INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 11 INTEGRALI TRIPLI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 11 INTEGRALI TRIPLI"

Transcript

1 INTGRALI TRIPLI Il teorema di riduione assume due diverse forme in, che però ci riconducono sempre ad integrali in due dimensioni da trattare come già visto precedentemente INTGRAZION PR FILI Si dice che è un dominio normale rispetto al piano, se y ed esistono due funioni continue tali che, y, y,,,,,, è la proieione di sul piano, cioè se y y y y Se è un dominio normale rispetto al piano allora la funione,,,,,,,, f y ddyd B y ddy sempio: ddyd B y f y d è continua e con y y,, : In questo caso la proieione di sul piano è il cerchio di centro l origine e raggio, la variabile è limitata da, e da, y y B, y su y,, mentre y y Abbiamo perciò y y d e così l integrale triplo su diventa l integrale doppio che calcoliamo con la tecnica, già vista, del passaggio a coordinate polari: y 8 ddyd ddy dd d d INTGRAZION PR STRATI Si dice che è un insieme semplice rispetto all asse, se esiste un intervallo chiuso e limitato I a, b e una famiglia I di sottoinsiemi misurabili di, ottenuti intersecando con i piani per ogni I Se è un insieme semplice rispetto a allora la funione b,, è continua e,, U f y ddy f y ddyd U d a sempio: lo stesso integrale appena visto può servire a mostrare la tecnica di integraione per strati Abbiamo infatti e le seioni y y, sono corone circolari Riscrivendo sia la funione che le seioni in coordinate polari nel piano, abbiamo cos, sin, e f,,, quindi : U d d d d

2 Allora si ha: ddyd d SRCIZI Calcolare e ddyd con y y,,,, Questo tipo di dominio è il più semplice possibile: si tratta di un parallelepipedo Il calcolo dell integrale triplo si riconduce al calcolo di tre integrali semplici e ddyd ye d dy d ye dy d y e dy d y e d e d e e Calcolare il volume di ddyd, y,, y, y e l integrale Il volume può essere visto come integrale della funione f, y y sull insieme La proieione di sul piano è,, y y V ddyd y ddy y dy d d L integrale assegnato, invece, può essere calcolato per fili: y ddyd d dy d dy d 5 d d D, y, y, Si disegni D e si calcoli Sia ddyd D Conviene passare a coordinate cilindriche di asse centrate nel punto,,

3 cos y sin Con questa trasformaione abbiamo D,,,, Si tratta di un solido ottenuto dalla rotaione attorno ad un asse parallelo all asse passante per il punto, della funione La funione integranda rimane identica, il determinante jacobiano vale e l integrale da calcolare diventa D D ddyd dd d,, dove D Dato che D dd d d dobbiamo calcolare d log log, y, y,, Disegnate e Considerate l insieme calcolate l integrale y ddyd Si tratta della metà situata dalla parte delle positive di un tronco di cono, il cono di vertice,, con apertura tagliato dai due piani e Il dominio è semplice rispetto a : infatti e le seioni dell insieme con i piani perpendicolari a sono,,,,, perciò possiamo 8 integrare per strati Per ogni strato U dd d d diventa e l integrale

4 8 8 y ddyd y ddy d U d d 5 Considerate l insieme y y y calcolate il volume di e l integrale ddyd L insieme è la regione esterna al cilindro paraboloide 5 y,, 5, Disegnate, y, delimitata dal piano e dal, che ha vertice in,,5 ed è rivolto verso il basso Il calcolo del volume si può fare per strati perché si tratta di un dominio semplice rispetto a : infatti e, 5,,, Allora 5 5 U d d d d V ddy d U d d 8 L integrale della funione assegnata si può calcolare per fili, y y 5 e, e, y 5 y Passando a coordinate polari f cos, sin, cos e così abbiamo:, 5,, 5 5 y ddyd d ddy cos d d d 5 5 cos 5 dd 5 d cos d sin cos 8 6 COORDINAT SFRICH Risulta utile talvolta, quando la simmetria della regione di integraione è sferica, il passaggio alle coordinate sferiche, definito dalla funione vettoriale sin cos y sin sin cos

5 La matrice Jacobiana della funione è J sin cos cos cos sin sin y y y sin sin cos sin sin cos cos sin det J,, sin e quindi il determinante jacobiano è 6 Calcolare il volume dell insieme ddyd y y,, : e l integrale L insieme è un guscio sferico e il suo volume si calcola in modo elementare come differena 8 fra i volumi delle due sfere: V R R Il calcolo dell integrale assegnato è immediato con la trasformaione in coordinate sferiche, perché la regione diventa il parallelepipedo,,,, Inoltre la funione da integrare risulta un prodotto di funioni in una sola variabile e l integrale quindi si semplifica nel prodotto di tre integrali semplici: ddyd cos sin ddd 5 cos d cos sind d 7 Detto D il dominio definito da si calcoli ddyd D D y y y,,,,, Il dominio D è costituito dalla regione, nel semispaio con positiva, delimitata inferiormente dalle superfici della semisfera y e del cono y, la cui generatrice forma un angolo di con l asse di simmetria, e delimitata superiormente dal piano Risulta particolarmente indicata la sostituione con coordinate polari sferiche In questo modo il dominio D diventa D,,,,, la funione cos 5

