Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec."

Transcript

1 Teoria dei Sitemi e del Controllo Compito del Gennaio 206 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere la oluzione generale dell equazione alle differenze x(k +) = Ax(k)+Bu(k) a partire dalla condizione iniziale x(0) all itante h = 0: x(k) = Scrivere l andamento temporale della funzione di ucita y(t), oluzione dell equazione differenziale ẋ(t) = Ax(t)+Bu(t) e dell equazione tatica y(t) = Cx(t)+Du(t) a partire dalla condizione iniziale x(0) all itante t 0 = 0: y(t) = 3. Un itema dinamico caratterizzato dalla funzione di tato x(k +) = f(x(k),u(k)) è un itema dinamico; è un itema tempo-continuo; è un itema lineare; è un itema tempo-invariante; 4. CalcolarelamatricediraggiungibilitàR + elamatricedioervabilitào deleguenteitema: ẋ(t) = x(t)+ 0 0 u(t) 0 0 R + =, O = y(t) = [ 0 ] x(t) Il itema è: raggiungibile? non raggiungibile? oervabile? non oervabile? Fornire una bae B R del ottopazio raggiungibile X + e una bae B O del ottopazio non oervabile E : X + = Im[B R ] = Im, E = Im[B O ] = Im. 5. Sia dato un itema lineare tempo dicreto: x(k+) = Ax(k)+Bu(k) e y(k) = Cx(k)+Du(k). Fornire l epreione y(k) della ola evoluzione libera dell ucita del itema a partire dalla condizione iniziale x 0. Indicare inoltre l epreione della traformata y(z) del vettore y(k): y(k) = y(z) = 6. Calcolare, in funzione della condizione iniziale x 0 = [x 0, x 20, x 30, x 40 ] T, l evoluzione libera del eguente itema autonomo tempo-dicreto: 0 0 x 0 x(k +) = x(k) x(k) = x 20 x x 40

2 7. Sia dato il eguente itema lineare tempo-continuo ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t). Scrivere l epreione delle matrici F, G e H che caratterizzano il corripondente itema a egnali campionati x(k +) = Fx(k)+Gu(k), y(k) = Hx(k): F = G = H = 8. Coniderato un itema dinamico tempo-dicreto x(k + ) = A x(k) del econdo ordine caratterizzato da due autovalori reali ditinti λ = 0.8, λ 2 =.2, ripondere alle domande e indicare qual è l andamento qualitativo delle traiettorie nell intorno dell origine: gli autovettori del itema v e v 2 ono reali e ditinti. gli autovettori del itema v e v 2 ono traiettorie rettilinee del itema. per t tutte le traiettorie tendono ad appiattiri u uno dei due autovettori. per t tutte le traiettorie tendono a zero. x x Quale nome viene tipicamente utilizzato per indicare il tipo di traiettorie opra indicato: Nodo? Fuoco? Sella? Degenere? Stabile? Intabile? 9. Diegnare lo chema a blocchi aociato al eguente itema tempo-continuo dove con x c i è indicato il vettore x c = [ ] T x x 2 x 3 x ẋ c (t) = x c(t)+ 0 0 u(t) α 0 α α 2 α 3 y(t) = [ ] β 0 β β 2 β 3 xc (t) 0. Dato il itema dinamico otto riportato, crivere la funzione di traferimento G(z) che lega la traformata U(z) dell ingreo u(k) alla traformata Y(z) dell ucita y(k): x(k +) = 0 0 G(z) = x(t)+ 5 3 u(k) y(k) = [ ] x(k)+ [ 7 ] u(k) 2

3 . Si conideri il problema di controllo punto a punto per un itema lineare tempo-dicreto. Tra le infinite oluzioni u che fanno paare il itema dallo tato iniziale x(0) allo tato finale x(k) nell intervallo di tempo [0, k] indicare la oluzione u che minimizza la norma euclidea: u = 2. Sia dato un itema (A, b) completamente raggiungibile. Il corripondente itema a dati campionati (eendo T il periodo di campionamento) è completamente raggiungibile e e olo eperognicoppiaλ i, λ j diautovaloriditintidiaaventilateapartereale, valelarelazione: 3. Sia dato il eguente itema non lineare di equazioni differenziali nello pazio degli tati: ẋ = x 2 ẋ 2 = x 3 ẋ 3 = 3x in 2 x 3 +2x 3 2 5x x 2 3 +u(t) Poto [x x 2 x 3 ] T = [y(t) ẏ(t) ÿ(t)] T, crivere la corripondente equazione differenziale non lineare del terzo ordine che lega l ingreo u(t) all ucita y(t): Scrivere come i determina la matrice P - della traformazione x = Px che potra un itema non completamente oervabile in forma tandard di oervabilità: P - = Indicare inoltre la truttura a blocchi delle matrici A, B e C che i ottengono: A =, B = [ ], C = Scrivere la forma emplificata della matrice di traferimento H() del itema S in funzione delle ottomatrici A i,j, B i e C j che caratterizzano il itema S = (A, B, C): H() = 5. a) Si criva la forma eplicita della formula di Ackermann che fornice il vettore k T che permette il poizionamento arbitrario degli autovalori di un itema retroazionato: k T = b) Indicare la forma del polinomio deiderato p(λ) e della matrice p(a) di un itema tempo continuo nel cao n = 4 in cui i voglia avere un tempo di aetamento T a = 6 e i voglia poizionare tutti gli autovalori nello teo punto reale λ: λ = p(λ) = p(a) = 3

