Esercizi di Segnali e Sistemi. GLI ESERCIZI 1,2,3,4,11 COSTITUISCONO UN TEMA D ESAME TIPICO

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi di Segnali e Sistemi. GLI ESERCIZI 1,2,3,4,11 COSTITUISCONO UN TEMA D ESAME TIPICO"

Transcript

1 Eercizi di Segnali e Sitemi. GLI ESERCIZI,2,3,4, COSTITUISCONO UN TEMA D ESAME TIPICO Eempio Conideriamo la funzione di traferimento G() = + Si calcoli la forma di Smith Mc-Millan. Soluzione: G() = N(), N() = ( + ) 2 (+) ( + ) ( + ) + Il maimo comun diviore di ordine è D () =. Il polinomio D 2 () è il maimo comun diviore tra i polinomi: ( + ) 2 ( + )(3 + ) ( + )(2 2 ) Riulta D 2 () = ( + ). Infine D 3 () = ( + ) 2 (3 + ). Quindi n () = D ()/D () = n 2 () = D 2 ()/D () = + n 3 () = D 3 ()/D 2 () = ( + )(3 + )

2 In concluione Ñ() = e quindi la forma di Smith-McMillan è: M() = + ) ( + )(3 + ) (+) 3+ Quindi c è un olo zero di tramiione in = /3. Eempio 2 Si dimotri il teorema eguente Il itema ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) ha norma H minore di γ e e olo e la matrice H = non ha autovalori ull ae immaginario. A γ 2 BB C C A Eempio 3 Si calcoli la norma L 2 e la norma L della funzioe Soluzione: Intanto i noti che: G() = ( + ) ( 5)( + 5) G() = G () + G 2 () :=.6 ( 5) +.4 ( + 5) Quete due funzioni ono ortogonali e quindi G() 2 2 = G () G 2 () 2 2 Inoltre G () 2 2 = G ( ) 2 2. Quindi le equazioni di Lyapunov relative a G ( ) e G 2 () ono: P +.36 =, P = 2

3 Infine G() 2 2 = P + P 2 =.52 Per quanto riguarda la norma infinita, i ha G(jω) 2 = ω2 + ω che ha punto di maimo per ω 2 = 23, valore per il quale riulta G(jω) = 6/24, che è il valore della norma infinita. Eempio 4 Si pieghi il perchè la γ entropia di una funzione G() tabile e trettamente propria è maggiore della ua norma in H 2. Eempio 5 Con riferimento al itema ẋ(t) = x(t) + u(t), y(t) = 2x(t), i ricavi il maimo valore di picco (norma L )) della ripota temporale del itema ad un ingreo integrabile a quadrato di norma unitaria. Soluzione: Il valore è dato da 4p dove p riolve l equazione di Lyapunov 2p + =. Quindi il valore di picco maimo è 2. Eempio 6 Si conideri il itema dinamico ẋ(t) = Ax(t) + Bu(t) dove A = , B = Calcolare gli autovalori di A e dire e A è di Hurwitz o meno. Dire e il itema è raggiungibile e, e poibile, aegnare gli autovalori del itema nel punto, mediante un controllore dallo tato u(t) = Kx(t). Soluzione: Calcolando il determinante di λi A = λ λ 2 λ + 2 i ricava che il polinomio caratteritico di A è ϕ A (λ) = (λ + 2)(λ ) = (λ + 2)(λ + )(λ ), 3

4 da cui i deduce che gli autovalori di A ono 2, e. dunque non è Hurwitziana. La matrice di raggiungibilità 2 K r = B AB A 2 B = La matrice A ha rango pieno. È poibile aegnare a piacere gli autovalori del itema mediante un controllo u(t) = Kx(t). A tale propoito i noti che il polinomio caratteritico deiderato è ϕ A+BK (λ) = λ 3 + 3λ 2 + 3λ +. Utilizzando la formula di Ackermann i ottiene K = K r (A 3 + 3A 2 + 3A + ). L invera di K r i ottiene facilmente K r = 2 e otituendo i ottiene K = 4. Eempio 7 Si conideri il itema dinamico ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) + Du(t) dove A = B = C = D = Calcolare gli autovalori e gli zeri invarianti di tale itema. Trovare la matrice di traferimento di tale itema e calcolare poi poli e zeri di tramiione. Soluzione: Gli autovalori della matrice A ono e (A è una matrice triangolare). Per calcolare gli zeri invarianti i conideri la matrice di itema I A B P () = = + C D 4

5 P () ha normalmente rango 3 tranne quando = e per = (in queto cao il rango della matrice è 2 in quanto vi ono olo due colonne linearmente indipendenti). Gli zeri invarianti del itema quindi ono e. Per calcolare i poli e gli zeri di tramiione, i conideri la matrice di traferimento del itema: G() = C(I A) B + D. In queto eercizio, I A = + (I A) = ( + ) + = (+) + Sotituendo i ottiene G() = + che nella forma di McMillian-Smith diventa + G() = + Vi è quindi un unico polo di tramiione in e un unico zero di tramiione in. Eempio 8 Con riferimento all eempio precedente, dire e il itema è raggiungibile e e è oervabile. Verificare l oervabilità mediante il PBH-tet. Soluzione: La matrice di raggiungibilità K r = B AB = 2 2 ha rango pari a 2 da cui i deduce che il itema in eame è raggiungibile. Si noti che eendo gli zeri invarianti diveri dagli zeri di tramiione il itema non può eere oervabile, in quanto in quet ultimo cao i due tipi di zeri dovrebbero coincidere. Verifichiamo la non oervabilità mediante il PBH-tet. Si conideri I A = + C 5