6 f sin cos, sin sin, cos sin cos, il determinante jacobiano è sin e ddyd d d d D l integrale: cos sin cos sin cos cos sin cos d d sin cos d d cos d d sin tan sin tan sin cos 9 cos Calcolate la misura di e l integrale ddyd 8 Considerate l insieme, y,, y,,, y, y L insieme è individuato dal guscio sferico di centro l origine e raggi e, e dai coni le cui rette generatrici formano con l asse angoli di ampiea e e con vertice in,, Ne risulta un solido di rotaione, una sorta di ciambella che ha per seione un settore di corona circolare Il passaggio a coordinate sferiche ci permette di semplificare molto l aspetto dell insieme, che diventa un parallelepipedo Infatti,,,, Il volume di perciò risulta: sin sin 7 cos 7 V ddyd d d d d d d La funione da integrare ha una forma molto semplice in coordinate sferiche: ddyd ddd d d d cos sin tan log log log cos 6

4. Calcolare il baricentro delle seguenti regioni del piano dotate di densità unitaria:

4. Calcolare il baricentro delle seguenti regioni del piano dotate di densità unitaria: INTEGRLI OPPI e TRIPLI Esercii risolti. Calcolare i seguenti integrali doppi: a b c d e f g h i j k y d dy,, y :, y }; d dy,, y :, y }; + y + y d dy,, y :, y }; y d dy,, y :, y }; y d dy,, y :, y + };

Dettagli

ANALISI 2 ESERCITAZIONE DEL 20/12/2010 Per la teoria vedere

ANALISI 2 ESERCITAZIONE DEL 20/12/2010 Per la teoria vedere Per la teoria vedere http://digilander.libero.it/claudia.paris/ingegneria/analisi_c/settimana_.pdf y ddy con Calcolare, E f. E, y, y, f y y E è un dominio normale sia rispetto a che a y, quindi in linea

Dettagli

rappresenta il piano perpendicolare al vettore è il piano perpendicolare al vettore

rappresenta il piano perpendicolare al vettore è il piano perpendicolare al vettore SUPERFICI NOTEVOLI PIANO Una qualunque equazione lineare nello spazio ax by cz d rappresenta il piano perpendicolare al vettore rappresenta un piano. In particolare l equazione abc,, che interseca gli

Dettagli

Integrali tripli - Esercizi svolti

Integrali tripli - Esercizi svolti Integrali tripli - Esercii svolti Integrali tripli Si calcolino gli integrali tripli seguenti riducendo per strati e per fili in coordinate cartesiane. Eventualmente fare cambiamenti di coordinate per

Dettagli

7. Integrazione delle funzioni di più variabili (II)

7. Integrazione delle funzioni di più variabili (II) 7. Integraione delle funioni di più variabili (II) http://eulero.ing.unibo.it/~baroi/scam/scam-tr.7b.pdf 7.5 Area del parallelogramma costruito su due vettori. Volume del parallelepipedo costruito su tre

Dettagli

INTEGRALI TRIPLI Esercizi svolti

INTEGRALI TRIPLI Esercizi svolti INTEGRLI TRIPLI Esercizi svolti. Calcolare i seguenti integrali tripli: (a xye xz dx dy dz, [, ] [, ] [, ]; (b x dx dy dz, {(x, y, z : x, y, z, x + y + z }; (c (x + y + z dx dy dz, {(x, y, z : x, x y x

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. ott. Franco Obersnel Esercizio 1 Sia R = [a 1, b 1 ] [a, b ] [a 3, b 3 ] IR 3 un parallelepipedo di IR 3. Si diano le

Dettagli

PRIMI ESERCIZI SU INTEGRALI DOPPI E TRIPLI. x x 2 + y 2 dxdy, tan(x + y) x + y. (x y) log (x + y) dxdy,

PRIMI ESERCIZI SU INTEGRALI DOPPI E TRIPLI. x x 2 + y 2 dxdy, tan(x + y) x + y. (x y) log (x + y) dxdy, PRIMI ESERCIZI SU INTEGRALI DOPPI E TRIPLI VALENTINA CASARINO Esercizi per il corso di Analisi Matematica, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica, Università degli

Dettagli

Integrali tripli / Esercizi svolti

Integrali tripli / Esercizi svolti M.Guida, S.Rolando, Integrali tripli / Esercizi svolti ESERCIZIO. Rappresentare graficamente l insieme (x, y) R :y x, x + y e calcolare l integrale e x+y dxdy. Posto V (x, y, z) R :(x, y), z, calcolare

Dettagli

R. Capone Analisi Matematica Integrali multipli

R. Capone Analisi Matematica Integrali multipli Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

Integrali doppi. f(x, y) dx dy, dove R = [0, 1] [0, 3] e. 2xy y x 2 x 3 + x 2 y y > x 2. (x + sin y) dx dy, dove Q = [ 1, 1] [ 1, 1].

