SOLUZIONI COMPITO del 10/07/2009 ANALISI 1 - INFORMATICA 12 CFU + AUTOMATICA 5+5 CFU ANLISI 1 (I MODULO) - INFORMATICA + AUTOMATICA 5 CFU TEMA A

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SOLUZIONI COMPITO del 10/07/2009 ANALISI 1 - INFORMATICA 12 CFU + AUTOMATICA 5+5 CFU ANLISI 1 (I MODULO) - INFORMATICA + AUTOMATICA 5 CFU TEMA A"

Transcript

1 SOLUZIONI COMPITO del 0/07/009 ANALISI - INFORMATICA CFU + AUTOMATICA 5+5 CFU ANLISI I MODULO) - INFORMATICA + AUTOMATICA 5 CFU Esercizio Osserviamo che possiamo scrivere 0 = z 6 TEMA A + i ) z = [ z richieste saranno date dall unione delle soluzioni delle due equazioni z + )] i z. Pertanto, le soluzioni + ) i = 0 e z = 0; la seconda ha come soluzione z = 0, mentre la prima ha come soluzioni le radici quarte del numero complesso + i. Poiché + i = eiπ/, si ricava + i = e iπ/ = {e i π ; e i 7 π ; e i π ; e i 9 π }. Quindi le soluzioni cercate saranno z = 0, z = e i π, z = e i 7 π, z = e i π, z 5 = e i 9 π. Esercizio La funzione proposta è una funzione continua su tutto R \ {0} e derivabile su tutto R \ {, 0, }, in quanto ottenuta attraverso operazioni algebriche e composizione di funzioni continue e derivabili. Pertanto, cominciamo a studiare la continuità in = 0. Utilizzando lo sviluppo asintotico e, otteniamo f) = ; + e ) = f ha un salto in = 0. f) = ; Poiché f non è continua in = 0, essa non sarà neppure derivabile in tale punto. Resta, quindi, da studiare la derivabilità di f nei punti = e =. Calcolando la derivata in R \ {, 0, } si ottiene [sign + )e ) + + e ] + e ) f ) = <, < < 0; 0 < <, >. ) Pertanto, f ) = e ) = = è punto angoloso; ± f ) = + = = è punto di flesso a tangente verticale. ± Esercizio Utilizzando lo sviluppo di Mc Laurin al secondo ordine per la funzione e, con = /n, otteniamo ) e /n = + n + ) n + o/n ) = n + 8 n + o/n ). [ e Pertanto, si ricava a n := n /n ) n ) n + 8 n n = 8 n. Dal criterio del confronto asintotico con la serie armonica otteniamo che la serie proposta è divergente. n ] Domanda L unica affermazione corretta è la ) poiché, come conseguenza del Teorema dei Carabinieri, si ottiene che il prodotto di una successione infinitesima nel nostro caso {a n }) e di una successione itata nel nostro caso {b n}) dà luogo ad una successione infinitesima. Prendendo, invece, a n = /n e b n = /n si contraddice l affermazione ), mentre prendendo a n = / n e b n si contraddice la ).

2 Esercizio Osserviamo che la primitiva richiesta sarà data da ϕ) = 0 arctane t ) + e t e t dt = arctane ) π/ s ds = s arctane ) π/ = [arctane )] π 6, dove, nella seconda uguaglianza, abbiamo utilizzato il cambiamento di variabile s = arctane t ), da cui ds = et +e t dt, s0) = π/, s) = arctane ). Esercizio 5 Calcoliamo,y),0) e y + y + =,y),0) y ) + y ρ sin θ ρ 0 + ρ ρ 0 sin θ =, + dove, nella prima uguaglianza, abbiamo utilizzato lo sviluppo asintotico e y y, per y 0, e nella seconda, abbiamo effettuato un cambiamento di variabile in coordinate polari centrate nel punto, 0). Poiché il ite non esiste, in quanto dipende da θ cioè dalla direzione lungo la quale lo si calcola), si ricava che la funzione non può essere prolungata con continuità in P 0. Esercizio 6 Osserviamo che il problema di Cauchy proposto è relativo ad un equazione differenziale del primo ordine a variabili separabili, che può essere riscritta nella forma y ) = ey). Tale equazione non ammette soluzioni singolari; separando le variabili si ottiene e y = e y dy = d = + C = e y) = + C. Quindi l integrale generale è y) = log ). + C Imponendo la condizione iniziale si ricava log/) = y0) = log C) = C = ; pertanto la soluzione cercata sarà y) = log ). + Domanda La soluzione del problema di Cauchy proposto non può avere punti di massimo per 0. Infatti, per ipotesi, y0) = > 0 e y 0) = arctan > 0, quindi la soluzione parte da = 0 con segno positivo e monotonia crescente e, dall equazione, si ricava che il segno della derivata prima è concorde con quello di y). Quindi la soluzione non cambia monotonia fintanto che non diventa negativa, ma la funzione diventa negativa sono dove decresce. Pertanto, per tutti i valori di 0 per cui la soluzione è definita, essa resterà positiva e strettamente crescente.