4 6. Dato il itema lineare tempo-continuo ẋ(t) = Ax(t) + Bu(t), riportare la truttura di uno timatore aintotico dello tato di ordine ridotto: [ ] ˆx(t) = T ˆv(t) = 7. Dato un itema lineare tempo-continuo ẋ(t) = Ax(t) + Bu(t): a) è poibile utilizzare un oervatore aintotico dello tato in catena aperta e e olo e:... b) è poibile utilizzare un oervatore aintotico dello tato in catena chiua di ordine pieno e e olo e: Indicare la truttura del itema duale S D aociato ad un itema dato S = (A, B, C, D): S D = (,,, ) 9. Scrivere la truttura della matrice di traformazione P - c che porta un itema S = (A, b, c) oervabile in forma canonica di oervabilità (x = P c x c ): P - c = dove i coefficienti α i ono Si conideri un itema non lineare tempo continuo ẋ(t) = f(x(t),u(t)) e ia x 0 un punto di equilibrio del itema per ingreo cotante u 0. Scrivere la parte lineare dello viluppo in erie della funzione f(x(t),u(t)) nell intorno del punto (x 0, u 0 ): f(x,u) = 2. Scrivere all interno della eguente tabella i imboli e i nomi delle variabili energia e delle variabili di potenza che caratterizzano l ambito energetico Meccanico Tralazionale. Indicare inoltre la relazione cotitutiva (non lineare e lineare) dei ingoli elementi e l equazione differenziale che caratterizza gli elementi dinamici: D q v D 2 q 2 v 2 R Simboli / Nomi Rel. Cotititutiva R. C. Cao Lineare Eq. Differenzile 4

5 22. Si conideri il eguente circuito elettrico cotituito dalle induttanze L, L 2, dalle capacità C 3, C 4 e dalle reitenze R a, R e R 5. Sul itema agicono due ingrei: la tenione V a e la corrente I b. Le ucite del itema ono: la corrente I a e la tenione V b. R I r I C 3 V r5 I ra V a I a R a L I 2 V 3 C 4 V 4 L 2 R 5 V b I b Il modello P.O.G. dello chema elettrico aegnato ha la eguente truttura: V a I a R a I ra L I R I r φ 2 L 2 I 2 V 3 C 3 Q 3 V 4 C 4 Q 4 R 5 V r5 V b I b Sia x = [ ]T [ ]T I I 2 V 3 V 4 il vettore di tato, u = Va I b il vettore degli ingrei e y = [ ]T Ia V b il vettore delle ucite. Scrivere il corripondente itema dinamico Lẋ = Ax+Bu e y = Cx+Du nello pazio degli tati: I I I 2 [ ] I = 2 Va V 3 V + 3 I b }{{} V 4 V 4 u }{{}}{{}}{{}}{{} ẋ x }{{} L A B ] ] [ Ia V b = x + }{{}}{{}}{{}}{{} y u C D 23. Enunciare il criterio diretto di tabilità di Lyapunov nel cao di itemi tempo dicreti. Si conideri il itema non lineare x(k+) = f(x(k), u 0 ) e ia x 0 un punto di equilibrio corripondente all ingreo cotante u 0. ) Se... [ Va I b 24. Quali delle eguenti funzioni V(x,x 2 ) ono definite poitive nell intorno del punto (, ): V(x,x 2 ) = (x ) 2 +(x 2 ) 2 ; V(x,x 2 ) = (x 2 )x 2 2 +(x 2 2 )x 2 ; V(x,x 2 ) = (x 2 )+(x 2 2 ); V(x,x 2 ) = (x ) 2 x 2 2 +(x 2 ) 2 x 2 ; 5

6 25. Sia dato il eguente itema non lineare ẋ = f(x), tempo continuo, privo di ingrei: { ẋ = x 2 ẋ 2 = x +(x 2 α)x 2 a) Calcolare lo Jacobiano A(x) = f(x) del itema ẋ = f(x) e la matrice A x del itema linearizzato nell intorno del punto di equilibrio x = (0,0): A(x) = f(x) x = A =. b) Studiare, al variare di α, la tabilità del itema non lineare nell intorno del punto di equilibrio x utilizzando il criterio ridotto di Lyapunov: 26. Sia dato il eguente itema non lineare x(k + ) = f(x), tempo dicreto, privo di ingrei: { x (k +) = x 2 x 2 (k +) = x +(x 2 α)x 2 a) Determinare, al variare di α, i 3 punti di equilibrio x, x 2 e x 3 del itema non lineare: x = (, ), x 2 = (, ), x 3 = (, ) b)studiare,alvariarediα,latabilitàdelitemanonlinearenell intornodelpuntox = (0,0) utilizzando il criterio ridotto di Lyapunov: c) Data la eguente funzione di Lyapunov: V(x) = x 2 +x 2 2 calcolare la funzione V(x(k)): 6

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito del Gennaio 6 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere la oluzione generale dell equazione alle differenze x(k +) = Ax(k)+Bu(k)

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito A del 5 Febbraio 05 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere la oluzione in forma chiua dell equazione differenziale ẋ(t) =

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito del Febbraio 206 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere l andamento temporale della funzione di ucita y(k), oluzione dell

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito A del 23 Dicembre 200 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Indicare il numero e il tipo di parametri che caratterizzano la funzione

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi Teoria dei Sitemi e del Controllo Compito A del 24 Giugno 200 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Nel cao di itemi lineari continui tempo-varianti, la matrice

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito del 2 Dicembre 25 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere la oluzione generale della eguente equazione alle differenze tempo-variante

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito A del 8 Gennaio 05 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere l andamento temporale della funzione di ucita y(t), oluzione dell

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito A del Dicembre Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere la oluzione generale della eguente equazione alle differenze tempo-variante

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi Teoria dei Sitemi e del Controllo Compito A del 24 Giugno 2 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Nel cao di itemi lineari continui tempo-varianti, la matrice

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito del Dicembre Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere la oluzione generale della eguente equazione alle differenze tempo-variante