Integrali doppi. f(x, y) dx dy, dove R = [0, 1] [0, 3] e. 2xy y x 2 x 3 + x 2 y y > x 2. (x + sin y) dx dy, dove Q = [ 1, 1] [ 1, 1]. . Calcolare. Calcolare. Calcolare. Calcolare R T Integrali doppi f(, d d, dove R = [, ] [, ] e f(, = + > d d, dove T è il triangolo di vertici (,, (,, (,. ( + sin d d, dove = [, ] [, ]. di vertici (,,

Dettagli

Simmetrie e quadriche

Simmetrie e quadriche Appendice A Simmetrie e quadriche A.1 Rappresentazione e proprietà degli insiemi nel piano Una delle prime difficoltà che si incontrano nell impostare il calcolo di un integrale doppio consiste nel rappresentare

Dettagli

Esercizio 1.1. Trovare il volume V della figura racchiusa tra il piano z = 8x + 6y e il rettangolo R = [0, 1] [0, 2]. (8x + 6y) dx dy. x=1. 4x 2.

Esercizio 1.1. Trovare il volume V della figura racchiusa tra il piano z = 8x + 6y e il rettangolo R = [0, 1] [0, 2]. (8x + 6y) dx dy. x=1. 4x 2. Esercizi maurosaita@tiscalinet.it Versione provvisoria. Giugno 6. Indice Integrali doppi. isposte....................................... 6 Integrali doppi generalizzati 6. isposte.......................................

Dettagli

Esercizi sull integrazione

Esercizi sull integrazione ANALII MAMAICA -B (L-Z) (C.d.L. Ing. Gestionale) Università di Bologna - A.A.8-9 - Prof. G.Cupini sercizi sull integrazione (Grazie agli studenti del corso che comunicheranno eventuali errori) sercizio.

Dettagli

1. Calcolare, giustificandone l esistenza, il seguente integrale: y (1 + x) 2 dxdy, ydxdy. x 2 dxdy,

1. Calcolare, giustificandone l esistenza, il seguente integrale: y (1 + x) 2 dxdy, ydxdy. x 2 dxdy, . Calcolare, giustificandone l esistenza, il seguente integrale: ( + x dxd, = {(x, R :, x }.. isegnare il dominio = {(x, R : x, + x } e calcolare dxd. 3. Calcolare x dxd, è il triangolo di vertici ( 3,,

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #. Sia P l insieme di tutti i parallelepipedi che giacciono nel primo ottante con tre facce sui piani coordinati e un

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari. (c) e5 e 4 e (2x 3y) dx + (1 + x)dx +

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari. (c) e5 e 4 e (2x 3y) dx + (1 + x)dx + UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte (sintetiche) agli esercizi del 5.XI.7. Gli integrali richiesti valgono: (a) + ( e ) (b) (c) e5 e e + (d)

Dettagli

UNIVERSITÀ DEGLI STUDI DI SALERNO Prova scritta di Matematica II 06 Luglio 2011

UNIVERSITÀ DEGLI STUDI DI SALERNO Prova scritta di Matematica II 06 Luglio 2011 UNIVERSITÀ DEGLI STUDI DI SALERNO Prova scritta di Matematica II 6 Luglio Gli studenti che devono sostenere l esame da 9 CFU risolvano i quesiti numero 3-4-5-6-7-8-9 Gli studenti che devono sostenere l

Dettagli

Risoluzione del compito n. 5 (Luglio 2018/2)

Risoluzione del compito n. 5 (Luglio 2018/2) Risoluzione del compito n. 5 (Luglio 2018/2) PROBLEMA 1 Considerate il luogo di zeri S = {(x, y, z) R 3 : z 4+ x 2 + y 2 =0, 2x y + z =0}. a) Giustificando la risposta, dite se S è una curva liscia. b)

Dettagli

ANALISI VETTORIALE COMPITO PER CASA DEL 6/12/ y x 2 + y 2 dxdy =

ANALISI VETTORIALE COMPITO PER CASA DEL 6/12/ y x 2 + y 2 dxdy = ANALII VTTORIAL COMPITO PR CAA DL 6// sercizio Calcolare l integrale y x + y dxdy dove è l intersezione del cerchio del piano di centro l origine e raggio con il semipiano dato da y x. Risposta In questo

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014 Prove scritte dell esame di Analisi Matematica II a.a. 3/4 C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 9 giugno 4. (8 punti) Risolvere il problema

Dettagli

Superfici e solidi di rotazione. Cilindri indefiniti

Superfici e solidi di rotazione. Cilindri indefiniti Superfici e solidi di rotazione Consideriamo un semipiano α, delimitato da una retta a, e sul semipiano una curva g; facendo ruotare il semipiano in un giro completo attorno alla retta a, la curva g descrive

