Stima ai minimi quadrati e cinematica inversa controllo del peso delle articolazioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Stima ai minimi quadrati e cinematica inversa controllo del peso delle articolazioni"

Transcript

1 Sima ai minimi quadrai e inemaia inversa nr de pes dee ariazini Prf. Aber Brghese N.B.: I diri di sariare ques fie è riserva samene agi sudeni regarmene isrii a rs di Animazine Digiae. A.A Smmari Cinemaia inversa Sisemi ineari n m equazini e n ingnie m > n sisemi sdeerminai. Suzine ai minimi quadrai. Priviegi di gradi di iberà di nr. Anaisi dea suzine ai minimi quadrai. A.A. -5 3

2 A.A Cinemaia inversa Cnsideriam a rasfrmazine end_pin -> jin. La rasfrmazine jin -> end_pin è: P = f,, Τ x, Τ y,. ink O x e y e z e P x y x y P P e A = e ABS_ABS sin sin s s T T y x s s s sin sin sin JW,L = Z X Y A.A Esempi m =, n = end effer ink r O b = d dp d dp y x e e Suppniam: = = 5 T x = T y = x = x d dt d dt d d d d y x x JW,L = x = J T *J - * J T * b J T *J = s 5 s 5 s s s sin sin sin JW,L = s 5

3 Suzine m=, n= ink J T *J = dej T *J = Oend effer? s 5 x = J T *J - * J T * b x = V W - U J T b s 5 r W - è siuia ad esempi sì: Gi zeri rrispndn ai vari singari nui A.A w w Rank-defiieny nea marie dei effiieni x = A *A - A * b x = V W - U A b Se A è rank-defiien, A *A è singare. Si può faimene sservare vauand i vare singare più pi dea marie W. In ques as i prbema è svraparamerizza. A.A

4 J T *J = Suzine m=, n= s 5 x = V W - U b Suppniam: = = 5 T x = T y = Oend effer = = dp e x = dpe y = s 5 dej T *J = ink J T *J W,L = 7 r A.A Suzine m=, n= >>[U W V] = svdjj U = dej T *J = Oend effer W = V = r A.A J T *J = x = V W - U b ink 7 Suppniam: = = 5 T x = T y = = = dp e x = dpe y =

5 J T *J = x = V W - U J b ink Oend effer Suzine m=, n= 7 Wd =.55 Suppniam: = = 5 T x = T y = = = dp e x = dpe y =.68 >>x = V * Wd * U' * J' * bb x = Nrma in pari a dej T *J = NB: Maab frnise già V s frma di raspsa r A.A Verifia Suzine J= s 5 Suppniam: = = 5 T x = T y = = = dp e x = dpe y = x = V W - U J b Oend effer J *x = dp ink s = [ ].5.8 T r A.A

6 Prprieà dea Suzine Prprieà: suzine a nrma minima ink Are pssibii suzini si prebber enere, ma aumenan a nrma dea suzine Oend effer Quae ara suzine sarebbe pssibie? Suppniam: = = 5 T x = T y = = = dp e x = dpe y = r A.A Smmari Cinemaia inversa Sisemi ineari n m equazini e n ingnie m > n sisemi sdeerminai. Suzine ai minimi quadrai. Priviegi di gradi di iberà di nr. Anaisi dea suzine ai minimi quadrai. A.A

7 Cme favrire un jin dp = J dθ min dp J dθ dθ a nrma minima Cme mdifiare dθ senza he equazine sia aeraa? Suppniam di vere favrire aune suzini Minimizziam a nrma dea suzine in md espii pesand ampiezza dee mpneni dea suzine. I prbema si rasfrma in un prbema di regarizzazine: min J dθ dp λ C dθ CdΘ penaizza ampie variazini di rienamen b Ad esempi CdΘ = k ϑ k ϑk, espnene b pari k A.A Sviupp dea regarizzazine min J dθdp λ CdΘ CdΘ penaizza ampie variazini di rienamen b Ad esempi CdΘ = k k ϑk ϑk b pari J T J dθ dp λ CdΘδθ = Ne as di funzine quadraia, i risua è reaivamene sempie J T J dθ dv λ CΘ = P marie dei pesi Da ui risua: J T J dθ dp λ CΘ = J T J dθ dp λ CΘ = Θ = J T J λ C - J T dp A.A

8 8 A.A Suzine regarizzaa m=, n= end effer ink r O s 5 s 5 J T *J = dej T *J = x = V W - U b Suppniam: = = 5 T x = T y = = = dp e x = dpe y = λ = 3 7 J T *J W,L C = dej T *JC A.A Esempi regarizzazine end effer ink r O dej T *JC x = V W - U b Suppniam: = = 5 T x = T y = = = dp e x = dpe y = 3 7 J T *JC = Suppniam: = = ; 3 = = >>de =.3539e >>inversa = >>x = >>dp =.536.