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi Teoria dei Sitemi e del Controllo Compito A del 27 Aprile 2 Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Scrivere la forma eplicita della matrice di tranizione dello

Dettagli

Sistemi a segnali campionati

Sistemi a segnali campionati Capitolo. INRODUZIONE 6. Sitemi a egnali campionati Si conideri il eguente itema lineare tempo continuo: G() : ẋ(t) Ax(t)+Bu(t) y(t) Cx(t) U() G() Y() Se i inerice un ricotruttore di ordine zero H () e

Dettagli

Esame scritto di Teoria dei Sistemi - Modena - 22 Giugno Domande

Esame scritto di Teoria dei Sistemi - Modena - 22 Giugno Domande Esame scritto di Teoria dei Sistemi - Modena - Giugno 5 - Domande Per ciascuno dei seguenti test a risposta multipla segnare con una crocetta le affermazioni che si ritengono giuste. Alcuni test sono seguiti

Dettagli

K c s h. P(s) 1/K d. U(s) + Y(s)

K c s h. P(s) 1/K d. U(s) + Y(s) Eame di Fondamenti di Automatica Coro di Laurea Vecchio Ordinamento in Ingegneria Elettronica febbraio 3 Compito A Cognome: Nome Matricola: Email:. Ricavare la funzione di traferimento tra u ed y nel eguente

Dettagli

Esercizi di Segnali e Sistemi. GLI ESERCIZI 1,2,3,4,11 COSTITUISCONO UN TEMA D ESAME TIPICO

Esercizi di Segnali e Sistemi. GLI ESERCIZI 1,2,3,4,11 COSTITUISCONO UN TEMA D ESAME TIPICO Eercizi di Segnali e Sitemi. GLI ESERCIZI,2,3,4, COSTITUISCONO UN TEMA D ESAME TIPICO Eempio Conideriamo la funzione di traferimento G() = + Si calcoli la forma di Smith Mc-Millan. Soluzione: G() = N(),

Dettagli

CONTROLLO DIGITALE LAUREA TRIENNALE IN ING. INFORMATICA E DELL AUTOMAZIONE A.A. 2017/2018 LAUREA MAGISTRALE IN ING. ELETTRICA A.A.

CONTROLLO DIGITALE LAUREA TRIENNALE IN ING. INFORMATICA E DELL AUTOMAZIONE A.A. 2017/2018 LAUREA MAGISTRALE IN ING. ELETTRICA A.A. LAUREA TRIENNALE IN ING. INFORMATICA E DELL AUTOMAZIONE A.A. 7/8 LAUREA MAGISTRALE IN ING. ELETTRICA A.A. 7/8 APPELLO 9//8 Sia aegnata la eguente equazione alle differenze: y(k).3679y(k ) +.3679y(k ) =.3679u(k

Dettagli

SEGNALI E SISTEMI 31 agosto 2017

SEGNALI E SISTEMI 31 agosto 2017 SEGNALI E SISTEMI 31 agoto 2017 Eercizio 1. [3+3+3+4 punti] Si conideri il modello ingreo/ucita LTI e cauale decritto dalla eguente equazione differenziale: dove a è un parametro reale. d 2 v(t) 2 +(1

Dettagli

ẋ 2 = x 1 10x u y = x 1 + x 2 [

ẋ 2 = x 1 10x u y = x 1 + x 2 [ Soluzione dell appello del 16 luglio 212 1. Si conideri il itema lineare decritto dalle eguenti equazioni: 1.1 Trovare le condizioni iniziali x() = ẋ 1 = x 1 ẋ 2 = x 1 1x 2 1u = x 1 x 2 [ x1, x 2, aociato

Dettagli

1 = (parabola unitaria) si determini l errore di regolazione a regime:

1 = (parabola unitaria) si determini l errore di regolazione a regime: A - Tet d ingreo alla Prova Scritta di Controlli Automatici A del Ottobre 00 ( + ) ( ) + ) Dato un itema dinamico Σ con funzione di traferimento T() crivere i modi di Σ : ( + ) + 9 t { modi di Σ } {, tt,,

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Siemi e del Conrollo Compio A del 5 Febbraio 5 Domande ed eercizi Nome: Nr. Ma. Firma: C.L.: Info. Ele. Telec.. Scrivere la oluzione in forma chiua dell equazione differenziale ẋ() = Ax()+Bu()

Dettagli

Modellistica dinamica di sistemi fisici

Modellistica dinamica di sistemi fisici .. MODELLISTICA - Modellitica dinamica. Modellitica dinamica di itemi fiici Nella realtà fiica eitono vari ambiti energetici, per eempio: meccanico (tralazionale e rotazionale) elettrico-magnetico idraulico

Dettagli

Politecnico di Milano

Politecnico di Milano Politecnico di Milano FONDAMENTI DI AUTOMATICA Coro di laurea in Ingegneria Getionale ez. A-D Prof. C. Piccardi prova parziale, 3//7 COGNOME: NOME: MATRICOLA: FIRMA: Vito del docente: PARTE A Voto totale

Dettagli

Equilibrio di sistemi dinamici Esercizi proposti. 1 Esercizio (derivato dall es. #8 del 18/09/2002) 2 Esercizio (proposto il 10/02/2003, es.

Equilibrio di sistemi dinamici Esercizi proposti. 1 Esercizio (derivato dall es. #8 del 18/09/2002) 2 Esercizio (proposto il 10/02/2003, es. Equilibrio di sistemi dinamici Esercizio (derivato dall es. #8 del 8/9/22) Dato il sistema dinamico, non lineare, a tempo continuo, descritto dalle seguenti equazioni: ẋ (t) = x (t).5x 2 2 (t)+4u(t) ẋ

Dettagli

01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007

01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007 1 01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007 Esercizio 1 - Date le matrici A = 2p 1 1 2p 2 C = 1 p di un modello LTI in variabili di stato a tempo

Dettagli

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso.