Dettagli

TRACCIA DELLE SOLUZIONI DEI PROBLEMI DELL ESAME DEL 2/9/2011

TRACCIA DELLE SOLUZIONI DEI PROBLEMI DELL ESAME DEL 2/9/2011 TRACCIA DELLE SOLUZIONI DEI PROBLEMI DELL ESAME DEL /9/11 Esercizio 1 a. Dopo aver scritto l equazione parametrica C(t) della curva di equazione cartesiana y = x x, si calcolino i vettori T(t), N(t) e

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari. (c) e5 e 4 e (2x 3y) dx + (1 + x)dx +

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari. (c) e5 e 4 e (2x 3y) dx + (1 + x)dx + UNIVERIÀ DI ROMA OR VERGAA Analisi Matematica II per Ingegneria Prof. C. inestrari Risposte sintetiche) agli esercizi dell.xi.8. Gli integrali richiesti valgono: a) + e ) 4 b) c) e5 e 4 e + d) e + e 4

Dettagli

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica Forme differeniali lineari in tre variabili Sia Ω R 3 un insieme aperto e siano, B, C: Ω R funioni continue in Ω. Consideriamo la forma differeniale ω in Ω ω = (, y, )d + B(, y, )dy + C(, y, )d Si dice

Dettagli

Soluzioni. 1. Disegnare il grafico della funzione f : R 2 R, nei casi:

Soluzioni. 1. Disegnare il grafico della funzione f : R 2 R, nei casi: Soluzioni. Disegnare il grafico della funzione f : R 2 R, nei casi: (a) f(, ) =. La funzione dipende solo dalla coordinata. In questo caso il grafico rappresenta un piano (vedi figura). (b) f(, ) = 2.

Dettagli

Il grafico di una funzione reale a due variabili è un sottoinsieme del prodotto cartesiano :

Il grafico di una funzione reale a due variabili è un sottoinsieme del prodotto cartesiano : ANALISI ESERCITAZIONE DEL 5/10/010 DOMINIO DI UNA FUNZIONE Sia A. Una funzione f : A è una legge di composizione che associa ad ogni elemento di A uno e un solo numero reale. L insieme A è detto dominio

Dettagli

Analisi Matematica II Politecnico di Milano Ingegneria Industriale

Analisi Matematica II Politecnico di Milano Ingegneria Industriale Analisi Matematica II Politecnico di Milano Ingegneria Industriale Autovalutazione #7. Sia f : R R la funzione definita da a) Determinare i massimi e minimi di f. b) Mostrare che f è limitata. fx, y) xy

Dettagli

1. Cambiamenti di coordinate affini Esempio 1.1. Si debba calcolare l integrale doppio. (x + y) dx dy =

1. Cambiamenti di coordinate affini Esempio 1.1. Si debba calcolare l integrale doppio. (x + y) dx dy = . Cambiamenti di coordinate affini Esempio.. Si debba calcolare l integrale doppio (x + y) dx dy essendo il parallelogramma di vertici (, ), (, ), (3, 3), (, 3) nel quale é possibile riconoscere, vedi

Dettagli

3 ) (5) Determinare la proiezione ortogonale del punto (2, 1, 2) sul piano x + 2y + 3z + 4 = 0.

3 ) (5) Determinare la proiezione ortogonale del punto (2, 1, 2) sul piano x + 2y + 3z + 4 = 0. 1 Calcolo vettoriale 1 Scrivere il vettore w =, 6 sotto forma di combinazione lineare dei vettori u = 1, e v = 3, 1 R w = v 4u Determinare la lunghezza o il modulo del vettore, 6, 3 R 7 3 Determinare la

Dettagli

Integrali doppi Formula di riduzione per rettangoli A=[a,b] [c,d]

Integrali doppi Formula di riduzione per rettangoli A=[a,b] [c,d] Integrali doppi Formula di riduzione per rettangoli =[a,b] [c,d] b f x, y dx dy = a d c d f x, ydy oppure c b dy a f x, y dx. Per prima cosa si calcola l'integrale definito tra c e d della funzione in

Dettagli

Integrali doppi / Esercizi svolti

Integrali doppi / Esercizi svolti M.Guida, S.Rolando, 4 Integrali doppi / Esercizi svolti L asterisco contrassegna gli esercizi più dicili. ESERCIZIO. Sia (x, y) R : x + y, x y

Dettagli

sen n x( tan xn n n=1

sen n x( tan xn n n=1 8 Gennaio 2016 Nome (in stampatello): 1) (8 punti) Discutere la convergenza della serie di funzioni al variare di x in [ 1, 1]. n x( tan xn n ) xn sen n 2) (7 punti) Provare che la forma differenziale

Dettagli

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D ANALISI VTTORIAL Soluzione esercizi 26 novembre 2 5.. sercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y dx dy D + x 2 + y2