9 p J T *JC = x = V W - U b ink Esempi regarizzazine - II 7 p Oend effer p 3 p Suppniam: = = 5 T x = T y = = = dp e x = dpe y = dej T *JC Suppniam: = = ; 3 = =. >>de =.99 >>inversa = >>x r >>dp =.99. A.A Smmari Cinemaia inversa Sisemi ineari n m equazini e n ingnie m > n sisemi sdeerminai. Suzine ai minimi quadrai. Priviegi di gradi di iberà di nr. Anaisi dea suzine ai minimi quadrai. A.A

10 Vauazine dea bnà dea sima x = A *A - A * b Definis residu a quanià [v]: v = Ax b Errre di misura Gaussian a media nua e,σ <v xk > = <v xy > = M k σˆ = v k= A.A Vauazine dea bnà dea sima de sing paramer e dea r rreazine M x = A *A - A * b σˆ = vx k x = C A * b k= C è hiamaa anhe marie di varianza. Chiamiam u e v e variabii asuai assiae a errre sui parameri e a errre di rer-priezine, rispeivamene. Si suppne errre a media nua e Gaussianamene disribui. x u = C A * b v u = C A * v A.A. -5 7

11 Impsazine de a dea rreazine ra i parameri u = C A v Vgiam individuare a rreazine ra due parameri r ed s. Dev quindi deerminare i vare aes di u r * u s. u uu... uw u u u u u... W u u u u u u... W W W u = C A v => u = v A C uu = C A vv A C => Appiand perare di media, si iene: <uu > = C A <vv >A C Da he v sn i residui, e sn indipendeni, e ue i puni di nr hann sess ip di errre di misura, si avrà he <vv >= Iσ. A.A Ca dea rreazine ra i parameri <uu > = C A IA C σ =C σ Da ui si giusifia i nme di marie di varianza per C. Segue he: σ u ij = ij σ Varianza sua sima de paramer. Esempi di rreazine eevaa: f <-> Z, Z x, y <-> X, Y, X, Y < uiu j > ij rij = = < ui > < u > i j j Indie di rreazine ra i paramer i ed i paramer j empiriamene si saran parameri quand a rreazine è superire a 95% A.A. -5 Vann rapprai ae dimensini dei parameri invi. 7

12 Sima a massima versimigianza Bayesiana A x = b v rumre e.g. errre di misura Terema di Bayes Px b Px Pb x E dea anhe Maximum A-pseriri Prbabiiy Esimain MAP Prbabiià di enere i parameri x dae e sservazini b prbabiià a-pseriri Prbabiià dea suzine x, a-priri Prbabiià ndizinaa di enere sservazine b, da x A.A Sima a massima versimigianza Bayesiana, rumre Gaussian A x = b v rumre e.g. errre di misura Gaussian Px b Px Pb x Px e T T x Σ Σx x è disribui me una Gaussiana n varianza Σ Pb x e bax σ Rappresena un mde de errre, he è supps Gaussian a media nua, n varianza σ. Px b Px Pb x = e T T x Σ Σx bax σ A.A. -5 7

13 Sima a massima versimigianza Bayesiana, rumre Gaussian A x = b v rumre e.g. errre di misura Gaussian Px b Px Pb x = e T T x Σ Σx bax σ T T x Σ Σx Px e = I e σ a Suppniam di nsere a disribuzine a priri dea suzine: Gaussiana n varianza σ. Px b Px Pb x = e I bax σ a σ s max Px b = min b Ax Sima ai minimi quadrai A.A Sima a massima versimigianza Bayesiana, rumre Gaussian, a-priri generae A x = b v Px b Px Pb x = e rumre e.g. errre di misura Gaussian T T x Σ Σx bax σ Px x'p'p x e Px b Px Pb x = e Suppniam di nsere a disribuzine a priri dea suzine e he sia generia ma rappresenabie n un perare ineare, P. T T x P Px bax σ s max Px b = min [b Ax λ Px ] Regarizzazine A.A