3 TEMA B Esercizio ) [ Osserviamo che possiamo scrivere 0 = z + + i z = z + richieste saranno date dall unione delle soluzioni delle due equazioni z + )] + i z. Pertanto, le soluzioni ) + i = 0 e z = 0; la seconda ha come soluzione z = 0, mentre la prima ha come soluzioni le radici terze del numero complesso i. Poiché i = e i5π/, si ricava i = e i5/ π = {e i 5 π ; e i π ; e i π }. Quindi le soluzioni cercate saranno z = 0, z = e i 5π, z = e i π, z = e i π. Esercizio La funzione proposta è una funzione continua su tutto R \ {0} e derivabile su tutto R \ {,, 0}, in quanto ottenuta attraverso operazioni algebriche e composizione di funzioni continue e derivabili. Pertanto, cominciamo a studiare la continuità in = 0. Utilizzando lo sviluppo asintotico log + ), otteniamo f) ) = + ; 0 0 log + ) = f ha un salto in = 0. f) = ; Poiché f non è continua in = 0, essa non sarà neppure derivabile in tale punto. Resta, quindi, da studiare la derivabilità di f nei punti = e =. Calcolando la derivata in R \ {,, 0} si ottiene f ) = sign + ) + + log + ) > 0; + ) / < <, < <, < < 0. Pertanto, ) = ± ± = = è punto angoloso; ) = ± ± = = è punto di cuspide. Esercizio Utilizzando lo sviluppo di Mc Laurin al secondo ordine per la funzione log + ), con = /n, otteniamo log + ) n = n 9 ) n + o/n ) = 9 n 7 n 6 + o/n6 ). Pertanto, si ricava a n := n [ log ) ] + ) n 9 n n 9 n 7 n 9 6 n = 7 n. Dal criterio del confronto asintotico con la serie armonica generalizzata di esponente >, otteniamo che la serie proposta è convergente. Domanda L unica affermazione corretta è la ) poiché, come conseguenza del Teorema dei Carabinieri, si ottiene che il prodotto di una successione itata nel nostro caso {a n }) e di una successione infinitesima nel nostro caso {/b n }) dà luogo ad una successione infinitesima. Prendendo, invece, a n = /n e b n = n si contraddice l affermazione ), mentre prendendo a n e b n = n si contraddice la ).

4 Esercizio Osserviamo che la primitiva richiesta sarà data da ϕ) = 0 cos arctan e t) + t e arctan t dt = e arctan cos s ds = sin s e arctan = [sin e arctan ) sin ], dove, nella seconda uguaglianza, abbiamo utilizzato il cambiamento di variabile s = e arctan t, da cui ds = arctan t e +t dt, s0) =, s) = e arctan. Esercizio 5 Calcoliamo,y) 0,) log + ) + y y + =,y) 0,) + y ) ρ cos θ ρ 0 + ρ ρ 0 cos θ =, + dove, nella prima uguaglianza, abbiamo utilizzato lo sviluppo asintotico log + ), per 0, e nella seconda, abbiamo effettuato un cambiamento di variabile in coordinate polari centrate nel punto 0, ). Poiché il ite non esiste, in quanto dipende da θ cioè dalla direzione lungo la quale lo si calcola), si ricava che la funzione non può essere prolungata con continuità in P 0. Esercizio 6 Osserviamo che il problema di Cauchy proposto è relativo ad un equazione differenziale del primo ordine a variabili separabili, che può essere riscritta nella forma y ) = e y). Tale equazione non ammette soluzioni singolari; separando le variabili si ottiene e y = e y dy = d = + C. Quindi l integrale generale è y) = log ). + C Imponendo la condizione iniziale si ricava log) = y0) = log C) = C = / ; pertanto la soluzione cercata sarà y) = log ). + / Domanda La soluzione del problema di Cauchy proposto non può avere punti di massimo per 0. Infatti, per ipotesi, y0) = > 0 e y 0) = log < 0, quindi la soluzione arriva in = 0 con segno positivo e monotonia decrescente e, dall equazione, si ricava che il segno della derivata prima è discorde con quello di y). Quindi la soluzione non cambia monotonia fintanto che non diventa negativa, ma la funzione può diventare negativa solo dove cresce. Pertanto, per tutti i valori di 0 per cui la soluzione è definita, essa resterà positiva e strettamente decrescente.

5 TEMA C Esercizio ) [ Osserviamo che possiamo scrivere 0 = z 7 + i z = z richieste saranno date dall unione delle soluzioni delle due equazioni z )] + i z. Pertanto, le soluzioni ) + i = 0 e z = 0; la seconda ha come soluzione z = 0, mentre la prima ha come soluzioni le radici terze del numero complesso + i. Poiché + i = e iπ/, si ricava + i = e iπ/ = {e i π ; e i 9 π = e i π ; e i 7 π }. Quindi le soluzioni cercate saranno z = 0, z = e i π, z = e i π, z = e i 7 π. Esercizio La funzione proposta è una funzione continua su tutto R \ {0} e derivabile su tutto R \ {,, 0}, in quanto ottenuta attraverso operazioni algebriche e composizione di funzioni continue e derivabili. Pertanto, cominciamo a studiare la continuità in = 0. Utilizzando lo sviluppo asintotico log + ), otteniamo f) ) = ; 0 0 log + ) = f ha un salto in = 0. f) = ; Poiché f non è continua in = 0, essa non sarà neppure derivabile in tale punto. Resta, quindi, da studiare la derivabilità di f nei punti = e =. Calcolando la derivata in R \ {,, 0} si ottiene f ) = sign + ) log + ) > 0; 5 + ) /5 < <, < <, < < 0. Pertanto, ) = ± + ± 5 = = è punto angoloso; ) = ± ± = = è punto di cuspide. Esercizio Utilizzando lo sviluppo di Mc Laurin al secondo ordine per la funzione log + ), con = /n /, otteniamo log + ) = n / n ) / n + o/n ) = n 8 n + 9/ o/n9/ ). Pertanto, si ricava a n := n [ 5/ log ) ] + ) n / n n 5/ n 8 n 9/ n = 8 n. Dal criterio del confronto asintotico con la serie armonica generalizzata di esponente >, otteniamo che la serie proposta è convergente. Domanda L unica affermazione corretta è la ) poiché, come conseguenza del Teorema dei Carabinieri, si ottiene che il prodotto di una successione itata nel nostro caso {a n }) e di una successione infinitesima nel nostro caso {/b n }) dà luogo ad una successione infinitesima. Prendendo, invece, a n = /n e b n = n si contraddice l affermazione ), mentre prendendo a n e b n = n si contraddice la ). 5