Dettagli

Esercizi svolti e assegnati su integrali doppi e tripli

Esercizi svolti e assegnati su integrali doppi e tripli Esercizi svolti e assegnati su integrali doppi e tripli Esercizio. ove Calcolare R = R xy x + y + x + y dxdy } x, y R : x, y, x x + y x Svolgimento. Passo : per disegnare R, studiamo C : x + y x =, C :

Dettagli

Tutorato di Analisi 2 - AA 2014/15

Tutorato di Analisi 2 - AA 2014/15 Tutorato di nalisi - /5 Emanuele Fabbiani marzo 5 Integrali tripli.. Integrali tripli. Risolvere i seguenti integrali tripli sull'insieme.. + dddz, (,, z R : + z } Il dominio di integrazione è la regione

Dettagli

Prima parte: DOMINIO E INSIEMI DI LIVELLO

Prima parte: DOMINIO E INSIEMI DI LIVELLO FUNZIONI DI DUE VARIABILI 1 Prima parte: DOMINIO E INSIEMI DI LIVELLO Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia insiemi aperti, chiusi, limitati, convessi, connessi

Dettagli

Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia

Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Solidi di rotazione Un solido di rotazione è generato dalla rotazione

Dettagli

Provadiprova 2 - aggiornamento 7 giugno 2013

Provadiprova 2 - aggiornamento 7 giugno 2013 Università di Trento - Corso di Laurea in Ingegneria Civile e Ambientale Analisi matematica 2 - a.a. 2012-13 - Prof. Gabriele Anzellotti Provadiprova 2 - aggiornamento 7 giugno 2013 La seconda provetta

Dettagli

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici Superfici e integrali di superficie 1. Scrivere una parametrizzazione per le seguenti superfici (a) Il grafico della funzione f(x, y) = x 2 y 3 (b) La superficie laterale di un cilindro di raggio R e altezza

Dettagli

1) i) Determinare il valore massimo e il valore minimo assunti dalla funzione. f (x, y) = x e x2 y 2

1) i) Determinare il valore massimo e il valore minimo assunti dalla funzione. f (x, y) = x e x2 y 2 1 X Cognome:... Nome:... Matricola: Università di Milano - Bicocca Corso di laurea di primo livello in Sciene statistiche ed economiche Corso di laurea di primo livello in Statistica e gestione delle informaioni

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini) 1 Esercizi tratti da temi d esame di anni precedenti

Analisi Matematica II (Prof. Paolo Marcellini) 1 Esercizi tratti da temi d esame di anni precedenti Analisi Matematica II (Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 8// Michela Eleuteri eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

Integrali doppi. Riccarda Rossi. Università di Brescia. Analisi Matematica B

Integrali doppi. Riccarda Rossi. Università di Brescia. Analisi Matematica B Integrali doppi Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Integrali doppi Analisi Matematica B 1 / 92 Motivazione per l integrale di Riemann: calcolo

Dettagli

Esercizi su integrali tripli: cambiamento di variabili

Esercizi su integrali tripli: cambiamento di variabili Esercizi su integrali tripli: cambiamento di variabili Riccarda Rossi Università di Brescia Analisi II Riccarda Rossi (Università di Brescia) Integrali tripli Cambiamento di variabili Analisi II 1 / 51

Dettagli

Esercizi di Analisi Matematica L-B

Esercizi di Analisi Matematica L-B Esercii di Analisi Matematica L-B Marco Alessandrini Gennaio-Maro 7 Indice Funioni di più variabili reali. Calcolo differeniale........................................... Ricerca di massimi e minimi.......................................

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale

Es. 1 Es. 2 Es. 3 Es. 4 Totale Es. Es. Es. Es. 4 Totale Analisi e Geometria Seconda prova in itinere Docente: luglio Cognome: Nome: Matricola: Ogni risposta dev essere giustificata. Gli esercizi vanno svolti su questi fogli, nello spazio

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 2014 2015 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi

Dettagli

Facoltà di Architettura Valle Giulia Corso di Laurea Specialistica Quinquennale U.E. 1 CALCOLO INTEGRALE PER LE FUNZIONI DI UNA VARIABILE

Facoltà di Architettura Valle Giulia Corso di Laurea Specialistica Quinquennale U.E. 1 CALCOLO INTEGRALE PER LE FUNZIONI DI UNA VARIABILE Facoltà di Architettura Valle Giulia Corso di Laurea Specialistica Quinquennale U.E. Istituzioni di Matematica 2 a.a. 2007-2008 http://www.dmmm.uniroma.it/persone/capitanelli CALCOLO INTEGRALE PER LE FUNZIONI

Dettagli

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3)

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3) anno accademico 007-008 Prima prova di verifica in itinere di ANALISI MATEMATICA II Marzo 008 Compito A (punti ) y = x + xy + y x. (punti 4) y + y x = ln x x y. (punti ) y = y + y ln y. 4 (punti 6) Determinare

Dettagli

( ) 3 ESERCIZI. Calcolare il valore dei seguenti integrali curvilinei: 1) xyds. dove γ è il contorno del quadrato x y a.

