Derivate Esercizi. I Parte - Derivate 6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)

Dettagli

Contenuti dell unità + C A0 L

Contenuti dell unità + C A0 L 1 ontenuti dell unità Questa unità considera problemi di transitorio in reti: 1) contenenti un solo elemento reattivo (1 condensatore oppure 1 induttore) a) alimentate da generatori costanti in presenza

Dettagli

Esercizi sui sistemi trifase

Esercizi sui sistemi trifase Esercizi sui sistemi trifase Esercizio : Tre carichi, collegati ad una linea trifase che rende disponibile una terna di tensioni concatenate simmetrica e diretta (regime C, frequenza 50 Hz, valore efficace

Dettagli

Esercizi sulle reti elettriche in corrente alternata (parte 2)

Esercizi sulle reti elettriche in corrente alternata (parte 2) Esercizi sulle reti elettriche in corrente alternata (parte 2) Esercizio 7: Verificare il bilancio delle potenze. Nota. l ramo costituito dal generatore di corrente in serie al resistore ha come caratteristica

Dettagli

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 11 Settembre 2014

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 11 Settembre 2014 Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 11 Settembre 014 1 3 4 non scrivere nella zona soprastante COGNOME E NOME MATRICOLA FIRMA Esercizio 1 Un generatore, la cui tensione varia nel

Dettagli

Trasformatore monofase

Trasformatore monofase Prova in corto circuito La prova in corto circuito permette di determinare il valore degli elementi circuitali connessi in serie al trasformatore ideale e cioè le reattanze di dispersione X 1d, X d e le

Dettagli

Esercizi & Domande per il Compito di Elettrotecnica del 13 giugno 2001

Esercizi & Domande per il Compito di Elettrotecnica del 13 giugno 2001 Esercizi & Domande per il Compito di Elettrotecnica del giugno 00 Teoria Domanda sul Trasformatore Assumendo di conoscere i dati di targa di un trasformatore monofase ricavare i parametri del circuito

Dettagli

1. Serie, parallelo e partitori. ES Calcolare la

1. Serie, parallelo e partitori. ES Calcolare la Maffucci: ircuiti in regime stazionario ver-00 Serie, parallelo e partitori S - alcolare la vista ai morsetti - e quella vista ai morsetti -D S alcolare la resistenza uivalente vista ai capi del generatore

Dettagli

antenna ΔV J b V o O : centro di fase dell antenna

antenna ΔV J b V o O : centro di fase dell antenna CAMPI ELETTROMAGNETICI E CIRCUITI II - A.A. 2013-14 - MARCO BRESSAN 1 Antenne Riceventi Per determinare le caratteristiche di un antenna ricevente ci si avvale del teorema di reciprocità applicato al campo

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni 28.01.2011 Problema 1 Con riferimento al circuito in figura, determinare le espressioni di i L (t) ev C (t) (per ogni istante di tempo t) e rappresentarne graficamente l andamento temporale. Dati: I 0

Dettagli

vista dai morsetti 1-2 del bipolo in figura (A, B, C da tabella) (tensione di Thevenin) ai morsetti 1-2 del circuito in figura (A, B, E da tabella)

vista dai morsetti 1-2 del bipolo in figura (A, B, C da tabella) (tensione di Thevenin) ai morsetti 1-2 del circuito in figura (A, B, E da tabella) Compito di Elettrotecnica, Ing. Gestionale, Pisa, 3 Giugno 21 1) Calcolare la R e q vista dai morsetti 1-2 del bipolo in figura (A, B, C da tabella) Allievo... 2) Calcolare la E th (tensione di Thevenin)

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Doppi bipoli. Corso di Elettrotecnica. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica

Doppi bipoli. Corso di Elettrotecnica. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica Università degli Studi di Pavia Facoltà di Ingegneria Corso di Corso di Elettrotecnica Teoria dei Circuiti Doppi bipoli Che cos è? E un dispositivo con due porte di scambio della potenza elettrica (Porta

Dettagli

Corso di LABORATORIO DI ELETTROMAGNETISMO E CIRCUITI A.A. 2004/2005 A. Di Domenico

Corso di LABORATORIO DI ELETTROMAGNETISMO E CIRCUITI A.A. 2004/2005 A. Di Domenico Corso di LABORATORIO DI ELETTROMAGNETISMO E CIRCUITI A.A. 2004/2005 A. Di Domenico Bibliografia dettagliata degli argomenti svolti a lezione (vers. 12/06/05) MS : C. Mencuccini, V. Silvestrini, Fisica