14 Smmari Cinemaia inversa Sisemi ineari n m equazini e n ingnie m > n sisemi sdeerminai. Suzine ai minimi quadrai. Priviegi di gradi di iberà di nr. Anaisi dea suzine ai minimi quadrai. A.A

Stima ai minimi quadrati e cinematica inversa controllo del peso di end-point. Sommario

Stima ai minimi quadrati e cinematica inversa controllo del peso di end-point. Sommario Sima ai minimi quadrai e cinemaica inversa cnr de pes di end-pin Prf. Aber Brghese N.B.: I diri di scaricare ques fie è riserva samene agi sudeni regarmene iscrii a crs di Rbica ed Animazine Digiae. A.A.

Dettagli

Stima ai minimi quadrati e cinematica inversa controllo del peso dei joint

Stima ai minimi quadrati e cinematica inversa controllo del peso dei joint Sim i minimi qudri e cinemic invers cnr de pes dei jin Prf. Aer Brghese N.B.: I diri di scricre ques fie è riserv smene gi sudeni regrmene iscrii crs di Reà Virue. A.A. 8-9 9 Smmri Più grdi di ierà che

Dettagli

Stima ai minimi quadrati e cinematica inversa controllo del peso di end-point. Sommario

Stima ai minimi quadrati e cinematica inversa controllo del peso di end-point. Sommario Stima ai minimi quadrati e cinematica inversa cntr de pes di end-pint Prf. Abert Brhese N.B.: I diritt di scaricare quest fie è riservat samente ai studenti rearmente iscritti a crs di Rbtica ed Animazine

Dettagli

Stima ai minimi quadrati e cinematica inversa controllo del peso di end-point

Stima ai minimi quadrati e cinematica inversa controllo del peso di end-point Stim i minimi qudrti e cinemtic invers cntr de pes di end-pint Prf. Aert Brhese A.A. 6-7 /4 http:\\hmes.dsi.unimi.it\rhese Smmri Più end-pint che rdi di iertà (m > n, sistemi svrdeterminti Esempi Priviei

Dettagli

SEGNALI NON PERIODICI: LA TRASFORMATA DI FOURIER

SEGNALI NON PERIODICI: LA TRASFORMATA DI FOURIER SEGNALI NON PERIODICI: LA RASFORMAA DI FOURIER Fndameni di Segnali e rasmissine Inrduzine Se il segnale d ingress di un sisema Lineare emp-invariane LI e un espnenziale cmpless, l uscia sara ancra un espnenziale

Dettagli

La cinematica Inversa ed il Jacobiano

La cinematica Inversa ed il Jacobiano La cinematica Inversa ed i Jacobiano ro. Aberto Borghese N.B.: I diritto di scaricare questo ie è riservato soamente agi studenti regoarmente iscritti a corso di Robotica ed Animaione Digitae. A.A. 8-9

Dettagli

Rappresentazione dell informazione

Rappresentazione dell informazione B Rappresentazione dell informazione {0, 1} 1475 1475 = 1 10 3 + 4 10 2 + 7 10 1 + 5 10 0 1475 1475 10 {0, 1, 2,..., 9} 5 B 2 β B β = {0, 1, 2,..., B 1} n b i β b n 1 b n 2 b 1 b 0 b n 1 B n 1 + b n 2

Dettagli

Esercizio 19 - tema di meccanica applicata e macchine a fluido- 2001

Esercizio 19 - tema di meccanica applicata e macchine a fluido- 2001 Esercizi 19 - tema di meccanica appicata e macchine a fuid- 001 Si fa iptesi che durante un adeguat perid di prva di un autvettura, vengan segnaate rtture de fust dee biee veci in prssimità de piede. Dp

Dettagli

I LIMITI DELLE FUNZIONI

I LIMITI DELLE FUNZIONI I LIMITI DELLE FUNZIONI. I cncett intuitiv di ite.. La definizine rigrsa di ite.. L infinit matematic e e sue prprietà. 4. I ite finit di una funzine in un punt.. I ite infinit di una funzine in un punt.