Bode Diagram. 1.2 Determinare il valore del guadagno del sistema. Disegnare gli zeri ed i poli nel piano complesso. 5 Luglio 3 econda prova Sia dato un itema dinamico con funzione di traferimento G(), i cui diagrammi di Bode, del modulo e della fae, ono di eguito rappreentati: 6 Bode Diagram Phae (deg) Magnitude (db)

Dettagli

Esercizi di Controlli Automatici - 9 A.A. 2009/2010

Esercizi di Controlli Automatici - 9 A.A. 2009/2010 Eercizi di Controlli Automatici - 9 A.A. 2009/200 Eercizio. Dato il eguente chema, in cui gli amplificatori operazionali ono uppoti ideali, i calcoli la funzione di traferimento G() tra v in (t) e v out

Dettagli

Punti di equilibrio: sistemi tempo continui

Punti di equilibrio: sistemi tempo continui Capitolo 3 ANALISI DELLA STABILITÀ 31 Punti di equilibrio: sistemi tempo continui Si consideri il seguente sistema tempo continuo: ẋ(t) A x(t) + B u(t) y(t) C x(t) + D u(t) I punti di equilibrio x 0 del

Dettagli

FUNZIONI DI TRASFERIMENTO

FUNZIONI DI TRASFERIMENTO FUNZIONI DI TRASFERIMENTO Funzioni Di Traferimento La difficoltà maggiore nel trattare i modelli matematici di itemi dinamici lineari è dovuta al fatto che le equazioni delle leggi fiiche che decrivono

Dettagli

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I

SOLUZIONI PROVA SCRITTA DI AUTOMATICA I SOLUZIONI PROVA SCRITTA DI AUTOMATICA I (Prof Bittanti, BIO A-K) Settembre Si conideri il eguente itema dinamico a tempo continuo decritto mediante chema a blocchi: ut () _ yt () 9 a Si calcoli la funione

Dettagli

Esercizi di teoria dei sistemi

Esercizi di teoria dei sistemi Esercizi di teoria dei sistemi Controlli Automatici LS (Prof. C. Melchiorri) Esercizio Dato il sistema lineare tempo continuo: ẋ(t) 2 y(t) x(t) x(t) + u(t) a) Determinare l evoluzione libera dello stato

Dettagli

Esame di FONDAMENTI di AUTOMATICA Compito B (Nuovo ordinamento) 16 Giugno 2008 (Bozza di soluzione)

Esame di FONDAMENTI di AUTOMATICA Compito B (Nuovo ordinamento) 16 Giugno 2008 (Bozza di soluzione) Eame di FONDAMENTI di AUTOMATICA Compito B (Nuovo ordinamento 6 Giugno 28 (Bozza di oluzione NB. Si coniglia vivamente di ripaare anche argomenti non trettamente inerenti la materia oggetto della prova

Dettagli

Compito di Fondamenti di Automatica settembre 2006

Compito di Fondamenti di Automatica settembre 2006 Compito di Fondamenti di Automatica ettembre 2006 Eercizio 1. Si conideri lo chema di figura (operazionale ideale, eccetto per il guadagno che puó eere definito da una G(), reitenze uguali, condenatori

Dettagli

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A Eame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A A Cognome: Nome: Matricola: Mail: 1. Dato il itema di controllo raffigurato, con C( K c 2 ; P 1 1( ( + 4 ; P 2 ( ( + 1 (

Dettagli

Raggiungibilità e controllabilità

Raggiungibilità e controllabilità Capitolo. TEORIA DEI SISTEMI 4. Raggiungibilità e controllabilità Raggiungibilità. Il problema della raggiungibilità consiste nel determinare l insieme di stati raggiungibili a partire da un dato stato

Dettagli

Uso della trasformata di Laplace per il calcolo della risposta

Uso della trasformata di Laplace per il calcolo della risposta Uo della traformata di Laplace per il calcolo della ripota Conigli generali (Aggiornato 7//) ) Si vuole qui richiamare l attenzione ul fatto che la preenza di zeri o di una truttura triangolare a blocchi

Dettagli

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno Voto Cognome/Nome & No. Matricola FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A. 5 6) Coro di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno PROVA DEL 6 GENNAIO 7 Ripondere

Dettagli

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u Esercizio Si consideri il sistema meccanico riportato in Figura, dove m e m sono le masse dei carrelli, z e z sono le rispettive posizioni, k e k sono i coefficienti elastici delle molle, e β è un coefficiente

Dettagli

Esercizi. { ẋ1 = 2x 1 (1 + x 2 2 ) ẋ 2 = x 2 (1 x 2 1 ) x(k +1) = x(k)+ 1 u(k) dove x(k) =

Esercizi. { ẋ1 = 2x 1 (1 + x 2 2 ) ẋ 2 = x 2 (1 x 2 1 ) x(k +1) = x(k)+ 1 u(k) dove x(k) = Capitolo. INTRODUZIONE 7. Esercizi. Si consideri il seguente sistema non lineare tempo-continuo: { ẋ x x x + u ẋ x x + u.a) Posto u u, trovare i punti di equilibrio del sistema e studiarne la stabilità

Dettagli

ESEMPI DI ANALISI DI CIRCUITI DINAMICI LINEARI. corso: Teoria dei Circuiti. docente: Stefano PASTORE. 1 Esempio di tableau dinamico (tempo e Laplace)