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica 6.0.0 Problema Dopo aver rappresentato la parte di circuito evidenziata dal rettangolo tratteggiato con un generatore equivalente di Thevenin o di Norton, si determini, per ogni istante di tempo, l espressione

Dettagli

PROVA SCRITTA D ESAME DEL 09 GIUGNO 2008

PROVA SCRITTA D ESAME DEL 09 GIUGNO 2008 UNVERSTÀ D ROMA LA SAPENZA FACOLTÀ D NGEGNERA CORSO D LAUREA N NGEGNERA ENERGETCA DSCPLNA D MAHNE E CONVERTTOR D ENERGA ELETTRCA PROVA SCRTTA D ESAME DEL 9 GUGNO 8 Quesito 1 parametri del circuito equivalente

Dettagli

Potenza in regime sinusoidale

Potenza in regime sinusoidale 26 Con riferimento alla convenzione dell utilizzatore, la potenza istantanea p(t) assorbita da un bipolo è sempre definita come prodotto tra tensione v(t) e corrente i(t): p(t) = v(t) i(t) Considerando

Dettagli

Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1

Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1 000-000 M6.qxp 7-09-01 1005 Pagina 1 sercizi aggiuntivi Unità sercizi svolti sercizio 1 ipoli elettrici e loro collegamenti 1 Per il circuito di figura.1 calcolare la resistenza equivalente tra i morsetti

Dettagli

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi.

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi. Corso di Laurea in Chimica Compito di Fisica Generale II (Prof. E. Santovetti) 11 febbraio 016 Nome: La risposta numerica deve essere scritta nell apposito riuadro e giustificata accludendo i calcoli relativi.

Dettagli

Risonatori a microonde

Risonatori a microonde Risonatori a microonde Corso di Componenti e Circuiti a Microonde Ing. Francesco Catalfamo 11 Ottobre 6 Indice Circuiti risonanti serie e parallelo Fattore di qualità esterno: Q e Risonatori realizzati

Dettagli

Doppi Bipoli. Corsi di. Elettrotecnica e. Teoria dei Circuiti. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia Facoltà di Ingegneria

Doppi Bipoli. Corsi di. Elettrotecnica e. Teoria dei Circuiti. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia Facoltà di Ingegneria Università degli Studi di Pavia Facoltà di Ingegneria Corsi di Corso di Elettrotecnica e Teoria dei Circuiti Teoria dei Circuiti Doppi Bipoli Che cos è? E un dispositivo con due porte di scambio della

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTOTECNICA (0 CFU) CS INGEGNEIA MATEMATICA I prova in itinere 20 Novembre 2009 SOLUZIONI - - D. (punti 4 ) ) Spiegare cosa si intende per DUALITA nello studio dei circuiti elettrici. 2) Scrivere per

Dettagli

Teoria dei Circuiti Esercitazione di Laboratorio Due-porte e circuiti equivalenti di Thevenin e Norton

Teoria dei Circuiti Esercitazione di Laboratorio Due-porte e circuiti equivalenti di Thevenin e Norton Teoria dei Circuiti Esercitazione di Laboratorio Due-porte e circuiti equivalenti di Thevenin e Norton Esercizio 1? Si determini tramite misure la descrizione del due porte tramite matrice resistenza o

Dettagli

I j e jarctag. ovvero. ESERCIZIO 7.1: Determinare le espressioni temporali sinusoidali relative alle grandezze rappresentate dai seguenti fasori.

I j e jarctag. ovvero. ESERCIZIO 7.1: Determinare le espressioni temporali sinusoidali relative alle grandezze rappresentate dai seguenti fasori. EEO 7.: Determinare le espressioni temporali sinusoidali relative alle grandezze rappresentate dai seguenti fasori. 0 8e 3+ 4 ( 5 isulta necessario applicare le trasformazioni fra espressione polare ed

Dettagli

EQUAZIONE DELLA LINEA ELASTICA

EQUAZIONE DELLA LINEA ELASTICA ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU EQUAZIONE DELLA LINEA ELASTICA v 0.9 Calcolare lo spostamento verticale del pattino A della struttura utilizzando l equazione della linea elastica. Materiale:

Dettagli

ESERCITAZIONI DI AZIONAMENTI ELETTRICI. Circuiti equivalenti della macchina asincrona.