6 Per verificare la oervabilità occorre verificare che tale matrice non perda rango quando viene valutata negli autovalori di A. In queto cao per = il rango della matrice è 2, mentre per = il rango diventa. Queto conferma che il itema non è oervabile. Inoltre è autovalore della parte non oervabile del itema. Eempio 9 Con riferimento all eempio precedente, i trovi analiticamente l andamento nel tempo dell ucita forzata y F (t) quando u (t) = te t e u 2 (t) = per t >. Soluzione: Nel dominio di Laplace i ha U () = e U (+) 2 2 () = da cui Y F () = G()U() = (+) = 3 ( + ). 3 Mediante lo viluppo di Heaviide i ha Y F () = A + B ( + ) 3 + C ( + ) 2 + D + + E, dove In definitiva, A = lim 3 = (+) 3 B = lim ( + ) 3 3 (+) 3 C = lim d 3 2 d = lim D = lim d d 2 E = lim 3 =. (+) 3 Y F () = = lim 3 = 2 = = lim 4 4 = 2 2 ( + ) 3 + ( + ) , da cui anti-traformando y F (t) = 2t 2 e t te t + 2e t, t >. Eempio Si dica come i calcola la truttura degli zeri all infinito di una matrice razionale proria G(). 6

7 Eempio Si coniderino le due funzioni di traferimento G() = + 5, H() = + 5 Si ricavi il filtro ottimo in H 2, cioè F () tabile tale che la norma F ()G() H() 2 ia minimizzata. Soluzione: La oluzione è: F ott () = (H()G ()Ĝ () ) ta Ĝ() dove Ĝ() = è il fattore pettrale canonico. Riulta: e quindi Infine: H()G ()Ĝ () = + ( )( + 5) = /3 + 2/3 + 5 (H()G ()Ĝ () ) ta = 2/3 + 5 F ott () = 2/3 + Vediamo ora la oluzione in pazio di tato e conideriamo quindi il itema ẋ(t) = 5x(t) + w(t) y(t) = 6x(t) w(t) ξ(t) = x(t) Per cotruzione i ha che G() è la funzione di traferimento da w a y e H() quella da w a ξ. Il filtro ottimo i ottiene nel modo eguente: ˆx(t) = 5ˆx(t) + L(C ˆx(t) y(t)) ˆξ(t) = ˆx(t) dove L = 6P + 7

8 e P è la oluzione tabilizzante di P (36P 2 + 2P ) + = Si ha P = /8 e L = 2/3, e quindi la funzione di traferimento da y a ˆξ, che è il filtro ottimo, riulta F ott () = 2/3 + che, ovviamente, coincide con quella ricavata in precedenza. Eempio 2 Si conideri il itema con 2 A =, L = 2 3 ẋ(t) = (A + L N)x(t), = δ δ 2, N = I Si dimotri che A è di Hurwitz. Si trovi valore uperiore della norma di tale che A + L N è Hurwitz. Si confronti poi queta norma con il raggio compleo di tabilità. Soluzione: Il fatto di eere A di Hurwitz egue da: detλi A = λ 2 + 4λ + 7=. Poi: + δ 2 + δ A + L N = 2, 2 3 e detλi A L N = λ 2 + (4 δ )λ + 7 3δ + 2δ 2 Quindi i ha tabilità per δ < 4, δ 2 >.5δ 3.5 Il valore uperiore del raggio per cui i conerva la tabilità i trova interecando le due rette: δ 2 >.5δ 3.5, δ 2 = 2/3δ e quindi δ = 2/3, δ 2 = 4/3 8

9 col che il raggio reale di tabilità è: 637 δ 2 + δ2 2 = 3 Il raggio compleo di tabilità è invece: =.945 N(I A) L Sia allora G() = N(I A) L. Si ha + 3 G() = Quindi G 3 2 ()G() = ( )( ) Allora 3 + G() = =.59 Il raggio compleo di tabilità è dunque =.9269 < Eempio 3 Si conideri il itema ẋ(t) = x(t), y(t) =, x() = Si calcoli Soluzione: Si ha dove Quindi e J = y(t) y(t)dt J = x() e A t C Ce At dtx() = x() P x() A P + P A + C C = P = J = 2.5 9

10 Eempio 4 Si calcoli la norma L 2 della funzione di traferimento Soluzione: Si ha G() = ( )( + 2) 2 G() = G () + G 2 () = /9 7/9 + /3 + ( + 2) 2 e quindi Allora ia G() 2 7/9 + /3 /9 2 = ( + 2) ( + ) A =, B = 4 4, C = 7/9 /3 e quindi Si ha: e quindi G () 2 2 = traceb P B, A P + P A + C C = P = G () 2 2 =.328 Inoltre, per quanto riguarda G 2 () i ha che G 2 () 2 2 = p/8, 2p + = Quindi e G 2 () 2 2 = /62 G() 2 2 = =.39 Eempio 5 Si definica la γ-entropia di una funzione di traferimento G() pecificando le condizioni di eitenza. Si pieghi perchè la γ-entropia è non inferiore alla norma H 2 di G().

11 + G() R() + Figura : Retroazione Eempio 6 Si conideri il itema dinamico avente funzione di traferimento G() = +2. Tale itema è conneo in retroazione ad un controllore 2 C() come in figura. Si trovi un controllore C() che tabilizzi G() e ucceivamente i trovi la clae di tutti i controllori tabilizzanti G(). Soluzione: G() può eere fattorizzata come: G() = + 2 ( + )( ) = + Si conideri l equazione Diofantina = N() M() + 2 X()M() + Y ()N() = X() Y () + =. Si noti che M() + N() = 2 ++ dove ia quet ultima funzione di traferimento che la ua invera appartengono a RH. Scegliendo quindi X() = Y () = i ottiene una oluzione in RH dell equazione Diofantina di cui opra coicchè C() = Y () X() =. In effetti, andando a coniderare il polinomio caratteritico dello chema in retroazione in figura i ha () = D G ()D C () N G ()N C () = 2 ( ) ( + 2) = 2 + +,