6 Esercizio Osserviamo che la primitiva richiesta sarà data da ϕ) = 0 e arctan t + t ) cos e arctan t ) dt = e arctan cos s ds = tan s e arctan = tan e arctan ) tan dove, nella seconda uguaglianza, abbiamo utilizzato il cambiamento di variabile s = e arctan t, da cui ds = arctan t e +t dt, s0) =, s) = e arctan. Esercizio 5 Calcoliamo,y) 0,) log + ) + y y + ) /,y) 0,) ρ cos θ [ + y ) ] / ρ 0 + ρ cos θ =, ρ 0 + dove, nella prima uguaglianza, abbiamo utilizzato lo sviluppo asintotico log + ), per 0, e nella seconda, abbiamo effettuato un cambiamento di variabile in coordinate polari centrate nel punto 0, ). Poiché il ite non esiste, in quanto dipende da θ cioè dalla direzione lungo la quale lo si calcola), si ricava che la funzione non può essere prolungata con continuità in P 0. Esercizio 6 Osserviamo che il problema di Cauchy proposto è relativo ad un equazione differenziale del primo ordine a variabili separabili, che può essere riscritta nella forma y ) = e y). Tale equazione non ammette soluzioni singolari; separando le variabili si ottiene e y = e y dy = d = + C. Quindi l integrale generale è y) = log ). + C Imponendo la condizione iniziale si ricava log) = y0) = log C) = C = / ; pertanto la soluzione cercata sarà y) = log ). + / Domanda La soluzione del problema di Cauchy proposto non può avere punti di massimo per 0. Infatti, per ipotesi, y0) = > 0 e y 0) = log < 0, quindi la soluzione arriva in = 0 con segno positivo e monotonia decrescente e, dall equazione, si ricava che il segno della derivata prima è discorde con quello di y). Quindi la soluzione non cambia monotonia fintanto che non diventa negativa, ma la funzione può diventare negativa solo dove cresce. Pertanto, per tutti i valori di 0 per cui la soluzione è definita, essa resterà positiva e strettamente decrescente., 6

7 TEMA D Esercizio ) [ )] Osserviamo che possiamo scrivere 0 = z i z = z + + i z. Pertanto, le soluzioni richieste ) saranno date dall unione delle soluzioni delle due equazioni z + + i = 0 e z = 0; la seconda ha come soluzione z = 0, mentre la prima ha come soluzioni le radici quarte del numero complesso i. Poiché i = ei7π/6, si ricava i = e i7π/6 = {e i 7 π ; e i 9 π ; e i π ; e i π }. Quindi le soluzioni cercate saranno z = 0, z = e i 7 π, z = e i 9 π, z = e i π, z 5 = e i π. Esercizio La funzione proposta è una funzione continua su tutto R \ {0} e derivabile su tutto R \ {, 0, }, in quanto ottenuta attraverso operazioni algebriche e composizione di funzioni continue e derivabili. Pertanto, cominciamo a studiare la continuità in = 0. Utilizzando lo sviluppo asintotico e, otteniamo f) = ; + e ) f) = f ha un salto in = = ; Poiché f non è continua in = 0, essa non sarà neppure derivabile in tale punto. Resta, quindi, da studiare la derivabilità di f nei punti = e =. Calcolando la derivata in R \ {, 0, } si ottiene [sign + )e ) + + e ] + e ) f ) = <, < < 0; < <, >. ) Pertanto, e f 8 ) ) = ± = = è punto angoloso; f ) = + = = è punto di flesso a tangente verticale. ± Esercizio Utilizzando lo sviluppo di Mc Laurin al secondo ordine per la funzione e, con = / n, otteniamo ) e /n = ) n n + o/n) = 9 n + 7 n + / o/n/ ). Pertanto, si ricava a n := [ ] n e /n ) 9 n n 9 n + ) 7 9 n / n = 7 n. Dal criterio del confronto asintotico con la serie armonica otteniamo che la serie proposta è divergente. Domanda L unica affermazione corretta è la ) poiché, come conseguenza del Teorema dei Carabinieri, si ottiene che il prodotto di una successione infinitesima nel nostro caso {a n }) e di una successione itata nel nostro caso {b n}) dà luogo ad una successione infinitesima. Prendendo, invece, a n = /n e b n = /n si contraddice l affermazione ), mentre prendendo a n = / n e b n si contraddice la ). 7