ESEMPI DI ANALISI DI CIRCUITI DINAMICI LINEARI. corso: Teoria dei Circuiti. docente: Stefano PASTORE. 1 Esempio di tableau dinamico (tempo e Laplace) ESEMPI DI ANALISI DI CIRCUITI DINAMICI LINEARI coro: Teoria dei Circuiti docente: Stefano PASTORE 1 Eempio di tableau dinamico (tempo e Laplace) 1.1 Dominio del tempo Conideriamo il eguente circuito dinamico

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

Controlli Automatici LA Risposte dei sistemi

Controlli Automatici LA Risposte dei sistemi //8 Controlli Automatici LA Analii dei itemi dinamici lineari Ripote al gradino di itemi tipici Relazioni Funzione di Traferimento/Ripote Prof. Carlo Roi DEIS-Univerità di Bologna Tel. 5 93 Email: croi@dei.unibo.it

Dettagli

Sistemi di controllo Ingegneria Meccanica e Ingegneria del Veicolo

Sistemi di controllo Ingegneria Meccanica e Ingegneria del Veicolo Cognome: Nome: N. Matr.: Sitemi di controllo Ingegneria Meccanica e Ingegneria del Veicolo Compito del 2 febbraio 213 - Quiz Per ciacuno dei eguenti queiti, egnare con una crocetta le ripote che i ritengono

Dettagli

Lezione 9. Schemi di controllo avanzati parte prima. F. Previdi - Controlli Automatici - Lez. 9 1

Lezione 9. Schemi di controllo avanzati parte prima. F. Previdi - Controlli Automatici - Lez. 9 1 Lezione 9. Schemi di controllo avanzati parte prima F. Previdi - Controlli Automatici - Lez. 9 Schema. Regolatori in anello aperto Controllo multivariabile:. Regolatori di diaccoppiamento 3. Controllo

Dettagli

3) Stimatore dello stato di ordine ridotto :

3) Stimatore dello stato di ordine ridotto : Capitolo. TEORIA DEI SISTEMI 5. 3) Stimatore dello stato di ordine ridotto : Gli stimatori asintotici dello stato di ordine intero forniscono una informazione ridondante, in quanto non tengono conto che

Dettagli

Capitolo. Semplificazioni di schemi a blocchi. 4.1 Blocchi in cascata. 4.2 Blocchi in parallelo. 4.3 Blocchi in catena chiusa (reazione negativa)

Capitolo. Semplificazioni di schemi a blocchi. 4.1 Blocchi in cascata. 4.2 Blocchi in parallelo. 4.3 Blocchi in catena chiusa (reazione negativa) Capitolo 4 Semplificazioni di chemi a blocchi 4. Blocchi in cacata 4. Blocchi in parallelo 4.3 Blocchi in catena chiua (reazione negativa) 4.4 Blocchi in catena chiua (reazione poitiva) 4.5 Spotamento

Dettagli

Semplificazioni di schemi a blocchi

Semplificazioni di schemi a blocchi Semplificazioni di chemi a blocchi 4. Blocchi in cacata 4. Blocchi in parallelo 4.3 Blocchi in catena chiua (reazione negativa) 4.4 Blocchi in catena chiua (reazione poitiva) 4.5 Spotamento di blocchi

Dettagli

Stimatori dello stato

Stimatori dello stato Capitolo. TEORIA DEI SISTEMI 5. Stimatori dello stato La retroazione statica dello stato u(k) = K x(k) richiede la conoscenza di tutte le componenti del vettore di stato. Tipicamente le uniche variabili

Dettagli

4. Linearità e Linearizzazione

4. Linearità e Linearizzazione 4. Linearità e Linearizzazione 4 Linearità e Linearizzazione Principio di sovrapposizione degli effetti Considera il sistema lineare tempo-discreto, tempo-invariante: < : x(k +) = Ax(k)+Bu(k) x() = x La

Dettagli

Punto 1 Il sistema proposto di tipo retroazionato può essere rappresentato con lo schema a blocchi riportato in Fig. 1.

Punto 1 Il sistema proposto di tipo retroazionato può essere rappresentato con lo schema a blocchi riportato in Fig. 1. Pag. di SOLUZIONE dei primi 4 punti richieti dalla Prova. Leggo bene il teto e poi? La mia Maetra mi diceva empre: Prima la figura. Punto Il itema propoto di tipo retroazionato può eere rappreentato con

Dettagli

3. Sistemi Lineari a Tempo Discreto

3. Sistemi Lineari a Tempo Discreto . Sistemi Lineari a Tempo Discreto .5 y(t), y(kt) 4 y(t), y(kt).5.5.5.5.5 4 5 4 5 Campionamento di un segnale continuo Fig. (a) Segnale discreto Fig. (b) Esprimono relazioni fra variabili campionate ad

Dettagli

Sistemi di controllo

Sistemi di controllo Cognome: Nome: N. Matr.: Sitemi di controllo Ingegneria Meccanica e Ingegneria del Veicolo Compito del 11 ettembre 2014 - Quiz Per ciacuno dei eguenti queiti, egnare con una crocetta le ripote che i ritengono

Dettagli

Stimatori dello stato

Stimatori dello stato Capitolo 5. OSSERVABILITÀ E RICOSTRUIBILITÀ 5. Stimatori dello stato La retroazione statica dello stato u(k) = K x(k) richiede la conoscenza di tutte le componenti del vettore di stato. Tipicamente le

Dettagli

Il Luogo delle Radici

Il Luogo delle Radici Il Luogo delle Radici Il luogo delle radici è un procedimento, otanzialmente grafico, che permette di analizzare come varia il poizionamento dei poli di un itema di controllo in retroazione al variare

Dettagli

Traiettorie nello spazio degli stati

Traiettorie nello spazio degli stati . Traiettorie nello spazio degli stati Per mostrare i tipici andamenti delle traiettorie nello spazio degli stati in funzione della posizione dei poli del sistema si farà riferimento ad un esempio: un

Dettagli

Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine. t come riportato in figura.