12 le cui radici hanno effettivamente parte reale trettamente minore di. La parametrizzazione di tutti i controllori tabilizzanti è K() = Y () + M()Q() X() + N()Q() = Q() + Q(), Q() RH. Vale la pena di notare che la oluzione dell equazione Diofantina non è unica. Difatti cegliendo X() = + 3 +, Y () = i ottiene ancora una oluzione in RH. Tale oluzione porta al controllore C() = , anch eo tabilizzante, come i può facilmente verificare andando a calcolare le radici del polinomio caratteritico del itema in retroazione. Eempio 7 Si conideri la eguente funzione di traferimento G() = α +α dove α (, ). Si calcoli G() in funzione di α, mediante l equazione di Riccati per la norma H. Si dica poi per quali valori di α i ottiene G() < G() 2 Soluzione: Una realizzazione di G() è data da A = α, B =, C = α e D =. L equazioni di Riccati in quetione è A P + P A + γ 2 P BB P + C C = 2αP + P 2 che ammette oluzione P = α ± α 2 α2 γ = α ± α 2 γ. 2 La matrice  = A + BB P = α + α ± α γ 2 = ±α γ 2 + α2 = γ 2 è di Hurwitz olo per la oluzione P = α α γ 2 e quando γ >. Di coneguenza G() < γ, γ > e quindi G() =. 2

13 Dall equazione di Lyapunov A Q + QA + CC = 2αQ + α 2 = Si ricava Q = α 2 e di coneguenza G() 2 = α trb QB = 2 Quindi G() < G() 2 < α 2 α > 2. 3

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito del 2 Dicembre 25 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere la oluzione generale della eguente equazione alle differenze tempo-variante

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito A del 5 Febbraio 05 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere la oluzione in forma chiua dell equazione differenziale ẋ(t) =

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito A del 23 Dicembre 200 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Indicare il numero e il tipo di parametri che caratterizzano la funzione

Dettagli

Sistemi a segnali campionati

Sistemi a segnali campionati Capitolo. INRODUZIONE 6. Sitemi a egnali campionati Si conideri il eguente itema lineare tempo continuo: G() : ẋ(t) Ax(t)+Bu(t) y(t) Cx(t) U() G() Y() Se i inerice un ricotruttore di ordine zero H () e

Dettagli

1 = (parabola unitaria) si determini l errore di regolazione a regime:

1 = (parabola unitaria) si determini l errore di regolazione a regime: A - Tet d ingreo alla Prova Scritta di Controlli Automatici A del Ottobre 00 ( + ) ( ) + ) Dato un itema dinamico Σ con funzione di traferimento T() crivere i modi di Σ : ( + ) + 9 t { modi di Σ } {, tt,,

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito del Gennaio 206 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere la oluzione generale dell equazione alle differenze x(k +) = Ax(k)+Bu(k)

Dettagli

K c s h. P(s) 1/K d. U(s) + Y(s)

K c s h. P(s) 1/K d. U(s) + Y(s) Eame di Fondamenti di Automatica Coro di Laurea Vecchio Ordinamento in Ingegneria Elettronica febbraio 3 Compito A Cognome: Nome Matricola: Email:. Ricavare la funzione di traferimento tra u ed y nel eguente

Dettagli

Uso della trasformata di Laplace per il calcolo della risposta

Uso della trasformata di Laplace per il calcolo della risposta Uo della traformata di Laplace per il calcolo della ripota Conigli generali (Aggiornato 7//) ) Si vuole qui richiamare l attenzione ul fatto che la preenza di zeri o di una truttura triangolare a blocchi

Dettagli

SEGNALI E SISTEMI 31 agosto 2017

SEGNALI E SISTEMI 31 agosto 2017 SEGNALI E SISTEMI 31 agoto 2017 Eercizio 1. [3+3+3+4 punti] Si conideri il modello ingreo/ucita LTI e cauale decritto dalla eguente equazione differenziale: dove a è un parametro reale. d 2 v(t) 2 +(1

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito del Dicembre Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere la oluzione generale della eguente equazione alle differenze tempo-variante

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito del Febbraio 206 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere l andamento temporale della funzione di ucita y(k), oluzione dell

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi Teoria dei Sitemi e del Controllo Compito A del 24 Giugno 200 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Nel cao di itemi lineari continui tempo-varianti, la matrice

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito A del 6 Gennaio Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Nel cao di un itema lineare, continuo e tempo-variante ẋ = A(t)x(t)+B(t)x(t),

Dettagli

Stabilità e punti di equilibrio

Stabilità e punti di equilibrio Capitolo 4 Stabilità e punti di equilibrio 4. Stabilità di un itema epreo da un equazione di tato Si è motrato come un itema poa eere epreo con il itema cotituito dalle equazioni 3.6 e 3.7 ovvero: X()

Dettagli

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A Eame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A A Cognome: Nome: Matricola: Mail: 1. Dato il itema di controllo raffigurato, con C( K c ; P 1 1( ( + 4 ; P ( ( + ( + 3 ;

Dettagli

Esercizi di Controlli Automatici - 9 A.A. 2009/2010

Esercizi di Controlli Automatici - 9 A.A. 2009/2010 Eercizi di Controlli Automatici - 9 A.A. 2009/200 Eercizio. Dato il eguente chema, in cui gli amplificatori operazionali ono uppoti ideali, i calcoli la funzione di traferimento G() tra v in (t) e v out

Dettagli

Esame di FONDAMENTI di AUTOMATICA Compito B (Nuovo ordinamento) 16 Giugno 2008 (Bozza di soluzione)

Esame di FONDAMENTI di AUTOMATICA Compito B (Nuovo ordinamento) 16 Giugno 2008 (Bozza di soluzione) Eame di FONDAMENTI di AUTOMATICA Compito B (Nuovo ordinamento 6 Giugno 28 (Bozza di oluzione NB. Si coniglia vivamente di ripaare anche argomenti non trettamente inerenti la materia oggetto della prova