Dettagli

La cinematica Inversa. Riassunto

La cinematica Inversa. Riassunto La cinematica Inversa ro. Aberto Borghese /36 Riassunto La cinematica inversa. I Jacobiano. Cinematica inversa attraverso i Jacobiano. Retargetting. /36 La cinematica inversa Daa posiione (e orientamento)

Dettagli

A + B C + D A + B (A B) C + D (A B) Cinetica Chimica

A + B C + D A + B (A B) C + D (A B) Cinetica Chimica Cinetia Chimia termdinamia : desrizine dei fenmeni energetii nsiderand sl stat iniziale e stat finale inetia himia : studi della velità e dei meanismi di reazine A + B C + D A e B devn urtarsi urt effiae

Dettagli

FUNZIONE DI TRASFERIMENTO ASSOCIATA A UN CODICE CONVOLUZIONALE

FUNZIONE DI TRASFERIMENTO ASSOCIATA A UN CODICE CONVOLUZIONALE FUNZIONE DI TRASFERIMENTO ASSOCIATA A UN CODICE CONVOLUZIONALE La funzione di trasferimento de codice convouzionae fornisce tutte e informazioni riguardo i pesi dei cammini che si dipartono da S 0 e riconfuiscono

Dettagli

Appunti sulle Equazioni differenziali. Franco Rampazzo

Appunti sulle Equazioni differenziali. Franco Rampazzo Appunti sue Equazioni differenziai Franco Rampazzo October 13, 2008 2 Queste note verranno continuamente aggiornate e appariranno su mio sito personae, www.math.unipd.it rampazzo ne ink Didattica. Esse

Dettagli

[ ] ( ) ( ) ( ) Accelerazione. dv t d r t. dt dt. t d y t. dt dt. dt dt. Dimensioni fisiche. v l m. t = = dv t d z t. dt dt. x 2.

[ ] ( ) ( ) ( ) Accelerazione. dv t d r t. dt dt. t d y t. dt dt. dt dt. Dimensioni fisiche. v l m. t = = dv t d z t. dt dt. x 2. a Accelerazine dv d r a = = dv ( ) x d x = = ( ) dv y d y ay = = x Dimensini fisiche ( ) ( ) a ( ) ( ) dv d z = = z z [ ] [ ] [] [] v l m a = = S.I. s [] S. Viale A.A. 003-004 1 Valri ipici Accelerazine

Dettagli

La varianza dell'errore di predizione ad un passo coincide con la varianza σˆ 2 = 512 del rumore bianco del fattore spettrale canonico.

La varianza dell'errore di predizione ad un passo coincide con la varianza σˆ 2 = 512 del rumore bianco del fattore spettrale canonico. 1A. Si consideri il seguene processo casuale () = w() 8w(-1) 1w(-), w( ) ~ WGN(,) 1.a Ricavare il prediore oimo ad un passo. G(z) = 1 8z -1 1z - = (z) z Filro passa-uo: T(z) = 1 (z1/) (z) Ĝ(z) = T(z) G(z)

Dettagli

x(t) y(t) 45 o x x(t) -2T

x(t) y(t) 45 o x x(t) -2T Eserciazione 0 - Processi casuali Esercizio Si consideri lo schema di fig., dove =A cos(!0 + ) e e una cosane. Si consideri il paramero A come una variabile casuale uniformemene disribuia ra 0 e.calcolare

Dettagli

LA TRASFORMATA DI FOURIER: PROPRIETA ed ESEMPI

LA TRASFORMATA DI FOURIER: PROPRIETA ed ESEMPI L RSFORM DI FOURIER: PROPRIE ed ESEMPI RSFORM DI FOURIER Prprieà della DF ( x( DF ( LINERI : la DF della cmbinazine lineare (smma pesaa di due segnali e uguale alla cmbinazine lineare delle DF dei due

Dettagli

1 Catene di Markov a stati continui

1 Catene di Markov a stati continui Caene di Markov a sai coninui In queso caso abbiamo ancora una successione di variabili casuali X 0, X, X,... ma lo spazio degli sai è un insieme più che numerabile. Nel seguio supporremo che lo spazio