Esercitazione 16 Novembre 2012 Circuiti dinamici del secondo ordine.  t come riportato in figura. Eercitazione Noembre ircuiti dinamici del econdo ordine ircuito L- erie Per quanto riguarda queto circuito, l eercizio egue la traccia della oluzione del compito d eame numero, reperibile in rete al olito

Dettagli

Fondamenti di Automatica. Unità 3 Equilibrio e stabilità di sistemi dinamici

Fondamenti di Automatica. Unità 3 Equilibrio e stabilità di sistemi dinamici Fondamenti di Automatica Unità 3 Equilibrio e stabilità di sistemi dinamici Equilibrio e stabilità di sistemi dinamici Equilibrio di sistemi dinamici Linearizzazione di sistemi dinamici Stabilità interna

Dettagli

Rappresentazione in s dei sistemi lineari continui.

Rappresentazione in s dei sistemi lineari continui. Capitolo. INTRODUZIONE. Rappresentazione in s dei sistemi lineari continui. Applicando la trasformazione di Laplace alle funzioni di stato ed uscita di un sistema lineare: L e quindi: ẋ(t) Ax(t)+Bu(t)

Dettagli

Elementi di Automazione Lezione 3 - Classificazione dei sistemi dinamici - Richiami di algebra delle matrici

Elementi di Automazione Lezione 3 - Classificazione dei sistemi dinamici - Richiami di algebra delle matrici Elementi di Automazione Lezione 3 - - Ing. Gianmaria De Tommasi A.A. 2006/07 1 2 Modello implicito I-S-U ẋ(t) = f ( x(t), u(t), t ), x(t 0 ) = x 0 y(t) = η ( x(t), u(t), t ) oppure x(k + 1) = f ( x(k),

Dettagli

Esercitazione di Controlli Automatici 1 n 2. a.a. 2006/07

Esercitazione di Controlli Automatici 1 n 2. a.a. 2006/07 6 marzo 007 Eercitazione di Controlli Automatici n a.a. 006/07 Riferendoi al itema di controllo della temperatura in un locale di piccole dimenioni dicuo nella eercitazione precedente, e di eguito riportato:.

Dettagli

Traiettorie nello spazio degli stati

Traiettorie nello spazio degli stati Capitolo. INTRODUZIONE. Traiettorie nello spazio degli stati Per mostrare i tipici andamenti delle traiettorie nello spazio degli stati in funzione della posizione dei poli del sistema si farà riferimento

Dettagli

dove x 0 R n è fissato.

dove x 0 R n è fissato. AMMISSIONE AL QUARTO ANNO: prova di ANALISI MATEMATICA (matematici e fiici) 26 Sia α (, ) (a) Provare che eite c α >, indipendente da t e, tale che (b) Calcolare c /2 (t σ) α (σ ) α dσ = c α, t, () (c)

Dettagli

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A

Esame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A Eame di Fondamenti di Automatica Ingegneria Elettronica Day Month Year Compito A A Cognome: Nome: Matricola: Mail: 1. Dato il itema di controllo raffigurato, con C( K c ; P 1 1( ( + 4 ; P ( ( + ( + 3 ;

Dettagli

Lezione 2 - Algebra. x + 1 x 2 a b + b a 2. Problema 2 Siano a, b, c R, provare che

Lezione 2 - Algebra. x + 1 x 2 a b + b a 2. Problema 2 Siano a, b, c R, provare che Lezione - Algebra Problema 1 Siano a, b R +, dimotrare che a b + b a Soluzione: Poniamo x = a, oerviamo che b (x 1) 0 x x + 1 0 x + 1 x dato che x > 0, poiamo dividere ambo i membri per x, otteniamo: Problema

Dettagli

1. Introduzione Il convertitore a semplice semionda Il sistema di controllo... 5

1. Introduzione Il convertitore a semplice semionda Il sistema di controllo... 5 . Introduzione... 2 2. Il convertitore a emplice emionda... 3 2. Il itema di controllo... 5 3. Il convertitore monofae nella configurazione a ponte... 7 4. Il fenomeno della commutazione... . Introduzione

Dettagli

Scomposizione canonica di Kalman

Scomposizione canonica di Kalman Capitolo. TEORIA DEI SISTEMI 5. Scomposizione canonica di Kalman Si consideri il sistema S = (A, B, C). Sia X + il sottospazio raggiungibile ed E il sottospazio non osservabile. Sia una matrice di base

Dettagli

Scrivere il numero della risposta sopra alla corrispondente domanda. (voti: 2,0,-1, min=14 sulle prime 10) , C = [3 2 2], D =

Scrivere il numero della risposta sopra alla corrispondente domanda. (voti: 2,0,-1, min=14 sulle prime 10) , C = [3 2 2], D = n. 101 cognome nome corso di laurea Analisi e Simulazione di Sistemi Dinamici 18/11/2003 Risposte Domande 1 2 3 4 5 6 7 8 9 10 N. matricola Scrivere il numero della risposta sopra alla corrispondente domanda.

Dettagli

Discretizzazione del controllore

Discretizzazione del controllore Dipartimento di Ingegneria Dicretiaione del controllore Michele Ermidoro Ingegneria dei itemi di controllo - Senori Perchè dicretiare? Introduione Il paaggio al mondo dicreto è neceario e i vuole implementare

Dettagli

Lezione 31. Cenni di controllo digitale. F. Previdi - Fondamenti di Automatica - Lez. 31 1

Lezione 31. Cenni di controllo digitale. F. Previdi - Fondamenti di Automatica - Lez. 31 1 Lezione 31. Cenni di controllo digitale F. Previdi - Fondamenti di Automatica - Lez. 31 1 Schema 1. Introduzione 2. Campionamento e Tenuta 3. Aliaing 4. Teorema del campionamento 5. Progetto mediante dicretizzazione

Dettagli

ANALISI DI SISTEMI IN RETROAZIONE TEOREMA DI NYQUIST

ANALISI DI SISTEMI IN RETROAZIONE TEOREMA DI NYQUIST ANALISI DI SISTEMI IN RETROAZIONE TEOREMA DI NYQUIST PROPRIETÀ DEI SISTEMI IN RETROAZIONE U E G () H () Si fa riferimento ad un generico itema in retroazione con funzione di traferimento a ciclo chiuo.