8 Esercizio Osserviamo che la primitiva richiesta sarà data da ϕ) = 0 e t + e 6t ) arctane t ) dt = arctane ) π/ s ds = log s arctane π/ ) = log arctane ) ) logπ/) dove, nella seconda uguaglianza, abbiamo utilizzato il cambiamento di variabile s = arctane t ), da cui ds = et +e 6t ) dt, s0) = π/, s) = arctane ). Esercizio 5 Calcoliamo,y),0) e y + y + ) /,y),0) y ρ sin θ [ ) + y ] / ρ 0 + ρ sin θ =, ρ 0 +, dove, nella prima uguaglianza, abbiamo utilizzato lo sviluppo asintotico e y y, per y 0, e nella seconda, abbiamo effettuato un cambiamento di variabile in coordinate polari centrate nel punto, 0). Poiché il ite non esiste, in quanto dipende da θ cioè dalla direzione lungo la quale lo si calcola), si ricava che la funzione non può essere prolungata con continuità in P 0. Esercizio 6 Osserviamo che il problema di Cauchy proposto è relativo ad un equazione differenziale del primo ordine a variabili separabili, che può essere riscritta nella forma y ) = 5 e y). Tale equazione non ammette soluzioni singolari; separando le variabili si ottiene e y = e y dy = d = C = e y) = 5 + C. Quindi l integrale generale è y) = log 5 ). + C Imponendo la condizione iniziale si ricava log/) = y0) = log C) = C = ; pertanto la soluzione cercata sarà y) = log 5 ). + Domanda La soluzione del problema di Cauchy proposto non può avere punti di massimo per 0. Infatti, per ipotesi, y0) = > 0 e y 0) = arctan > 0, quindi la soluzione parte da = 0 con segno positivo e monotonia crescente e, dall equazione, si ricava che il segno della derivata prima è concorde con quello di y). Quindi la soluzione non cambia monotonia fintanto che non diventa negativa, ma la funzione diventa negativa sono dove decresce. Pertanto, per tutti i valori di 0 per cui la soluzione è definita, essa resterà positiva e strettamente crescente. 8

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 6 aprile 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 6 aprile 2018 Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A Pisa, 6 aprile cos ) sin se Domanda Sia f) = Allora se =. A) non ha derivata in = ) è derivabile C) ha un punto di cuspide D) ha

Dettagli

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere ) DMINIO + 3 Determinare il dominio della funzione f ) + 3 Deve essere Ovviamente, inoltre: se > + 3 ) 3) quindi < o 3 se < + 3, + 3 quindi 7 Determinare il dominio della funzione f ) + 5 Deve essere +

Dettagli

Secondo appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2015/2016. Prof. M. Bramanti.

Secondo appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2015/2016. Prof. M. Bramanti. Secondo appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 01/01. Prof. M. Bramanti 1 Tema n 1 4 7 Tot. Cognome e nome in stampatello) codice persona o n di matricola)

Dettagli

ANALISI MATEMATICA II-A. Prova scritta del 29/1/2010 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ANALISI MATEMATICA II-A. Prova scritta del 29/1/2010 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ANALISI MATEMATICA II-A CORSO DI LAUREA IN FISICA Prova scritta del 9//00 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE Esercizio.(Punti 6) Calcolare il valore del seguente ite 0+ e cos. Esercizio.(Punti 6)

Dettagli

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti.

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti. Seconda prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 5/6. Prof. M. Bramanti Tema n 3 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

SOLUZIONI COMPITO del 13/02/2019 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A

SOLUZIONI COMPITO del 13/02/2019 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A SOLUZIONI COMPITO del /0/09 ANALISI MATEMATICA I - 9 CFU ENERGETICA TEMA A Esercizio Ponendo z = a + ib, da cui z = a + b, ed osservando che e iπ/ = i, l equazione proposta si riscrive nella forma a b

Dettagli

Analisi Matematica A e B Soluzioni Prova scritta n. 3

Analisi Matematica A e B Soluzioni Prova scritta n. 3 Analisi Matematica A e B Soluzioni Prova scritta n. Corso di laurea in Fisica, 207-208 9 luglio 208. Si consideri per α =, 2, 5, 8 la seguente funzione funzione F α : R\{0} R F α () = sin t dt. t α 6 Dire

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del.. TEMA Esercizio. Sia f) = + 3) log + 3), D =] 3, + [. i) Determinare i iti di f agli estremi di D e gli eventuali asintoti; studiarne

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 20 giugno (log x)x 1

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 20 giugno (log x)x 1 Università di Pisa - Corso di Laurea in Informatica Analisi Matematica Pisa, 0 giugno 019 e 1 se 0 Domanda 1 La funzione f : R R definita da 1 se = 0 A) ha minimo ma non ha massimo ) ha massimo ma non

Dettagli

SOLUZIONI COMPITO del 1/02/2013 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A

SOLUZIONI COMPITO del 1/02/2013 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A SOLUZIONI COMPITO del /0/0 ANALISI MATEMATICA I - 9 CFU INGEGNERIA MECCANICA - INGEGNERIA ENERGETICA INGEGNERIA AMBIENTE e TERRITORIO TEMA A Esercizio Osserviamo che la serie proposta è a termini di segno

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3..7 TEMA Esercizio Calcolare l integrale log(3) 4 dx Svolgimento. Si ha log(3) 4 dx = (ponendo ex = t, per cui dx = dt/t) e = 4 3

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Secondo appello 2005/ Tema 1

Secondo appello 2005/ Tema 1 Secondo appello 2005/2006 - Tema Esercizio Risolvere l equazione di variabile complessa determinando le soluzioni in forma algebrica. Ponendo z = x + iy con x, y R, si ottiene z 2 + 2iz + 2 z = 0, () (x

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 5 febbraio 07 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 7) Posto

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. A Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

B Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

B Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. B Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria Matematica I Appello del 5 Febbraio 2007 Tema A

Università degli Studi di Bergamo Facoltà di Ingegneria Matematica I Appello del 5 Febbraio 2007 Tema A Università degli Studi di Bergamo Facoltà di Ingegneria Matematica I Appello del 5 Febbraio 7 Tema A Cognome e Nome Matr... Disegnare un grafico approssimativo della funzione f() log( ). Indicare sul grafico