ESERCITAZIONI DI AZIONAMENTI ELETTRICI. Circuiti equivalenti della macchina asincrona. ESERCITAZIONI DI AZIONAMENTI ELETTRICI Circuiti equivalenti della macchina asincrona. 1. Le prove a vuoto e a rotore bloccato di una macchina asincrona, eseguite in laboratorio, hanno dato i seguenti risultati:

Dettagli

ANALISI MATEMATICA I COMPITO DI ESAME DEL 4 FEBBRAIO 2014

ANALISI MATEMATICA I COMPITO DI ESAME DEL 4 FEBBRAIO 2014 ANALISI MATEMATICA I UNITÀ 1 COMPITO DI ESAME DEL 4 FEBBRAIO 2014 1 Si calcoli, al variare di α R, il seguente ite di funzione reale di variabile reale: Si calcoli poi il seguente ite: sinx arctansinx.

Dettagli

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di Elettrotecnica Corso di Elettrotecnica - Cod. 900 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria A cura di Luca FEAIS Scheda N 6

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica Soluzione del Problema 1 Prima dell istante t = 0 i generatori operano in regime stazionario e il circuito da considerare è il seguente: B A (0 ) v C (0 ) i (0 ) 1 i 4 (0 ) Si nota che le due porzioni

Dettagli

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge Esercizio 1 Il circuito in figura è costituito da un generatore di f.e.m Ɛ=10 V, una resistenza R= 10 kω e tre condensatori C 1 = 10 pf, C 2 = 20 pf e C 3. Il condensatore C 3 è a facce piane e parallele

Dettagli

Il problema del carico

Il problema del carico Il problema del carico Si consideri un circuito composto (per il momento) da sole resistenze e generatori di tensione. Si immagini di collegare tra due punti A e B del circuito una resistenza c che chiameremo

Dettagli

ELETTROTECNICA T A.A. 2014/2015 ESERCITAZIONE 3

ELETTROTECNICA T A.A. 2014/2015 ESERCITAZIONE 3 ELETTROTECNICA T A.A. 2014/2015 ESERCITAZIONE 3 ESERCIZIO 1 Un generatore di tensione sinusoidale con alimenta la rete lineare mostrata in Fig. 1.1. Calcolare tutte le tensioni e le correnti di ramo considerando

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 14/11/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 14/11/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11 Prova di esame del 14/11/2011 - NOME 1) a) Quanto calore è necessario per aumentare la temperatura di una pentola di ferro

Dettagli

Fisica 2 per biotecnologie: Prova in itinere 8 Aprile 2013

Fisica 2 per biotecnologie: Prova in itinere 8 Aprile 2013 Fisica per biotecnologie: Prova in itinere 8 Aprile 03 Scrivere immediatamente, ED IN EVIDENZA, sui due fogli protocollo consegnati ed eventuali altri fogli richiesti) la seguente tabella: NOME :... Numero

Dettagli

ν S R B2 Prova n 1: V CC R C R B1 C C R S C S C L out R L Prove d'esame

ν S R B2 Prova n 1: V CC R C R B1 C C R S C S C L out R L Prove d'esame Prova n 1: Per il seguente circuito determinare: 1. R B1, R E tali che: I C = 0,5 ma; V E = 5 V; 2. Guadagno di tensione a piccolo segnale v out /v s alle medie frequenze; 3. Frequenza di taglio inferiore;

Dettagli

Analisi delle reti. Calcolare la tensione ai capi A e B del seguente circuito, applicando il teorema di Millman: R 1

Analisi delle reti. Calcolare la tensione ai capi A e B del seguente circuito, applicando il teorema di Millman: R 1 2 nalisi delle reti sercitazioni aggiuntive sercizio 2 Calcolare la tensione ai capi e del seguente circuito, applicando il teorema di Millman: 0 [v] [] [] 0 [Ω] 2 20 [Ω] saminando il circuito si osserva,

Dettagli

Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza

Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza Principi di ingegneria elettrica Lezione 3 a Reti in regime sinusoidale mpedenza Ammettenza Legge di Ohm simbolica n un circuito lineare comprendente anche elementi dinamici (induttori e condensatori)

Dettagli