Dettagli

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof Bittanti, BIO A-K) Settembre Si conideri il eguente itema dinamico a tempo continuo decritto mediante chema a blocchi: ut () _ yt () 9 a Si calcoli la funione

Dettagli

COMPITO DI CONTROLLI AUTOMATICI Ingegneria dell Informazione 18 Luglio 2014

COMPITO DI CONTROLLI AUTOMATICI Ingegneria dell Informazione 18 Luglio 2014 COMPITO DI CONTROLLI AUTOMATICI Ingegneria dell Informazione 18 Luglio 14 Eercizio 1. [9 punti] Si conideri il modello ingreo/ucita a tempo continuo avente la eguente funzione di traferimento: ( 2 + 1)(

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi Teoria dei Sitemi e del Controllo Compito A del 24 Giugno 2 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Nel cao di itemi lineari continui tempo-varianti, la matrice

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito A del Dicembre Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere la oluzione generale della eguente equazione alle differenze tempo-variante

Dettagli

dove x 0 R n è fissato.

dove x 0 R n è fissato. AMMISSIONE AL QUARTO ANNO: prova di ANALISI MATEMATICA (matematici e fiici) 26 Sia α (, ) (a) Provare che eite c α >, indipendente da t e, tale che (b) Calcolare c /2 (t σ) α (σ ) α dσ = c α, t, () (c)

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito del Gennaio 6 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere la oluzione generale dell equazione alle differenze x(k +) = Ax(k)+Bu(k)

Dettagli

Esempi Calcolo Antitrasformate

Esempi Calcolo Antitrasformate Eempi Calcolo Antitraformate Note per il Coro di FdA - Info April, 05 Il punto focale del coiddetto metodo di Heaviide per l antitraformazione di un egnale regolare a traformata razionale conite nel riconocere

Dettagli

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno Voto Cognome/Nome & No. Matricola FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A. 25 26) Coro di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno PROVA DEL 8 SETTEMBRE

Dettagli

ESERCIZI DI CONTROLLI AUTOMATICI Prof. Gianluigi Pillonetto 21 NOVEMBRE d 2 (t) r(t) e(t) y(t) C(s)G(s)

ESERCIZI DI CONTROLLI AUTOMATICI Prof. Gianluigi Pillonetto 21 NOVEMBRE d 2 (t) r(t) e(t) y(t) C(s)G(s) ESERCIZI DI CONTROLLI AUTOMATICI Prof. Gianluigi Pillonetto 2 NOVEMBRE 206 Ex. Si conideri il itema di controllo d (t) d 2 (t) C()G() K Calcolare le funzioni di traferimento che legano le eguenti coppie

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi Teoria dei Sitemi e del Controllo Compito A del 27 Aprile 2 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere la forma eplicita della matrice di tranizione dello

Dettagli

Compito di Fondamenti di Automatica settembre 2006

Compito di Fondamenti di Automatica settembre 2006 Compito di Fondamenti di Automatica ettembre 2006 Eercizio 1. Si conideri lo chema di figura (operazionale ideale, eccetto per il guadagno che puó eere definito da una G(), reitenze uguali, condenatori

Dettagli

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A Eame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A A Cognome: Nome: Matricola: Mail: 1. Dato il itema di controllo raffigurato, con C( K c 2 ; P 1 1( ( + 4 ; P 2 ( ( + 1 (

Dettagli

Raggiungibilità e Controllabilità Esercizi risolti

Raggiungibilità e Controllabilità Esercizi risolti Raggiungibilità e ontrollabilità Esercizi risolti 1 Esercizio Dato il seguente sistema dinamico LTI a tempo discreto descritto dalle matrici A e B: [ [ 1 k k A, B 0 1 + k 1 studiare le proprietà di raggiungibilità

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito A del 8 Gennaio 05 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere l andamento temporale della funzione di ucita y(t), oluzione dell

Dettagli

Esercitazione sulla trasformata di Laplace

Esercitazione sulla trasformata di Laplace Eercitazione ulla traformata di aplace 3 febbraio 03 Eercizio 0 Calcolare la traformata di aplace dei egnali cauali definiti da e 0 < t

Dettagli

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso.

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso. 5 Luglio 3 econda prova Sia dato un itema dinamico con funzione di traferimento G(), i cui diagrammi di Bode, del modulo e della fae, ono di eguito rappreentati: 6 Bode Diagram Phae (deg) Magnitude (db)

Dettagli

ẋ 2 = x 1 10x u y = x 1 + x 2 [

ẋ 2 = x 1 10x u y = x 1 + x 2 [ Soluzione dell appello del 16 luglio 212 1. Si conideri il itema lineare decritto dalle eguenti equazioni: 1.1 Trovare le condizioni iniziali x() = ẋ 1 = x 1 ẋ 2 = x 1 1x 2 1u = x 1 x 2 [ x1, x 2, aociato

Dettagli

Modellistica e controllo PID di un pendolo inverso

Modellistica e controllo PID di un pendolo inverso Modellitica e controllo PID di un pendolo invero Note per le lezioni del coro di Controlli Automatici - A.A. 2009/0 Prof.a Maria Elena Valcher Modellitica Un ata di maa m è incernierata ad un carrello

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica «Correzione Eonero 23/05/2019» Compito B Dario Maucci 28/05/2019 Traccia d eame (Eercizio 1 - Compito B) Dato il itema di controllo in figura u(t) + C() P 1 () + z + P 2 () y(t)

Dettagli

Esercitazione di Controlli Automatici 1 n 2. a.a. 2006/07

Esercitazione di Controlli Automatici 1 n 2. a.a. 2006/07 6 marzo 007 Eercitazione di Controlli Automatici n a.a. 006/07 Riferendoi al itema di controllo della temperatura in un locale di piccole dimenioni dicuo nella eercitazione precedente, e di eguito riportato:.