Dettagli

APPELLO X AM1C 17 SETTEMBRE 2009

APPELLO X AM1C 17 SETTEMBRE 2009 Cognome e nome APPELLO X AMC 7 SETTEMBRE 29 Esercizio. Sia f(x) = x arctan x + log( + x 2 ) (a) Determinarne: insieme di esistenza e di derivabilità, iti ed eventuali asintoti, eventuali massimi, minimi

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine nno ccademico 5/6 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 4/7/6 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato. Tempo

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 9..8 NOTA: lo svolgimento del Tema contiene alcuni commenti di carattere generale. Esercizio Si consideri la funzione TEMA f := log

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 205/206 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 20/07/206 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

Analisi Matematica 1 per IM - 11/02/2019. Tema 1 (parte di esercizi)

Analisi Matematica 1 per IM - 11/02/2019. Tema 1 (parte di esercizi) Analisi Matematica per IM - /2/29 Cognome e Nome:....................................... Matricola:.................. Docente:.................. Tempo a disposizione: due ore. Il candidato, a meno che

Dettagli

SOLUZIONI COMPITO A. Esercizio 1 Utilizzando la formula risolutiva per l equazioni di secondo grado, valida anche in campo complesso, otteniamo:

SOLUZIONI COMPITO A. Esercizio 1 Utilizzando la formula risolutiva per l equazioni di secondo grado, valida anche in campo complesso, otteniamo: SOLUZIONI COMPITO A Esercizio 1 Utilizzando la formula risolutiva per l equazioni di secondo grado, valida anche in campo complesso, otteniamo: z = i + i + i 3 In forma algebrica, otteniamo: = i + 1 +

Dettagli

Analisi e Geometria 1 Politecnico di Milano Ingegneria Industriale

Analisi e Geometria 1 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Politecnico di Milano Ingegneria Industriale Docenti: P Antonietti, F Cipriani, F Colombo, F Lastaria G Mola, E Munarini, P Terenzi, C Visigalli Terzo appello, Settembre 9 Compito A

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli

Terzo appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2015/2016. Prof. M. Bramanti.

Terzo appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2015/2016. Prof. M. Bramanti. Terzo appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 5/6. Prof. M. Bramanti Tema n 5 6 7 Tot. Cognome e nome in stampatello codice persona o n di matricola n

Dettagli

Corso di Laurea in Scienze Biologiche Prova scritta di Matematica del 26/01/2007

Corso di Laurea in Scienze Biologiche Prova scritta di Matematica del 26/01/2007 Corso di Laurea in Scienze Biologiche Prova scritta di Matematica del 6/0/007 COGNOME NOME MATRICOLA 3 sin( ) e 3 + ) Determinare ( cos()) Possibile svolgimento Il ite proposto si presenta nella forma

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale a.a. 2011 2012 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

Analisi Matematica 1 - a.a. 2017/ Quarto appello

Analisi Matematica 1 - a.a. 2017/ Quarto appello Analisi Matematica - a.a. 07/08 - Quarto appello Soluzione del test Test A E C B B C A D C C D Test B C B C E B A E E D B Test C A A D B E C A C D D Test D D B A A B E A E B D Soluzione della parte di

Dettagli

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni:

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni: Studi di funzione 5) Studiare la funzione definita da f() = arcsin ( ) + 3 2 +. Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli R che verificano le condizioni: () : +,

Dettagli

ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche

ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a. 4- Corsi di laurea in Scienze Statistiche 4 febbraio TEMA Esercizio 8 punti) Si consideri la funzione ) e f) = arctan e a)

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 giugno 2018 D) 73 60

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 giugno 2018 D) 73 60 Università di Pisa - orso di Laurea in Informatica nalisi Matematica Pisa, giugno 08 Domanda + B e 3 D 6 e log lim x sin x x = x 0 + B Domanda La successione a n = n e n+ n e n non ha né massimo né minimo

Dettagli

SOLUZIONI COMPITO A. 3. Imponendo la condizione iniziale y(0) = 1 e, si ricava C = 0, quindi la soluzione cercata sarà. y(x) + 1 = exp(e x x2 2 1)

SOLUZIONI COMPITO A. 3. Imponendo la condizione iniziale y(0) = 1 e, si ricava C = 0, quindi la soluzione cercata sarà. y(x) + 1 = exp(e x x2 2 1) SOLUZIONI COMPITO A Esercizio Utilizzando lo sviluppo di Mc Laurin al terzo ordine per il sin t, con t = x 4/, e quello al primo ordine per il log( + t), con t = x, otteniamo e quindi il ite proposto diviene

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Analisi Matematica I

Analisi Matematica I Università di Pisa - orso di Laurea in Ingegneria Edile-Architettura Analisi Matematica I Pisa, settembre omanda La funzione f : R R definita da f(x) = x + e x A) non è né iniettiva né surgettiva ) è iniettiva

Dettagli

Esercizi Analisi 1. Foglio 1-19/09/2018. n(n + 1)(2n + 1) 6. (3k(k 1) + 1) = n 3. a n = 1 + a k

Esercizi Analisi 1. Foglio 1-19/09/2018. n(n + 1)(2n + 1) 6. (3k(k 1) + 1) = n 3. a n = 1 + a k Esercizi Analisi Foglio - 9/09/208 Dimostrare che per ogni a, b e per ogni n N si ha: n a n b n = (a b) a n j b j j= Dimostrare che per ogni n N si ha: n j 2 = j= n(n + )(2n + ) 6 Dimostrare che per ogni

Dettagli

ESERCIZIO SULLE FUNZIONI DI DUE VARIABILI. g(x, y). x arctan x + y 2.