( ) 3 ESERCIZI. Calcolare il valore dei seguenti integrali curvilinei: 1) xyds. dove γ è il contorno del quadrato x y a. ESERCIZI Calcolare il valore dei seguenti integrali curvilinei: ) ds ) 3) dove è il contorno del quadrato a + + + = con a > 0 [0] 4 ds dove è il segmento della retta che congiunge i punti O(0,0) ed A(,)

Dettagli

Analisi 4 - SOLUZIONI (15/07/2015)

Analisi 4 - SOLUZIONI (15/07/2015) Corso di Laurea in Matematica Analisi 4 - SOLUZIONI (5/7/5) Docente: Claudia Anedda ) Calcolare l area della superficie totale della regione di spazio limitata, interna al paraboloide di equazione x +y

Dettagli

Generalità sulle funzioni di tre variabili

Generalità sulle funzioni di tre variabili Integrale upericiale onsideriamo la unzione t,, z Generalità sulle unzioni di tre variabili A i tratta di una unzione di tre variabili,, z in quanto ad ogni terna di valori assegnati ad,, z corrisponde

Dettagli

LEZIONE 24. a 1,1 x 2 + a 2,2 y 2 + a 3,3 z 2 + 2a 1,2 xy + 2a 1,3 xz+ + 2a 2,3 yz + 2a 1,4 x + 2a 2,4 y + 2a 3,4 z + a 4,4 = 0 (24.1.

LEZIONE 24. a 1,1 x 2 + a 2,2 y 2 + a 3,3 z 2 + 2a 1,2 xy + 2a 1,3 xz+ + 2a 2,3 yz + 2a 1,4 x + 2a 2,4 y + 2a 3,4 z + a 4,4 = 0 (24.1. LEZIONE 24 24.1. Riduione delle quadriche a forma canonica. Fissiamo nello spaio un sistema di riferimento Oxy e consideriamo un polinomio q(x, y, ) di grado 2 in x, y, a meno di costanti moltiplicative

Dettagli

Analisi Matematica II 14 Giugno 2019

Analisi Matematica II 14 Giugno 2019 Analisi Matematica II 14 Giugno 2019 Cognome: Nome: Matricola: 1. (10 punti) Si determinino i sottoinsiemi del piano in cui valgano, rispettivamente, continuità, derivabilità e differenziabilità della

Dettagli

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Primo compito. Si consideri la regione stokiana E di R 3 definita dalle disuguaglianze: { + y 2 a 2 0 z tan α)x b) dove

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo.

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo http://www.dimi.uniud.it/biomat/ Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza A.A. 2007/08

UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza A.A. 2007/08 UNIVERSITÀ DEGLI STUDI DI PDOV Facoltà di Ingegneria sede di Vicenza Corso di Disegno Tecnico Industriale per il Corso di Laurea triennale in Ingegneria Meccanica e in Ingegneria Meccatronica Proiezioni

Dettagli

Analisi 4 - SOLUZIONI (17/01/2013)

Analisi 4 - SOLUZIONI (17/01/2013) Corso di Laurea in Matematica Analisi 4 - SOLUZIONI 7//23 Docente: Claudia Anedda Utilizzando uno sviluppo in serie noto, scrivere lo sviluppo in serie di MacLaurin della funzione fx = 32 + x, specificando

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Analisi Vettoriale A.A Soluzioni del Foglio 4

Analisi Vettoriale A.A Soluzioni del Foglio 4 Analisi Vettoriale A.A. 26-27 - Soluzioni del Foglio 4 Esercizio 4.1. Sia Σ la superficie cartesiana z = 1 x y, (x, y) = {x 2 + y 2 1}, determinare in ogni punto di Σ il versore normale diretto nel verso

Dettagli

Complementi di Analisi Matematica. Foglio di esercizi n.6 16/3/2018 (Aggiornamento del 6/4/2018)

Complementi di Analisi Matematica. Foglio di esercizi n.6 16/3/2018 (Aggiornamento del 6/4/2018) Complementi di Analisi Matematica. Foglio di esercizi n.6 16/3/2018 (Aggiornamento del 6/4/2018) Esercizio 1 Si consideri l insieme Esercizi sulla funzione implicita e superfici Z = {(x, y) R 2 2y xe y

Dettagli

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi

ANALISI MATEMATICA PROVA SCRITTA. Libri, appunti e calcolatrici non ammessi Nome, Cognome... Matricola... ANALISI MATMATICA PROVA SCRITTA CORSO DI LAURA IN INGGNRIA MCCANICA A.A. 6/7 Libri, appunti e calcolatrici non ammessi Prima parte - Lo studente scriva solo la risposta, direttamente

Dettagli

Analisi II. Analisi 22/6/2010. Corsi di Laurea in Ingegneria dell Informazione e Ingegneria Informatica

Analisi II. Analisi 22/6/2010. Corsi di Laurea in Ingegneria dell Informazione e Ingegneria Informatica iare la convergena della serie: kk!a k k 1 (fila 1), Analisi II k a k k 1 (fila ), /6/1 Analisi II efficienti a k definiti da: Analisi Matematica/6/1 II - Anno Accademico 9-1 Corsi di Laurea in Ingegneria