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Universià di Napoi Parhenope Facoà di Ingegneria Corso di Comunicazioni Eeriche docene: Pro. Vio Pascazio 14 a Lezione: 8/5/3 Sommario Fasori Segnai passabanda Trasmissione di segnai passabanda in sisemi

Dettagli

6 DIMENSIONAMENTO PRELIMINARE DEI PIANI DI CODA

6 DIMENSIONAMENTO PRELIMINARE DEI PIANI DI CODA 6 DIMENSIONAMENTO PRELIMINARE DEI PIANI DI ODA In quest apit eseguirem un dimensinament preiminare dei piani di da ertiai ed rizzntai, per pi riprendere a mment di nsiderare interazine degi stessi n aa

Dettagli

Le affinità. Una affinità è una corrispondenza biunivoca fra i punti di un piano che ha come invarianti l allineamento dei punti e il parallelismo.

Le affinità. Una affinità è una corrispondenza biunivoca fra i punti di un piano che ha come invarianti l allineamento dei punti e il parallelismo. A Le affinità Trasazioni, simmetrie assiai o centrai, omotetie e diatazioni, di cui abbiamo già fatto argo uso neo studio dea geometria anaitica, insieme ad atre trasformazioni quai e rotazioni, sono egate

Dettagli

Figura 1.1. La struttura illustrata in figura risulta essere, dall analisi cinematica, una struttura due volte iperstatica a nodi spostabili.

Figura 1.1. La struttura illustrata in figura risulta essere, dall analisi cinematica, una struttura due volte iperstatica a nodi spostabili. TEMI ESAME Esercizio 1 Tema d esame de 1/09/1998 Si consideri a struttura iustrata in figura, con EJ costante. I vaore de azione concentrata F è pari a: Figura 1.1 1 F p 4 La struttura iustrata in figura

Dettagli

Le due fenditure dell interferometro si comportano come piccole sorgenti, di intensità rispettivamente pari a I 1 = α 2 I o ; I 2 = β 2 I o.

Le due fenditure dell interferometro si comportano come piccole sorgenti, di intensità rispettivamente pari a I 1 = α 2 I o ; I 2 = β 2 I o. Prva i stituzini i Fisica ella Materia 7.06.06 sercizi Un na M piana ce prcee nel vut, in irezine ẑ, è escritta al camp elettric (figura ): r z,t r r ep i kz t cn ˆ ( ) [ ( )] a) Determinare la lungezza

Dettagli

Basi matematiche per il Machine Learning

Basi matematiche per il Machine Learning Basi matematiche per il Machine Learning Corso di AA, anno 2017/18, Padova Fabio Aiolli 04 Ottobre 2017 Fabio Aiolli Basi matematiche per il Machine Learning 04 Ottobre 2017 1 / 14 Probabilità Un esperimento

Dettagli

Approssimazione numerica

Approssimazione numerica Approssimazione numerica Laboratorio di programmazione e calcolo (Chimica e Tecnologie chimiche) Pierluigi Amodio Dipartimento di Matematica Università di Bari Approssimazione numerica p.1/10 Problema

Dettagli

Sistemi Intelligenti I sistemi lineari, i non-lineare

Sistemi Intelligenti I sistemi lineari, i non-lineare Sistemi Intelligenti I sistemi lineari, Tecniche di base per l ottimizzazione i non-lineare Alberto Borghese Università degli Studi di Milano Laboratorio di Sistemi Intelligenti Applicati (AIS-Lab) Dipartimento

Dettagli

Cap. 6 Proprietà Strutturali dei Modelli LTI

Cap. 6 Proprietà Strutturali dei Modelli LTI Cap. 6 Prprieà Sruurali dei Mdelli LI Nell ambi dell sudi dei mdelli LI, sn di nevle ineresse praic i segueni re prblemi. 1) Si cnsideri il sisema LI nell sa iniziale x 0 all isane iniziale 0 = 0. Si desidera

Dettagli

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione n. (es di ingresso). Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come 2. L argomeno, espresso in radiani,

Dettagli

La cinematica Inversa

La cinematica Inversa La cinematica Inversa ro. Alberto Borghese N.B.: Il diritto di scaricare questo ile è riservato solamente agli studenti regolarmente iscritti al corso di Animaione Digitale. A.A. 4-5 /34 Riassunto La cinematica