ESERCIZIO SULLE FUNZIONI DI DUE VARIABILI. g(x, y). x arctan x + y 2. Sia f : R R la funzione definita da ESERCIZIO SULLE FUNZIONI DI DUE VARIABILI f, y = + y 4 y + 4, y R e sia g la funzione di due variabili reali definita da g, y = f, y + y.. Determinare il dominio D di

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 17 luglio 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 17 luglio 2018 Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A Pisa, 7 luglio 08 omanda La funzione f : (0, + R definita da f( = + log ( + log A ha un asintoto orizzontale e nessun altro asintoto

Dettagli

Corso di Laurea in Ingegneria Biomedica ed Elettronica Prima prova scritta di Analisi Matematica 1 del 18/12/2006

Corso di Laurea in Ingegneria Biomedica ed Elettronica Prima prova scritta di Analisi Matematica 1 del 18/12/2006 Corso di Laurea in Ingegneria Biomedica ed Elettronica Prima prova scritta di Analisi Matematica del 8/2/26 () Fornire la definizione di derivata ed il suo significato geometrico. (2) Enunciare e dimostrare

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 14 gennaio nel punto x = 0

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 14 gennaio nel punto x = 0 log(1 + Domanda 1 La funzione f( = sin( se < 0 ( se 0, nel punto = 0 è continua a sinistra ma non a destra è continua è continua a destra ma non a sinistra D non è continua né a destra né a sinistra sin

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Analisi Matematica 1 Soluzioni prova scritta n. 1

Analisi Matematica 1 Soluzioni prova scritta n. 1 Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a

Dettagli

2. Calcolare l area della regione Ω contenuta nel primo quadrante, delimitata dalle seguenti curve. : y = x 2 + x γ 2 : y = x 2 γ 3 : y = 1 x 2.

2. Calcolare l area della regione Ω contenuta nel primo quadrante, delimitata dalle seguenti curve. : y = x 2 + x γ 2 : y = x 2 γ 3 : y = 1 x 2. Politecnico di Milano Ingegneria Industriale Analisi e Geometria Esercizi sul calcolo integrale. Calcolare l area della regione Ω contenuta nel primo quadrante, deitata dalle seguenti curve γ : y + γ :

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico / Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 9// N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato. Tempo

Dettagli

Analisi Matematica 1+2

Analisi Matematica 1+2 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali

Dettagli

Ingegneria civile - ambientale - edile

Ingegneria civile - ambientale - edile Ingegneria civile - ambientale - edile Analisi - Prove scritte dal 7 Prova scritta del 9 giugno 7 Esercizio Determinare i numeri complessi z che risolvono l equazione Esercizio (i) Posto a n = n i z z

Dettagli

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. D Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 29 settembre 2012 Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica del 9 settembre A) Data la funzione f(x, y) = { xy x se (x, y) (, ) se (x, y) = (, ), i) stabilire se risulta continua

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 6 giugno 2004: soluzioni ESERCIZIO - Data la funzione f) 3 2 4 + 27 + 9 2 ) /3 4 + 27, + 9 si chiede

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

I appello - 11 Gennaio 2016

I appello - 11 Gennaio 2016 Analisi Matematica - A.A. 5-6 Prove scritte di Analisi Matematica - A.A. 5/6 Corso di Laurea in Ingegneria Civile Corso di Laura in Ingegneria Informatica ed Elettronica I appello - Gennaio 6 Svolgere

Dettagli

Esonero di Analisi Matematica I (A)

Esonero di Analisi Matematica I (A) Esonero di Analisi Matematica I A) Ingegneria Edile, 7 novembre 00 Michele Campiti) 1. Studiare il seguente ite: x π/ cos x 1 sin x) tan 3 x π ).. Calcolare le seguenti radici quarte: 3i 4 1 + i). Esonero

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico /3 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 9//3 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato. Tempo

Dettagli

Argomento delle lezioni del corso di Analisi A.A

Argomento delle lezioni del corso di Analisi A.A Argomento delle lezioni del corso di Analisi A.A.2011-2012 30 gennaio 2012 Lezione 1-2 (5 ottobre 2011) Numeri naturali, interi, razionali. Definizione intuitiva dei reali attraverso la retta. Definizione

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 T Totale

Es. 1 Es. 2 Es. 3 Es. 4 T Totale Es Es Es 3 Es 4 T Totale Analisi e Geometria COMPITO A Docenti: P Antonietti, F Cipriani, F Colombo, F Lastaria, G Mola, E Munarini, PTerenzi, C Visigalli Ingegneria Industriale Prova del /9/009 Cognome

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA I(N.O.), ANNO 2002/03

PROVE SCRITTE DI ANALISI MATEMATICA I(N.O.), ANNO 2002/03 PROVE SCRITTE DI ANALISI MATEMATICA I(N.O.), ANNO / Prova scritta del 6// Denotato con a il numero delle lettere del nome, si consideri la serie nx + cos nx a nx, per x IR, e si determini per quali valori

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 2 luglio 2004: soluzioni Data la funzione f() = 3 2 2 arctan + 0, si chiede di: a) calcolare il dominio

Dettagli

e 2x2 1 (x 2 + 2x 2) ln x

e 2x2 1 (x 2 + 2x 2) ln x Corso di laurea in Ingegneria delle Costruzioni A.A. 2016-17 Analisi Matematica - Esercitazione del 04-01-2017 Ripasso di alcuni argomenti in programma Gli esercizi sono divisi in più pagine, per separare

Dettagli

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A Modulo di Matematica, Corsi di Laurea in VIT e STL - Raccolta degli Esami.. - Facoltà di graria Corsi di Laurea in VIT e STL Modulo di Matematica Esame del //.. / Scritto Teoria Esercizi Voto Istruzioni:

Dettagli

Analisi Matematica 1 - a.a. 2017/ Secondo appello

Analisi Matematica 1 - a.a. 2017/ Secondo appello Analisi Matematica - a.a. 27/28 - Secondo appello Soluzione del test Test A 2 3 4 5 6 7 8 9 D D A B C B A E D D Test B 2 3 4 5 6 7 8 9 B A C C B E D E A A Test C 2 3 4 5 6 7 8 9 A C B E E D C B B C Test

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Esercizi di Analisi Matematica 1, utili per la preparazione all esame scritto - Seconda parte SOLUZIONI

Esercizi di Analisi Matematica 1, utili per la preparazione all esame scritto - Seconda parte SOLUZIONI Esercizi di Analisi Matematica Esercizi di Analisi Matematica, utili per la preparazione all esame scritto - Seconda parte SOLUZIONI Es. Per ognuna delle seguenti figure, dire se la curva nel piano cartesiano

Dettagli

(1) Determinare l integrale generale dell equazione

(1) Determinare l integrale generale dell equazione FONDAMENTI DI ANALISI MATEMATICA (9 cfu Commissione F. Albertini, V. Casarino, M. Motta Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Vicenza, 3 settembre 8 Quarto appello Avvertenza: Nella

Dettagli

APPELLO B AM1C 14 LUGLIO f(x) = xe 1

APPELLO B AM1C 14 LUGLIO f(x) = xe 1 Cognome e nome APPELLO B AM1C 14 LUGLIO 2009 Esercizio 1. Sia data la funzione f(x) = xe 1 log x. (a) Determinarne: insieme di esistenza e di derivabilità, limiti ed eventuali asintoti, eventuali massimi,

Dettagli

Facoltà di Architettura Valle Giulia Corso di Laurea Specialistica Quinquennale U.E. 1 CALCOLO INTEGRALE PER LE FUNZIONI DI UNA VARIABILE

Facoltà di Architettura Valle Giulia Corso di Laurea Specialistica Quinquennale U.E. 1 CALCOLO INTEGRALE PER LE FUNZIONI DI UNA VARIABILE Facoltà di Architettura Valle Giulia Corso di Laurea Specialistica Quinquennale U.E. Istituzioni di Matematica 2 a.a. 2007-2008 http://www.dmmm.uniroma.it/persone/capitanelli CALCOLO INTEGRALE PER LE FUNZIONI

Dettagli

Nozioni di base - Quiz - 2

Nozioni di base - Quiz - 2 Nozioni di base - Quiz - Rispondere ai seguenti quesiti (una sola risposta è corretta).. L insieme delle soluzioni della disequazione (a) (0, ) (, + ) (x ) log(x) x + 0 è: (b) [, ] (c) (d) (e) (, + ) (0,

Dettagli

Calcolo I - Corso di Laurea in Fisica - 18 Giugno 2019 Soluzioni Scritto. a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità;

Calcolo I - Corso di Laurea in Fisica - 18 Giugno 2019 Soluzioni Scritto. a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità; Calcolo I - Corso di Laurea in Fisica - 8 Giugno 209 Soluzioni Scritto Data la funzione fx = x 2 x 6 x /3 a Calcolare il dominio, asintoti ed eventuali punti di non derivabilità; b Calcolare, se esistono,

Dettagli

Cognome: Nome: Matr. (e x 1 x)(1 x) 2/3 x (sin x) a

Cognome: Nome: Matr. (e x 1 x)(1 x) 2/3 x (sin x) a Es. 1 Es. 2 Es. 3 Es. 4 T. Totale Analisi e Geometria 1 Docente: Gianluca Mola 27/1/29 Ing. Industriale Cognome: Nome: Matr. Nello spazio sottostante gli esercizi devono essere riportati sia i risultati

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (06/0/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (06/0/03) Università di Verona - Laurea in Biotecnologie

Dettagli

Analisi Matematica 1 per IM - 15/07/2019. Tema 1 (parte di esercizi)

Analisi Matematica 1 per IM - 15/07/2019. Tema 1 (parte di esercizi) Analisi Matematica per IM - /07/09 Cognome e Nome:....................................... Matricola:.................. Docente:.................. Tempo a disposizione: due ore. Il candidato a meno che

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

Prove scritte di Analisi I - Informatica

Prove scritte di Analisi I - Informatica Prove scritte di Analisi I - Informatica Prova scritta del 3 gennaio Esercizio Stabilire il comportamento delle seguenti serie: n= n + 3 sin n, n= ( ) n n + 3 sin n, n= (n)! (n!), n= n + n 9 n + n. Esercizio

Dettagli

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino 1 o compitino 1 febbraio 215 1 Si consideri la funzione f : R R definita da { f) = 2 log se se = a) Si dimostri che f è continua e derivabile su tutto R b) Si dica se f ammette derivata seconda in ogni

Dettagli

Calcolo 1 (L. Fanelli - F. Pacella)

Calcolo 1 (L. Fanelli - F. Pacella) Matricola Corso di laurea in Matematica, aa 7/8 Calcolo (L Fanelli - F Pacella) Seconda prova in itinere 9 gennaio 8 I Cognome NORRIS Nome CHUCK Risolvere TRE E NON PIÙ DI TRE esercizi, motivando le risposte

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 16 gennaio 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 16 gennaio 2018 Università di Pisa - orso di Laurea in Informatica Analisi Matematica A Pisa, 6 gennaio 08 omanda La funzione f = e, nel suo insieme di definzione A ha minimo ma non ha massimo ha massimo ma non ha minimo