Dettagli

Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17

Dettagli

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica Negli esercizi che seguono si suppone fissato nello spazio

Dettagli

l intersezione di due piani perpendicolari tra loro individua una retta, nello spazio, ossia un asse di riferimento

l intersezione di due piani perpendicolari tra loro individua una retta, nello spazio, ossia un asse di riferimento Coordinate cartesiane, polari sferiche e polari cilindriche i sistemi di coordinate curvilinee ortogonali sono costruiti scegliendo tre superfici dette superfici coordinate che vengono identificate ciascuna

Dettagli

POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 2. Giugno Docenti: F. Lastaria, M. Citterio, M.

POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 2. Giugno Docenti: F. Lastaria, M. Citterio, M. POLITECNICO I MILANO. FACOLTÀ I INGEGNERIA INUTRIALE. Analisi e Geometria 2. Giugno 2. ocenti: F. Lastaria, M. Citterio, M. aita Indice Integrali di superficie. Parte prima. Integrali di superficie. Parte

Dettagli

Cognome:... Nome:... Matricola:

Cognome:... Nome:... Matricola: Cognome:... Nome:... Matricola: Università di Milano - Bicocca Corso di laurea di primo livello in Scienze statistiche ed economiche Corso di laurea di primo livello in Statistica e gestione delle informazioni

Dettagli

quando il limite delle somme di Riemann esiste. In tal caso diciamo che la funzione è integrabile sul rettangolo.

quando il limite delle somme di Riemann esiste. In tal caso diciamo che la funzione è integrabile sul rettangolo. Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

ESERCITAZIONE 19 : INTEGRALI

ESERCITAZIONE 19 : INTEGRALI ESERCITAZIONE 9 : INTEGRALI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 4 23 Aprile 203 Esercizio Calcola i seguenti

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Soluzione della Prova Parziale di Analisi Matematica III - 17/02/04. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R.

Soluzione della Prova Parziale di Analisi Matematica III - 17/02/04. C.L. in Matematica e Matematica per le Applicazioni. Prof. Kevin R. Soluzione della Prova Parziale di Analisi Matematica III - 7//4 C.L. in Matematica e Matematica per le Applicazioni Prof. Kevin R. Payne Esercizio. a. Ricordiamo inanzitutto la seguente: efinizione: Si

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 6 aprile 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 6 aprile 2018 Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A Pisa, 6 aprile cos ) sin se Domanda Sia f) = Allora se =. A) non ha derivata in = ) è derivabile C) ha un punto di cuspide D) ha

Dettagli

SOLUZIONE. se 0 x < 1. Tracciare un grafico di f(x) su R, scrivere la sua serie di Fourier e determinare un intero positivo N tale che S N f f 1 10.

SOLUZIONE. se 0 x < 1. Tracciare un grafico di f(x) su R, scrivere la sua serie di Fourier e determinare un intero positivo N tale che S N f f 1 10. Università di Milano - Bicocca Corso di laurea di primo livello in Sciene statistiche ed economiche Corso di laurea di primo livello in Statistica e gestione delle informaioni Analisi Matematica II - 3.6.

Dettagli

1. Dal teorema fondamentale del calcolo integrale si deduce che g '(

1. Dal teorema fondamentale del calcolo integrale si deduce che g '( PROBLEMA 1 1 Dal teorema fondamentale del calcolo integrale si deduce che g '( f ( nell intervallo assegnato, pertanto, tenendo conto anche delle proprietà del grafico si ha: f ( ) g'() e f ( k) g'( k)

Dettagli

Un pilinomio di grado n può essere scritto nella forma:

Un pilinomio di grado n può essere scritto nella forma: ESAME DI MATURITA 2010 - QUESITI DELLA SECONDA PROVA DI MATEMATICA - LICEO SCIENTIFICO TRADIZIONALE A cura di Alberto Bellato Soluzioni a cura di Studentville.it e Votailprof.it Attenzione: il contenuto

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

Prova scritta di Matematica II - 16 marzo CORREZIONE Fila A c.d.l. Scienze dell Architettura - Prof. R. Rizzi

Prova scritta di Matematica II - 16 marzo CORREZIONE Fila A c.d.l. Scienze dell Architettura - Prof. R. Rizzi Prova scritta di Matematica II - 6 marzo 6 - CORREZIONE Fila A c.d.l. Scienze dell Architettura - Prof. R. Rizzi COGNOME E NOME.................................................................. N. di matricola..................