Dettagli

Il Luogo delle Radici

Il Luogo delle Radici Il Luogo delle Radici Il luogo delle radici è un procedimento, otanzialmente grafico, che permette di analizzare come varia il poizionamento dei poli di un itema di controllo in retroazione al variare

Dettagli

Corso Tecnologie dei Sistemi di Controllo. Controllo PID

Corso Tecnologie dei Sistemi di Controllo. Controllo PID Coro Controllo PID Ing. Valerio Scordamaglia Univerità Mediterranea di Reggio Calabria, Loc. Feo di Vito, 896, RC, Italia D.I.M.E.T. : Dipartimento di Informatica, Matematica, Elettronica e Traporti Struttura

Dettagli

Lezione 9. Schemi di controllo avanzati parte prima. F. Previdi - Controlli Automatici - Lez. 9 1

Lezione 9. Schemi di controllo avanzati parte prima. F. Previdi - Controlli Automatici - Lez. 9 1 Lezione 9. Schemi di controllo avanzati parte prima F. Previdi - Controlli Automatici - Lez. 9 Schema. Regolatori in anello aperto Controllo multivariabile:. Regolatori di diaccoppiamento 3. Controllo

Dettagli

Fondamenti di Automatica Figura 1: Schema di centrifuga industriale: a) vista in assonometria b) vista frontale.

Fondamenti di Automatica Figura 1: Schema di centrifuga industriale: a) vista in assonometria b) vista frontale. Fondamenti di Automatica 6-9-26 Figura : Schema di centrifuga indutriale: a) vita in aonometria b) vita frontale. A In Fig..a è riportato lo chema emplificato di una centrifuga orizzontale indutriale di

Dettagli

Prova del 30 Giugno Si consideri il seguente sistema dinamico a tempo continuo: Esercizio 1 = + + U

Prova del 30 Giugno Si consideri il seguente sistema dinamico a tempo continuo: Esercizio 1 = + + U Prova del Giugno 4 Eercizio. Si conideri il eguente itema dinamico a tempo continuo: x () t α x() t + u() t x () t x() t u() t x () t x() t x() t ( + α) x() t + u() t yt () x() t.a Si calcoli la funzione

Dettagli

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno Voto Cognome/Nome & No. Matricola FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A. 5 6) Coro di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno PROVA DEL 6 GENNAIO 7 Ripondere

Dettagli

ANALISI DI SISTEMI IN RETROAZIONE TEOREMA DI NYQUIST

ANALISI DI SISTEMI IN RETROAZIONE TEOREMA DI NYQUIST ANALISI DI SISTEMI IN RETROAZIONE TEOREMA DI NYQUIST PROPRIETÀ DEI SISTEMI IN RETROAZIONE U E G () H () Si fa riferimento ad un generico itema in retroazione con funzione di traferimento a ciclo chiuo.

Dettagli

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018 Fondamenti di Automatica Prof. Luca Bascetta Primo prova intermedia 27 Aprile 28 ESERCIZIO E assegnato il sistema dinamico, a tempo continuo, lineare e invariante con ingresso u(t) e uscita y(t): { ẋ(t)

Dettagli

Esercizio. Il circuito di figura rappresenta un filtro passa-banda. Dopo aver ricavato la funzione di trasferimento, sapendo che

Esercizio. Il circuito di figura rappresenta un filtro passa-banda. Dopo aver ricavato la funzione di trasferimento, sapendo che Eercizio Clae 5ª Elettronici Materia Sitemi Argomento Funzioni di traferimento Il circuito di figura rappreenta un filtro paa-banda. Dopo aver ricavato la funzione di traferimento, apendo che R = 2k Ω

Dettagli

1. (solo nuovo ordinamento e diploma) Dato il sistema di controllo raffigurato, con

1. (solo nuovo ordinamento e diploma) Dato il sistema di controllo raffigurato, con Eame di Fondamenti di Automatica Coro di Laurea Nuovo e Vecchio Ord. in Ingegneria Elettronica Simulazione 9 Novembre 7 Cognome: Nome Matricola: E-mail: 1. (olo nuovo ordinamento e diploma) Dato il itema

Dettagli

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Si determini se i sistemi lineari tempo invarianti ẋ(t) = Ax(t) + Bu(t), Σ c : y(t) = Cx(t) + Du(t). x(k + ) = Ax(k) + Bu(k), Σ d : y(k)

Dettagli

I sistemi retroazionati. Per lo studio si può utilizzarne uno a reazione unitaria per rendere standard i risultati:

I sistemi retroazionati. Per lo studio si può utilizzarne uno a reazione unitaria per rendere standard i risultati: I itemi retroazionati Facciamo riferimento allo chema a blocchi: Per lo tudio i può utilizzarne uno a reazione unitaria per rendere tandard i riultati: i due ono equivalenti: infatti il primo ha una f.d.t.

Dettagli

Esercitazione di Controlli Automatici 1 n 6

Esercitazione di Controlli Automatici 1 n 6 4 maggio 007 Eercitazione di Controlli Automatici n 6 a.a. 006/07 Si conideri il itema della eercitazione n 5 cotituito da un braccio robotico in rotazione, utilizzato per la movimentazione di oggetti.