Dettagli

Formulario di Elettronica per l informatica A cura di: Christian Marongiu - Andrea Leonardi - Giovanni Cabiddu Linee di trasmissione

Formulario di Elettronica per l informatica A cura di: Christian Marongiu - Andrea Leonardi - Giovanni Cabiddu Linee di trasmissione + A G B Frmulari di Elernica per l infrmaica A cura di: Chrisian Marngiu - Andrea enardi - Givanni Cabiddu inee di rasmissine Z G C dx d ( x) ( + jω) ( x) dx d( x) ( G+ jωc) ( x) dx Csani primarie per

Dettagli

APPROFONDIMENTI SULLA TEORIA DEL CONSUMO AGGREGATO

APPROFONDIMENTI SULLA TEORIA DEL CONSUMO AGGREGATO Moduo 8a 1 APPROFONDIMENTI SULLA TEORIA DEL CONSUMO AGGREGATO 1. Iroduzioe 2. La eoria de cosumo di Dueseberry 3. La eoria de cico viae di Modigiai 2 1. Iroduzioe Dae esperieze dei maggiori sisemi macroecoomici,

Dettagli

(c) Determinare per quali valori di h la varietà lineare delle soluzioni del sistema ha dimensione 2:

(c) Determinare per quali valori di h la varietà lineare delle soluzioni del sistema ha dimensione 2: CORSO DI GEOMETRIA E ALGEBRA Cognome e Nome: Corso di Laurea: 8 gennaio 6 Maricola: Anno di corso: x. (6 p) Si consideri il sisema lineare AX = B, dovex = @ z A è i l v e o r e d e l l e incognie, A e

Dettagli

(b) Determinare l equazione parametrica della retta r passante per O e ortogonale

(b) Determinare l equazione parametrica della retta r passante per O e ortogonale SCRIVERE IN MODO LEGGIBILE NOME E COGNOME! CORSO DI GEOMETRIA E ALGEBRA Cognome: Nome: 6 febbraio 8 Maricola: Corso di Laurea: (8 p) Si fissi un riferimeno caresiano R(O î ĵ ˆk) nello spaio euclideo Si

Dettagli

GEOMETRIA svolgimento di uno scritto del 12 Gennaio 2011

GEOMETRIA svolgimento di uno scritto del 12 Gennaio 2011 GEOMETRIA svolgimeno di uno scrio del Gennaio ) Trovare una base per lo spaio delle soluioni del seguene sisema omogeneo: + + 9 + 6. Il sisema può essere scrio in forma mariciale nel modo seguene : 9 6

Dettagli

A.A. 2016/17 Graduatoria corso di laurea magistrale a ciclo unico in Giurisprudenza

A.A. 2016/17 Graduatoria corso di laurea magistrale a ciclo unico in Giurisprudenza 1 12/03/1997 I.M. 33,03 Idoneo ammesso/a 2 11/06/1997 B.F. 33,01 Idoneo ammesso/a 3 02/02/1998 T.A. 32,75 Idoneo ammesso/a 4 09/04/1997 B.M. 32,75 Idoneo ammesso/a 5 05/03/1998 M.S. 32,74 Idoneo ammesso/a

Dettagli

Verifica di Ipotesi. Verifica di Ipotesi Statistica

Verifica di Ipotesi. Verifica di Ipotesi Statistica Verifica di Ipesi Verifica di Ipesi Saisica Prf. Claudi Capiluppi - Faclà di Scienze della Frmazine - A.A. 27/8 La prima csa da capire è perché serva la saisica per verificare una ipesi Una ipesi scienifica

Dettagli

SEGNALI COMPLESSI: MODULAZIONE IN FASE E QUADRATURA. 1 Fondamenti Segnali e Trasmissione

SEGNALI COMPLESSI: MODULAZIONE IN FASE E QUADRATURA. 1 Fondamenti Segnali e Trasmissione SEGNALI COMPLESSI: MODULAZIONE IN FASE E QUADRATURA Fndameni Segnali e Trasmissine Perche si uilizza la rappresenazine cmplessa In naura esisn sl segnali reali, uavia e pssibile pensare a segnali che abbian

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I Corso di aurea in Matematica - Anno Accademico 203/4 FM20 - Fisica Matematica I Secondo appeo scritto [7-2-204]. (0 punti. Si consideri i sistema ineare { ẋ = 3x + ( + αy + ẏ = αx + 2y con α R.. Si discuta