Dettagli

Appunti ed esercitazioni di Microonde 2

Appunti ed esercitazioni di Microonde 2 Appunti ed eercitazioni di Microonde Studio di una linea priva di perdite in regime impulivo di impedenza caratteritica =5Ω, chiua u di un carico R erie avente R==5Ω, =mh, =nf. Si aume come velocità di

Dettagli

Modellistica e controllo PID di un pendolo inverso

Modellistica e controllo PID di un pendolo inverso Modellitica e controllo PID di un pendolo invero Note per le lezioni del coro di Controlli Automatici - A.A. 2009/0 Prof.a Maria Elena Valcher Modellitica Un ata di maa m è incernierata ad un carrello

Dettagli

PROVA 18/01/10 TEORIA DEI SISTEMI e FONDAMENTI DI AUTOMATICA. 1) Dato il sistema elettronico e fissate le variabili di stato nella maniera indicata

PROVA 18/01/10 TEORIA DEI SISTEMI e FONDAMENTI DI AUTOMATICA. 1) Dato il sistema elettronico e fissate le variabili di stato nella maniera indicata PROVA 8/0/0 EORIA DEI SISEMI e FONDAMENI DI AUOMAICA ) Dato il itema elettronico e fiate le variabili di tato nella maniera indicata R R determinare: la rappreentazione interna e la rappreentazione eterna;

Dettagli

Compito di Matematica I A.A.2008/09 - C.d.L. in Chimica 16 Novembre 2009 Prof. Elena Comparini

Compito di Matematica I A.A.2008/09 - C.d.L. in Chimica 16 Novembre 2009 Prof. Elena Comparini A.A.2008/09 - C.d.L. in Chimica 6 Novembre 2009 Prof. Elena Comparini f(x) = x x 2 x +, Esercizio 2. Data la funzione dell esercizio precedente, calcolare l area della regione di piano compresa tra il

Dettagli

Raggiungibilità e Controllabilità Esercizi risolti

Raggiungibilità e Controllabilità Esercizi risolti Raggiungibilità e ontrollabilità Esercizi risolti 1 Esercizio Dato il seguente sistema dinamico LTI a tempo discreto descritto dalle matrici A e B: [ [ 1 k k A, B 0 1 + k 1 studiare le proprietà di raggiungibilità

Dettagli

ESERCIZI SVOLTI di ANALISI DEI SISTEMI

ESERCIZI SVOLTI di ANALISI DEI SISTEMI ESERCIZI SVOLTI di ANALISI DEI SISTEMI Davide Giglio DIST - Univerità di Genova Via Opera Pia, 3 645 - Genova, Italy Tel: +39 353748 Fax: +39 35354 Davide.Giglio@unige.it Queta raccolta di eercizi volti

Dettagli

I sistemi retroazionati. Per lo studio si può utilizzarne uno a reazione unitaria per rendere standard i risultati:

I sistemi retroazionati. Per lo studio si può utilizzarne uno a reazione unitaria per rendere standard i risultati: I itemi retroazionati Facciamo riferimento allo chema a blocchi: Per lo tudio i può utilizzarne uno a reazione unitaria per rendere tandard i riultati: i due ono equivalenti: infatti il primo ha una f.d.t.

Dettagli

Definizione di Sistema Dinamico

Definizione di Sistema Dinamico Capitolo 1. INTRODUZIONE 1.1 Definizione di Sistema Dinamico Esistono vari tipi di sistemi dinamici: tempo continui, tempo discreti, lineari, non lineari, a variabili concentrate, a variabili distribuite,

Dettagli

2.1 Osservazioni sull esercitazione del

2.1 Osservazioni sull esercitazione del ¾ ½¾º¼ º¾¼½ Queste note (attualmente, e probabilmente per un bel po ) sono altamente provvisorie e (molto probabilmente) non prive di errori. 2.1 Osservazioni sull esercitazione del 5.3.214 2.1.1 Equazione

Dettagli

Sistemi dinamici lineari

Sistemi dinamici lineari Capitolo 1. INTRODUZIONE 1.19 Sistemi dinamici lineari La funzione di stato che descrive un sistema dinamico lineare, è rappresentabile in forma matriciale nel seguente modo: Per sistemi continui: Per

Dettagli

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Si determini se i sistemi lineari tempo invarianti ẋ(t) = Ax(t) + Bu(t), Σ c : y(t) = Cx(t) + Du(t). x(k + ) = Ax(k) + Bu(k), Σ d : y(k)

Dettagli

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE METODO DEGLI SPOSTAMENTI CORSO DI PROGETTAZIONE STRUTTURALE B a.a. 00/0 Prof. G. Salerno Appunti elaborati da Arch. C. Provenzano. STRUTTURE IPERSTATICHE Una truttura i dice ipertatica o taticamente indeterminata

Dettagli

coeff. della 1 colonna sono diversi da 0 il sistema è asintoticamente stabile;

coeff. della 1 colonna sono diversi da 0 il sistema è asintoticamente stabile; Sitemi Dinamici: Induttore: i = x, v = Lx Condenatore: i = Cx, v = x x = x x = p Maa: x =, dove x u = v M u = F x = x Ocillatore meccanico: x = (Kx M Dx + u), dove Pendolo: x = x x = g l in x + ml u k