Dettagli

Introduzione. Esempio di costruzione one del contorno delle radici. Esempio... 4

Introduzione. Esempio di costruzione one del contorno delle radici. Esempio... 4 Appunti di Controlli Automatici 1 Capitolo 5 parte II Il contorno delle radici Introduzione... 1 Eempio di cotruzione del contorno delle radici... 1 Eempio... 4 Introduzione Il procedimento per la cotruzione

Dettagli

ESEMPI DI ANALISI DI CIRCUITI DINAMICI LINEARI. corso: Teoria dei Circuiti. docente: Stefano PASTORE. 1 Esempio di tableau dinamico (tempo e Laplace)

ESEMPI DI ANALISI DI CIRCUITI DINAMICI LINEARI. corso: Teoria dei Circuiti. docente: Stefano PASTORE. 1 Esempio di tableau dinamico (tempo e Laplace) ESEMPI DI ANALISI DI CIRCUITI DINAMICI LINEARI coro: Teoria dei Circuiti docente: Stefano PASTORE 1 Eempio di tableau dinamico (tempo e Laplace) 1.1 Dominio del tempo Conideriamo il eguente circuito dinamico

Dettagli

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 30 Gennaio A.A

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 30 Gennaio A.A TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 30 Gennaio 2013 - A.A. 2012-2013 Esercizio 1. Si consideri il sistema a tempo continuo descritto dalle seguenti

Dettagli

Soluzione degli esercizi del Capitolo 13

Soluzione degli esercizi del Capitolo 13 Soluzione degli esercizi del Capitolo 3 Soluzione dell Esercizio 3. Il polinomio caratteristico desiderato è ϕ (s) = (s + 4) (s + ) = s 2 + 4s + 4 Uguagliando i coefficienti quelli del polinomio caratteristico

Dettagli

Spazio degli stati. G(s) = Y (s) X(s) = b m s m + b m 1 s m b 1 s + b 0

Spazio degli stati. G(s) = Y (s) X(s) = b m s m + b m 1 s m b 1 s + b 0 .. MODELLISTICA - Modellistica dinamica 2. Spazio degli stati I sistemi dinamici lineari vengono tipicamente descritti utilizzando la trasformata di Laplace e il concetto di funzione di trasferimento.

Dettagli

Corso di Teoria dei Sistemi N. Raccolta di esercizi svolti tratti da temi d esame

Corso di Teoria dei Sistemi N. Raccolta di esercizi svolti tratti da temi d esame Politecnico di Torino - Consorzio Nettuno Michele Taragna Corso di Teoria dei Sistemi - 955N Raccolta di esercizi svolti tratti da temi d esame Diploma Universitario a Distanza in Ingegneria Informatica

Dettagli

Elementi di Algebra Lineare. Spazio Vettoriale (lineare)

Elementi di Algebra Lineare. Spazio Vettoriale (lineare) Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi

Dettagli

Punto 1 Il sistema proposto di tipo retroazionato può essere rappresentato con lo schema a blocchi riportato in Fig. 1.

Punto 1 Il sistema proposto di tipo retroazionato può essere rappresentato con lo schema a blocchi riportato in Fig. 1. Pag. di SOLUZIONE dei primi 4 punti richieti dalla Prova. Leggo bene il teto e poi? La mia Maetra mi diceva empre: Prima la figura. Punto Il itema propoto di tipo retroazionato può eere rappreentato con

Dettagli

1 Trasformate e antitrasformate di Laplace

1 Trasformate e antitrasformate di Laplace Traformate e antitraformate di Laplace Ricordiamo intantanto alcune traformate fondamentali, ricordiamo che iccome la trformato di Laplace tiene conto olo dei valori della funzione pr t poitivo, tutte

Dettagli

iii) Si studi la raggiungibilità e l osservabilità dei seguenti sistemi:

iii) Si studi la raggiungibilità e l osservabilità dei seguenti sistemi: Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del /9/7 Esercizio Sia (F, g, H) un sistema discreto, raggiungibile e osservabile, con un ingresso e un uscita, e sia n(z) R(z)

Dettagli

APPENDICE. L-trasformazione dei componenti R, L,C Esempi di risoluzione di equazioni differenziali con la T.d.L.

APPENDICE. L-trasformazione dei componenti R, L,C Esempi di risoluzione di equazioni differenziali con la T.d.L. APPENDICE Modelli matematici dei componenti R, L, C Ripota di un circuito nel dominio del tempo con il metodo delle equazioni differenziali Traformata di Laplace L-traformazione dei componenti R, L,C Eempi

Dettagli

Corso di Fondamenti di Automatica A.A. 2015/16. Diagrammi di Bode

Corso di Fondamenti di Automatica A.A. 2015/16. Diagrammi di Bode 1 Coro di Fondamenti di Automatica A.A. 015/16 Diagrammi di Bode Prof. Carlo Coentino Dipartimento di Medicina Sperimentale e Clinica Univerità degli Studi Magna Graecia di Catanzaro tel: 0961-3694051

Dettagli

coeff. della 1 colonna sono diversi da 0 il sistema è asintoticamente stabile;

coeff. della 1 colonna sono diversi da 0 il sistema è asintoticamente stabile; Sitemi Dinamici: Induttore: i = x, v = Lx Condenatore: i = Cx, v = x x = x x = p Maa: x =, dove x u = v M u = F x = x Ocillatore meccanico: x = (Kx M Dx + u), dove Pendolo: x = x x = g l in x + ml u k

Dettagli

Trasformazione di Laplace

Trasformazione di Laplace Traformazione di Laplace Gabriele Sicuro. Definizioni fondamentali Sia data una funzione f : C; ea i dice originale e ono oddifatte le eguenti condizioni: () f (t) per t

Dettagli

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento Esercitazione 05: Trasformata di Laplace e funzione di trasferimento 28 marzo 208 (3h) Fondamenti di Automatica Prof. M. Farina Responsabile delle esercitazioni: Enrico Terzi Queste dispense sono state

Dettagli

ESERCIZI SVOLTI di ANALISI DEI SISTEMI

ESERCIZI SVOLTI di ANALISI DEI SISTEMI ESERCIZI SVOLTI di ANALISI DEI SISTEMI Davide Giglio DIST - Univerità di Genova Via Opera Pia, 3 645 - Genova, Italy Tel: +39 353748 Fax: +39 35354 Davide.Giglio@unige.it Queta raccolta di eercizi volti

Dettagli

Lezione 18. Stabilità di sistemi retroazionati. F. Previdi - Fondamenti di Automatica - Lez. 18 1

Lezione 18. Stabilità di sistemi retroazionati. F. Previdi - Fondamenti di Automatica - Lez. 18 1 Lezione 18. Stabilità di itemi retroazionati F. Previdi - Fondamenti di Automatica - Lez. 18 1 Schema 1. Stabilità di itemi retroazionati 2. Diagramma di Nyquit 3. Criterio di Nyquit 4. Etenioni del Criterio

Dettagli

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE METODO DEGLI SPOSTAMENTI CORSO DI PROGETTAZIONE STRUTTURALE B a.a. 00/0 Prof. G. Salerno Appunti elaborati da Arch. C. Provenzano. STRUTTURE IPERSTATICHE Una truttura i dice ipertatica o taticamente indeterminata

Dettagli

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 19 Luglio 2012

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 19 Luglio 2012 COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 9 Luglio 22 Esercizio. Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s) = (s + )

Dettagli

Regolazione e Controllo dei Sistemi Meccanici Figura 1: Schema di un montacarichi.