Dettagli

Sistemi Intelligenti I sistemi lineari. Sommario

Sistemi Intelligenti I sistemi lineari. Sommario Sistemi Intelligenti I sistemi lineari Alberto Borghese Università degli Studi di Milano Laboratorio di Sistemi Intelligenti Applicati (AIS-Lab) Dipartimento di Scienze dell Informazione borghese@dsiunimiit

Dettagli

Argomenti della lezione: Campionamento Stima Distribuzione campionaria Campione Popolazione Sottoinsieme degli elementi (o universo) dell '

Argomenti della lezione: Campionamento Stima Distribuzione campionaria Campione Popolazione Sottoinsieme degli elementi (o universo) dell ' Lezione 2 Argomenti della lezione: La statistica inferenziale: concetti di base Campionamento Stima Distribuzione campionaria Popolazione (o universo) Insieme di tutti gli elementi cui si rivolge il ricercatore

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Tema d esame - 09-016 Esercizio 1. I sistema in figura, posto ne piano verticae, è costituito da un disco di raggio R, massa M e momento d inerzia baricentrico J che rotoa

Dettagli

CITTA' DI ALGHERO PROVINCIA DI SASSARI - SETTORE V - QUALITA' DELLA VITA II AMBITO POLITICHE DI AFFIANCAMENTO E DI SOSTEGNO ALLE FAMIGLIE

CITTA' DI ALGHERO PROVINCIA DI SASSARI - SETTORE V - QUALITA' DELLA VITA II AMBITO POLITICHE DI AFFIANCAMENTO E DI SOSTEGNO ALLE FAMIGLIE 1 A.N. 01/01/1958 11 2 A.F. 07/05/1966 13 3 A.C. 07/10/1941 17 4 A.S. 05/12/1987 11 5 A.A. 14/03/1978 11 6 A.T. 22/12/1959 11 7 A.D. 18/09/1983 10 8 A.C. 17/06/1941 17 9 A.M. 11/05/1975 11 10 B.A. 15/08/1972

Dettagli

Testo della prova d'esame (A) con gli assi, eventuali asintoti, monotonia ed eventuali estremi. Dopo aver verificato che

Testo della prova d'esame (A) con gli assi, eventuali asintoti, monotonia ed eventuali estremi. Dopo aver verificato che PPELLO ORDINRIO: quesiti n. / / 5 / 6 / 7 / 0 COMPITINO : quesiti n. / / / / 5 COMPITINO B: quesiti n. 6 / 7 / 8 / 9 / 0 / / QUESITO ( /7) Studiare la funzine f Test della prva d'esame () determinand esplicitamente

Dettagli

MATEMATICA PER L ELABORAZIONE DEI SEGNALI a.a

MATEMATICA PER L ELABORAZIONE DEI SEGNALI a.a MATEMATICA PER L ELABORAZIONE DEI SEGNALI a.a. 2008.09 Crs inegra cn Teria dei Segnali Maredì 8,30-11,30 Mercledì 8,30-10,30 Givedì 8,30-10,30 Esame del crs inegra: è cmplea quand si è supera sia sia Maemaica

Dettagli

Risultati simulazione test di accesso per l ammissione ai corsi di Laurea Triennale in Ingegneria

Risultati simulazione test di accesso per l ammissione ai corsi di Laurea Triennale in Ingegneria per Area del Sapere I 80262EG 50,50 8,75 3,75 18,75 15,50 3,75 80275LM 39,75 8,50 6,25 1 1 4,00 83803RF 34,25 8,00 13,25 9,50 3,50 82832VA 30,25 80264LN 25,75 80259ZA 25,00 9,25 7,75 1 3,25 8,50 1 5,25

Dettagli

Richiami di probabilità e statistica

Richiami di probabilità e statistica Richiami di probabilità e statistica Una variabile casuale (o aleatoria) X codifica gli eventi con entità numeriche x ed è caratterizzata dalla funzione di distribuzione di probabilità P(x) : P(x)=Pr ob[x

Dettagli

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione PARTE A A. Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come A2. L argomeno, espresso in radiani, del