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Risoluzione del compito n. 4 (Giugno 2014)

Risoluzione del compito n. 4 (Giugno 2014) Risoluzione del compito n. 4 Giugno 2014) PROBLEMA 1 Determinate le soluzioni z, w), con z, w C,delsistema { z = w 2 w i Dalla prima equazione ricaviamo 2iz +4i z = w 2. che sostituito nella seconda la

Dettagli

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A

Modulo di Matematica, Corsi di Laurea in VIT e STAL - Raccolta degli Esami A.A Modulo di Matematica, Corsi di Laurea in VIT e STL - Raccolta degli Esami.. 9- Facoltà di graria Corsi di Laurea in VIT e STL Modulo di Matematica Esame del //.. 9/ Scritto Teoria Esercizi Voto Istruzioni:

Dettagli

Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi Matematica II Primo compito in itinere 9 Maggio 2016

Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi Matematica II Primo compito in itinere 9 Maggio 2016 Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi Matematica II Primo compito in itinere 9 Maggio 06 Cognome: Nome: Matricola: Es: 6 punti Es: 0 punti Es: 8 punti Es4: 9 punti Totale

Dettagli

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5)

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5) ) DMINIO FUNZIONE Determinare il dominio della funzione f (x) = x x + x x + 8 x x + (x ) (x ) Deve essere = quindi x (, ] (, ] (, + ). x x + 8 (x ) (x ) Determinare il dominio della funzione f (x) = x

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014 Prove scritte dell esame di Analisi Matematica II a.a. 3/4 C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 9 giugno 4. (8 punti) Risolvere il problema

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + 2 e (x+2). Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè

Dettagli

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0. D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale aa 2012 2013 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1 Analisi Matematica IV modulo Soluzioni prova scritta preinare n. Corso di laurea in Matematica, a.a. 200-2004 24 marzo 2004. Risolvere il prolema di Cauchy y = (y 2x) 2 + y 2x y(log 2) = 2 log 2. Soluzione.

Dettagli

APPELLO C AM1C 19 Gennaio f(x) = log( x + 2) x

APPELLO C AM1C 19 Gennaio f(x) = log( x + 2) x Esercizio 1. Sia data la funzione f(x) = log( x + 2) x (a )Determinarne: insieme di esistenza e di derivabilità, limiti ed eventuali asintoti, eventuali punti angolosi o di cuspide, eventuali massimi e

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2017/18)

Diario del corso di Analisi Matematica 1 (a.a. 2017/18) Diario del corso di Analisi Matematica 1 (a.a. 2017/18) 22 settembre 2017 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 25 settembre

Dettagli

INTEGRALI Test di autovalutazione

INTEGRALI Test di autovalutazione INTEGRALI Test di autovalutazione. L integrale ln 6 è uguale a (a) vale 5 2 (b) (c) (d) 4 5 vale ln 256 2 è negativo 2 5 + 4 5 2 5 + 4 5 d d 2. È data la funzione = e 2. Allora: (a) se F() è una primitiva

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2016/17)

Diario del corso di Analisi Matematica 1 (a.a. 2016/17) Diario del corso di Analisi Matematica 1 (a.a. 2016/17) 16 settembre 2016 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 19 settembre

Dettagli

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI Notiamo che lo studio delle funzioni assegnate f,..., f 4 si riduce a considerare

Dettagli

Argomento 6: Derivate Esercizi. I Parte - Derivate

Argomento 6: Derivate Esercizi. I Parte - Derivate 6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo Appello 8 Settembre 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo Appello 8 Settembre 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Terzo Appello 8 Settembre 24 Cognome: Nome: Matricola: Compito A Es.: 9 punti Es.2: 8 punti Es.3: 8 punti Es.4: 8 punti Totale. Sia F la

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + e (x+). Per cominciare, osserviamo che f si ottiene traslando di, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè abbiamo

Dettagli

Analisi (L. Fanelli - M. Marchi - P. Vernole - A. Pisante)

Analisi (L. Fanelli - M. Marchi - P. Vernole - A. Pisante) Corso di laurea in Fisica, a.a. 2015/16 Analisi (L. Fanelli - M. Marchi - P. Vernole - A. Pisante) Seconda prova in itinere 15 gennaio 2016 I Regolamento. Annerire in modo evidente un opzione a scelta

Dettagli

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori. Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.

Dettagli

ANALISI MATEMATICA 1 - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Meccanica, Meccatronica, Innovazione del Prodotto

ANALISI MATEMATICA 1 - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Meccanica, Meccatronica, Innovazione del Prodotto ANALISI MATEMATICA - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Meccanica, Meccatronica, Innovazione del Prodotto Vicenza, Settembre 8 TEMA Esercizio Si consideri la funzione

Dettagli

ESERCITAZIONE 6: STUDIO DI FUNZIONI

ESERCITAZIONE 6: STUDIO DI FUNZIONI ESERCITAZIONE 6: STUDIO DI FUNZIONI Tiziana Raparelli 31/03/009 1 ESERCIZI ESERCIZIO 1 Studiare le seguenti funzioni, discuterne l uniforme continuità e tracciarne un grafico qualitativo. (a) f() = log(

Dettagli

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 11/03/2013

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 11/03/2013 CORSO DI ANALISI MATEMATICA SOLUZIONI ESERCIZI PROPOSTI /0/0 D.BARTOLUCCI, D.GUIDO ESERCIZIO: Sia 0 R e. Il Polinomio di Taylor I A 0 := {f : U f,0 R : U f,0 è un intorno di 0, f è continua in U f,0 },

Dettagli