Regolazione e Controllo dei Sistemi Meccanici Figura 1: Schema di un montacarichi. Regolazione e Controllo dei Sitemi Meccanici 7-7-28 Figura : Schema di un montacarichi. Il itema in figura, cotituito da un motore elettrico azionante un verricello dove è avvolto un cavo di materiale

Dettagli

Risonanza. Tracciare gli andamenti del modulo e della fase dell impedenza in funzione della frequenza f per il seguente bipolo: A R 1 R 2

Risonanza. Tracciare gli andamenti del modulo e della fase dell impedenza in funzione della frequenza f per il seguente bipolo: A R 1 R 2 6 Eercitazioni aggiuntive Eercizio 6. Tracciare gli andamenti del modulo e della fae dell impedenza in funzione della frequenza f per il eguente bipolo: A B [W]; [W]; [mf] Si calcoli l impedenza del bipolo

Dettagli

Lezione 2 - Algebra. x + 1 x 2 a b + b a 2. Problema 2 Siano a, b, c R, provare che

Lezione 2 - Algebra. x + 1 x 2 a b + b a 2. Problema 2 Siano a, b, c R, provare che Lezione - Algebra Problema 1 Siano a, b R +, dimotrare che a b + b a Soluzione: Poniamo x = a, oerviamo che b (x 1) 0 x x + 1 0 x + 1 x dato che x > 0, poiamo dividere ambo i membri per x, otteniamo: Problema

Dettagli

1. Introduzione Il convertitore a semplice semionda Il sistema di controllo... 5

1. Introduzione Il convertitore a semplice semionda Il sistema di controllo... 5 . Introduzione... 2 2. Il convertitore a emplice emionda... 3 2. Il itema di controllo... 5 3. Il convertitore monofae nella configurazione a ponte... 7 4. Il fenomeno della commutazione... . Introduzione

Dettagli

Capitolo. Semplificazioni di schemi a blocchi. 4.1 Blocchi in cascata. 4.2 Blocchi in parallelo. 4.3 Blocchi in catena chiusa (reazione negativa)

Capitolo. Semplificazioni di schemi a blocchi. 4.1 Blocchi in cascata. 4.2 Blocchi in parallelo. 4.3 Blocchi in catena chiusa (reazione negativa) Capitolo 4 Semplificazioni di chemi a blocchi 4. Blocchi in cacata 4. Blocchi in parallelo 4.3 Blocchi in catena chiua (reazione negativa) 4.4 Blocchi in catena chiua (reazione poitiva) 4.5 Spotamento

Dettagli

CONTROLLO DIGITALE LAUREA TRIENNALE IN ING. INFORMATICA E DELL AUTOMAZIONE A.A. 2017/2018 LAUREA MAGISTRALE IN ING. ELETTRICA A.A.

CONTROLLO DIGITALE LAUREA TRIENNALE IN ING. INFORMATICA E DELL AUTOMAZIONE A.A. 2017/2018 LAUREA MAGISTRALE IN ING. ELETTRICA A.A. LAUREA TRIENNALE IN ING. INFORMATICA E DELL AUTOMAZIONE A.A. 7/8 LAUREA MAGISTRALE IN ING. ELETTRICA A.A. 7/8 APPELLO 9//8 Sia aegnata la eguente equazione alle differenze: y(k).3679y(k ) +.3679y(k ) =.3679u(k

Dettagli

Lezione 11. Progetto del controllore

Lezione 11. Progetto del controllore Lezione Progetto del controllore Specifiche di progetto Conideriamo nuovamente un itema di controllo in retroazione: d y + + + y () G() + + n Fig : Sitema di controllo Supporremo aegnata la funzione di

Dettagli

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.7

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.7 ESERCZO n.7 Data la ezione cava riportata in Figura, determinare: a) gli ai principali centrali di inerzia; b) l ellie principale centrale di inerzia; c) il nocciolo centrale di inerzia. cm cm A#7 . Determinazione

Dettagli

Semplificazioni di schemi a blocchi

Semplificazioni di schemi a blocchi Semplificazioni di chemi a blocchi 4. Blocchi in cacata 4. Blocchi in parallelo 4.3 Blocchi in catena chiua (reazione negativa) 4.4 Blocchi in catena chiua (reazione poitiva) 4.5 Spotamento di blocchi

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI Prova scritta 8 settembre 2017 SOLUZIONE ESERCIZIO 1. Si consideri il seguente circuito elettrico passivo: Applicando le leggi di Kirchhoff

Dettagli

w 1 (z) = z2 z + 1 z 3 z 2 + z 1, w 2(z) = z2

w 1 (z) = z2 z + 1 z 3 z 2 + z 1, w 2(z) = z2 Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del 3///7 Esercizio Si considerino le funzioni di trasferimento (a tempo discreto) w (z) = z z + z 3 z + z, w (z) = z z 3 (.) (i)

Dettagli

Specifiche sulla banda passante negli amplificatori a microonde

Specifiche sulla banda passante negli amplificatori a microonde pecifiche ulla banda paante negli amplificatori a microonde Gli amplificatori a microonde trattano egnali modulati, il cui pettro ha in genere una etenione B molto minore della frequenza centrale f 0 (portante).