Dettagli

Controllo di Azionamenti Elettrici. Lezione n 3. Caratteristiche e predisposizione dei regolatori PID

Controllo di Azionamenti Elettrici. Lezione n 3. Caratteristiche e predisposizione dei regolatori PID Controllo di Azionamenti Elettrici Lezione n 3 Coro di Laurea in Ingegneria dell Automazione Facoltà di Ingegneria Univerità degli Studi di alermo Caratteritiche e predipoizione dei regolatori ID 1 Introduzione

Dettagli

Tecnologie dei Sistemi di Automazione

Tecnologie dei Sistemi di Automazione Facoltà di Ingegneria Tecnologie dei Sitemi di Automazione rof. Gianmaria De Tommai Lezione 4 Regolatori ID indutriali: Leggi di controllo e utilizzo Coro di Laurea Codice inegnamento Email docente Anno

Dettagli

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018 Fondamenti di Automatica Prof. Luca Bascetta Primo prova intermedia 27 Aprile 28 ESERCIZIO E assegnato il sistema dinamico, a tempo continuo, lineare e invariante con ingresso u(t) e uscita y(t): { ẋ(t)

Dettagli

Controllo di Azionamenti Elettrici. Lezione n 13

Controllo di Azionamenti Elettrici. Lezione n 13 Controllo di Azionamenti Elettrici Lezione n 1 Coro di Laurea in Ingegneria dell Automazione Facoltà di Ingegneria Univerità degli Studi di Palermo CTROLLO DIRETTO DI COPPIA DI AZIAMENTI C MOTORE IN CORRENTE

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. Controlli Automatici - Prima parte 18 Aprile 216 - Esercizi Si risolvano i seguenti esercizi. Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Altro. a.1) Calcolare la trasformata di Laplace X(s) dei seguenti

Dettagli

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione a PROVA PARZIAE DI FONDAMENTI DI AUTOMATIA A.A. 24/25 9 novembre 24 Esercizio on riferimento alla funzione di trasferimento G(s) = 7s2 + 36s + 48 (s + 3)(s + 4) 2 Domanda.. Indicare i valori del guadagno,

Dettagli

Risonanza. Tracciare gli andamenti del modulo e della fase dell impedenza in funzione della frequenza f per il seguente bipolo: A R 1 R 2

Risonanza. Tracciare gli andamenti del modulo e della fase dell impedenza in funzione della frequenza f per il seguente bipolo: A R 1 R 2 6 Eercitazioni aggiuntive Eercizio 6. Tracciare gli andamenti del modulo e della fae dell impedenza in funzione della frequenza f per il eguente bipolo: A B [W]; [W]; [mf] Si calcoli l impedenza del bipolo

Dettagli

Esercizio di modellistica a tempo discreto

Esercizio di modellistica a tempo discreto Esercizio di modellistica a tempo discreto Si consideri un corso di laurea triennale, e si indichi con k =,, 2,... l anno accademico dall attivazione del corso. Si indichi con x i (k) il numero di studenti

Dettagli

Corso Tecnologie dei Sistemi di Controllo. Controllo PID

Corso Tecnologie dei Sistemi di Controllo. Controllo PID Coro Controllo PID Ing. Valerio Scordamaglia Univerità Mediterranea di Reggio Calabria, Loc. Feo di Vito, 896, RC, Italia D.I.M.E.T. : Dipartimento di Informatica, Matematica, Elettronica e Traporti Struttura

Dettagli

Esercitazione di Controlli Automatici 1 n 6

Esercitazione di Controlli Automatici 1 n 6 4 maggio 007 Eercitazione di Controlli Automatici n 6 a.a. 006/07 Si conideri il itema della eercitazione n 5 cotituito da un braccio robotico in rotazione, utilizzato per la movimentazione di oggetti.

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Funzioni razionali proprie

Funzioni razionali proprie Funzioni razionali proprie Riga 5: P n P αk αkt n e = R α k k k e = = Q Q' α k α t k P e Q ono polinomi di Il grado di P è inferiore a quello di Q α k k=,..n ono gli zeri tutti emplici di Q R α = P α α

Dettagli

Lezione 18. Stabilità di sistemi retroazionati. F. Previdi - Fondamenti di Automatica - Lez. 18 1

Lezione 18. Stabilità di sistemi retroazionati. F. Previdi - Fondamenti di Automatica - Lez. 18 1 Lezione 18. Stabilità di itemi retroazionati F. Previdi - Fondamenti di Automatica - Lez. 18 1 Schema 1. Stabilità di itemi retroazionati 2. Diagramma di Nyquit 3. Criterio di Nyquit 4. Etenioni del Criterio

Dettagli

Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 2016 Tempo a disposizione: 1.30 h.

Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 2016 Tempo a disposizione: 1.30 h. Politecnico di Milano Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 206 Tempo a disposizione:.30 h. Nome e Cognome................................................................................

Dettagli

corso di Terminali per i Trasporti e la Logistica Umberto Crisalli

corso di Terminali per i Trasporti e la Logistica Umberto Crisalli coro di Terminali per i Traporti e la Logitica ELEMENTI DI TEORIA DELLE CODE Umberto Crialli crialli@ing.uniroma.it INTRODUZIONE Simulazione dei terminali In generale, un terminale è cotituito da un inieme

Dettagli

Osservatore di Luenberger

Osservatore di Luenberger 1 Osservatore di Luenberger In queste note verrà presentato l osservatore di Luenberger, uno stimatore dello stato per sistemi lineari. Si farà il caso di sistemi dinamici tempo-continui e tempo-discreti.

Dettagli