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A ST) V I foglio di esercizi ESERCIZIO. Si calcoli + sin t) dt t cos t + log + t))dt e + tg t + e t )dt cos t dt t. Calcoliamo il primo dei due. Si tratta di un ite della

Dettagli

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi del 15.XII.218 1. NB si ricorda che l equazione del piano passante per un punto

Dettagli

AM220 - Analisi Matematica 4: Soluzioni Tutorato 2

AM220 - Analisi Matematica 4: Soluzioni Tutorato 2 AM - Analisi Matematica 4: Soluzioni Tutorato Università degli Studi Roma Tre - ipartimento di Matematica ocente: Luca Biasco Tutori: Patrizio addeo, avide iaccia. alcolare l integrale delle seguenti funzioni

Dettagli

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi)

Analisi Matematica 3 (Fisica), , M. Peloso e L. Vesely Prova scritta del 14 luglio 2009 Breve svolgimento (con alcuni conti omessi) Analisi Matematica 3 Fisica, 8-9, M. Peloso e L. Vesely Prova scritta del 4 luglio 9 Breve svolgimento con alcuni conti omessi. a Dimostrare che l insieme G = { x, y R : x + x + log y = ye x} coincide

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica Dott. Franco Obersnel Lezione : superficie nello spazio; area e integrali superficiali; teorema

Dettagli

Integrali superficiali e teorema della divergenza

Integrali superficiali e teorema della divergenza Integrali superficiali e teorema della divergenza Data una superficie regolare = ϕ(k), con ϕ : K R R 3, e una funzione continua f : R, definiamo integrale di ϕ su f dσ := (f ϕ) ϕ u ϕ v dudv = f(ϕ(u, v))

Dettagli

PROGRAMMA D ESAME E TEMI D ESAME DI MATEMATICA

PROGRAMMA D ESAME E TEMI D ESAME DI MATEMATICA PROGRAMMA D ESAME E TEMI D ESAME DI MATEMATICA Prerequisiti. L algebra, la geometria analitica e la trigonometria dei programmi delle scuole superiori sono prerequisiti fondamentali. In particolare bisogna

Dettagli

Forme differenziali e campi vettoriali: esercizi svolti

Forme differenziali e campi vettoriali: esercizi svolti Forme differenziali e campi vettoriali: esercizi svolti 1 Esercizi sul Teorema di Green......................... 2 2 Esercizi sul Teorema di Stokes......................... 4 3 Esercizi sul Teorema di

Dettagli

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 )

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 ) FUNZIONI DI PIÙ VARIABILI. Siano date le seguenti funzioni: (a) f(x, y) = 3x + y (c) h(x, y) = x y (b) g(x, y) = xy (d) k(x, y) = x + y Determinare e disegnare nel piano cartesiano il dominio delle funzioni

Dettagli

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x.

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x. 0 Gennaio 006 Teoria: Definizione di derivata puntuale e suo significato geometrico Esercizio Determinare l equazione del piano contenente i vettori u = (,, 3 e v = (,, e passante per P o = (,, Scrivere

Dettagli

A Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche II 14 gennaio 2010

A Politecnico di Torino II Facoltà di Architettura Esame di Istituzioni di Matematiche II 14 gennaio 2010 Politecnico di Torino II Facoltà di rchitettura Esame di Istituzioni di Matematiche II 4 gennaio 00 ) Definizione di primitiva e caratterizzazione. ) Determinare le primitive di f() = e e + utilizzando

Dettagli

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 2017/2018 Codocente: Dott. Salvatore Fragapane

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 2017/2018 Codocente: Dott. Salvatore Fragapane DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Clinica Canale PZ A.A. 07/08 Codocente: Dott. Salvatore Fragapane Lezione - 09/03/08, dalle 6.00 alle 8.00 in aula 6 Es. Studiare

Dettagli

Analisi Matematica 3 (Fisica e Astronomia) Esercizi di autoverifica sull integrazione di campi vettoriali

Analisi Matematica 3 (Fisica e Astronomia) Esercizi di autoverifica sull integrazione di campi vettoriali Analisi Matematica (Fisica e Astronomia) Esercizi di autoverifica sull integrazione di campi vettoriali Università di Padova - Lauree in Fisica ed Astronomia - A.A. 8/9 martedì novembre 8 Istruzioni generali.

Dettagli

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e.

Allora esistono δ > 0 e σ > 0 tali che. f(x, y) = 0; (2) la funzione ϕ : ]x 0 δ, x 0 + δ [ R, y = ϕ(x), è derivabile e. 16 42 Funzioni implicite Il seguente teorema fornisce una condizione sufficiente affinché, data un equazione della forma f(x, ) = 0, sia possibile determinare come funzione della x Teo 11 (Teorema della

Dettagli

Limiti di funzioni di due variabili

Limiti di funzioni di due variabili Limiti di funzioni di due variabili Definizione 1 Sia f : A R 2 R e x 0 = (x 0, y 0 ) punto di accumulazione di A. Diciamo che se e solo se Diciamo che se e solo se f(x) = f(x, y) = L x x 0 (x,y) (x 0,y

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 5 febbraio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 5 febbraio 2018 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 7-8 Scritto del secondo appello, 5 febbraio 8 Testi Prima parte, gruppo.. Trovare r > e α [ π, π] per cui vale l identità 3 sin 3 cos = r sin( + α)..

Dettagli