Dettagli

Sistemi di Controllo - Controlli Automatici (Parte B) Ingegneria Meccanica e Ingegneria del Veicolo

Sistemi di Controllo - Controlli Automatici (Parte B) Ingegneria Meccanica e Ingegneria del Veicolo Cognome: Nome: N. Matr.: Sitemi di Controllo Controlli Automatici Ho uperato la Parte A in data(mee/anno) Intendo volgere la teina con Matlab/Simulink Sitemi di Controllo - Controlli Automatici (Parte

Dettagli

Esercizi di teoria dei sistemi

Esercizi di teoria dei sistemi Esercizi di teoria dei sistemi Controlli Automatici LS (Prof. C. Melchiorri) Esercizio Dato il sistema lineare tempo continuo: ẋ(t) 2 y(t) x(t) x(t) + u(t) a) Determinare l evoluzione libera dello stato

Dettagli

Esame di Metodi Matematici per l Ingegneria

Esame di Metodi Matematici per l Ingegneria Eame di Metodi Matematici per l Ingegneria Prof. M. Bramanti Politecnico di Milano, A.A. 5/6 Secondo Appello. 6 febbraio 5. Cognome: Nome N matr. o cod. perona: Domande di teoria ripondere a tre domande

Dettagli

Corso di Microonde II

Corso di Microonde II POLITECNICO DI MILANO Coro di Microonde II Lezi n. 4: Progetto amplificatori Lineari a ingolo tadio Progetto di Amplificatori con dipoitivi potenzialmente intabili Nel cao di dipoitivi potenzialmente intabili,

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Stabilità esterna e analisi della risposta Stabilità esterna e risposta a regime Risposte di sistemi del I e II ordine 2 Stabilità esterna e analisi della risposta Stabilità esterna

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 17 gennaio Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 17 gennaio Soluzioni compito 1 ANALISI MATEMATICA II Sapiena Univerità di Roma - Laurea in Ingegneria Informatica Eame del 7 gennaio 07 - Soluioni compito E Calcolare il eguente integrale di funione di variabile reale con i metodi della

Dettagli

Esame di Metodi Matematici per l Ingegneria

Esame di Metodi Matematici per l Ingegneria Eame di Metodi Matematici per l Ingegneria Prof. M. Bramanti Politecnico di Milano, A.A. 25/6 Seconda prova in itinere. Gennaio 26 Tema A Cognome: Nome N matr. o cod. perona: Domande di teoria ripondere

Dettagli

Discretizzazione del controllore

Discretizzazione del controllore Dipartimento di Ingegneria Dicretiaione del controllore Michele Ermidoro Ingegneria dei itemi di controllo - Senori Perchè dicretiare? Introduione Il paaggio al mondo dicreto è neceario e i vuole implementare

Dettagli

Tecnologie dei Sistemi di Automazione

Tecnologie dei Sistemi di Automazione Facoltà di Ingegneria Tecnologie dei Sitemi di Automazione rof. Gianmaria De Tommai Lezione 4 Regolatori ID indutriali: Leggi di controllo e utilizzo Coro di Laurea Codice inegnamento Email docente Anno

Dettagli

Lezione 18. Analisi delle prestazioni

Lezione 18. Analisi delle prestazioni ezione 8. nalii delle pretazioni di itemi i retroazionati i c Senitività F. Previdi - utomatica - ez. 8 Schema. nalii tatica di S ripota allo calino 2. nalii tatica di S ripota alla rampa 3. Tabelle valori

Dettagli

Controlli Automatici

Controlli Automatici Controlli Automatici (Prof. Casella) I Prova in Itinere - 21 Novembre 2008 Soluzioni Domanda 1 Con riferimento al seguente sistema: ẋ 1 = x 1 ẋ 2 = 2 x 1 x 2 u ẋ 3 =x 1 5 x 2 x 3 y=3 x 1 2 x 2 1.1 Valutare

Dettagli

Osservatore di Luenberger

Osservatore di Luenberger 1 Osservatore di Luenberger In queste note verrà presentato l osservatore di Luenberger, uno stimatore dello stato per sistemi lineari. Si farà il caso di sistemi dinamici tempo-continui e tempo-discreti.

Dettagli

Stimatori dello stato

Stimatori dello stato Capitolo. TEORIA DEI SISTEMI 5. Stimatori dello stato La retroazione statica dello stato u(k) = K x(k) richiede la conoscenza di tutte le componenti del vettore di stato. Tipicamente le uniche variabili

Dettagli

Trasmissione di Simboli Isolati

Trasmissione di Simboli Isolati Coro di COMUNICAZIONI ELETTRICHE Docente : Prof. Roberto Gaudino Tutore : Prof. Vito De Feo Eercitazione n 6 Tramiione di Simboli Iolati Anno Accademico 007-008 Eercizio Quale delle forme d'onda h(t) in

Dettagli

Sistemi di controllo

Sistemi di controllo Cognome: Nome: N. Matr.: Sitemi di controllo Ingegneria Meccanica e Ingegneria del Veicolo Compito del 15 luglio 2014 - Quiz Per ciacuno dei eguenti queiti, egnare con una crocetta le ripote che i ritengono

Dettagli

Criterio di stabilità di Bode. tramite la risposta in frequenza viene indicata come condizione di innesco dell instabilità la

Criterio di stabilità di Bode. tramite la risposta in frequenza viene indicata come condizione di innesco dell instabilità la Criterio di tabilità di Bode Sia dato un itema retroazionato con f.d.t. eprea F( H ( tramite la ripota in frequenza viene indicata come condizione di inneco dell intabilità la G ( j H ( j 0 cioè G ( j

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 2 luglio 26: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema lineare con ingresso u ed uscita y descritto dalle seguenti

Dettagli