Dettagli

Università di Pisa. Esame di SCIENZA DELLE COSTRUZIONI I Corso di Laurea in Ingegneria Civile, Ambientale e Edile

Università di Pisa. Esame di SCIENZA DELLE COSTRUZIONI I Corso di Laurea in Ingegneria Civile, Ambientale e Edile Università di Pisa Esame di SCIENZA DELLE COSTRUZIONI I Corso di Laurea in Ingegneria Civie, Ambientae e Edie Esame di SCIENZA DELLE COSTRUZIONI - Parte I Corso di Laurea in Ingegneria Aerospaziae Corso

Dettagli

Verifica di Ipotesi. Verifica di Ipotesi Statistica

Verifica di Ipotesi. Verifica di Ipotesi Statistica Verifica di Ipesi Verifica di Ipesi Saisica Prf. Claudi Capiluppi - Faclà di Scienze della Frmazine - A.A. 26/7 La prima csa da capire è perché serva la saisica per verificare una ipesi Una ipesi scienifica

Dettagli

6.1! "! # " # $ % 6.2

6.1! ! #  # $ % 6.2 6.1 " # "#$% 6. Dispense Comuniazioni Elettrihe, Copyright 00 OCG, www.optom.polito.it, R. Gaudino 6.3 j t s( t) = Re s ( t) e π { } ~ jϑ( t ) s ( t ) = A e " s( t) = A os(π t + ϑ( t)) Dispense Comuniazioni

Dettagli

UNIVERSITA DEGLI STUDI DI SALERNO FACOLTA DI INGEGNERIA

UNIVERSITA DEGLI STUDI DI SALERNO FACOLTA DI INGEGNERIA UNIVERSIT EGLI STUI I SLERNO FOLT I INGEGNERI orso di Laurea Magisrae in Ingegneria ivie e Ingegneria ivie per mbiene ed i Terriorio Prova scria de esame di SIENZ ELLE OSTRUZIONI II ocene: do. ing. Francesco

Dettagli

Catasto dei Fabbricati - Situazione al 24/07/ Comune di TRIESTE (L424) - < Sez.Urb.: Q - Foglio: 36 - Particella: 4099/1 - Subalterno: 5 >

Catasto dei Fabbricati - Situazione al 24/07/ Comune di TRIESTE (L424) - < Sez.Urb.: Q - Foglio: 36 - Particella: 4099/1 - Subalterno: 5 > Totale schede: 33 - Formato di acquisizione: A4(210x297) - Formato stampa richiesto: A3(297x420) Totale schede: 33 - Formato di acquisizione: A4(210x297) - Formato stampa richiesto: A3(297x420) Totale

Dettagli

Totale schede: 26 - Formato di acquisizione: A3(297x420) - Formato stampa richiesto: A4(210x297)

Totale schede: 26 - Formato di acquisizione: A3(297x420) - Formato stampa richiesto: A4(210x297) Totale schede: 26 - Formato di acquisizione: A3(297x420) - Formato stampa richiesto: A4(210x297) Totale schede: 26 - Formato di acquisizione: A3(297x420) - Formato stampa richiesto: A4(210x297) Totale

Dettagli

La cinematica Inversa

La cinematica Inversa La cinematica Inversa ro. Alberto Borghese N.B.: Il diritto di scaricare questo ile è riservato solamente agli studenti regolarmente iscritti al corso di Robotica ed Animaione Digitale. A.A. 25-26 /35

Dettagli

Medie statistiche Processi stazionari Trasformazioni di processi casuali Ergodicità di processi WSS Analisi spettrale di processi WSS

Medie statistiche Processi stazionari Trasformazioni di processi casuali Ergodicità di processi WSS Analisi spettrale di processi WSS Teoria dei segnali Unià 4 Teoria dei processi casuali a empo coninuo Teoria dei processi casuali a empo coninuo Medie saisiche Processi sazionari Trasformazioni di processi casuali Ergodicià di processi

Dettagli

DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE

DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE U N I V E R S I T À D E G L I S T U D I D I P I S A DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE Cmunicazini numeriche Esercizi su sistemi di variabili aleatrie-e sui prcessi stcastici Sistemi di variabili

Dettagli

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Laurea in Ingegneria Meccatronica A.A. 2010 2011 n-dimensionali Riepilogo. Gli esiti di un esperimento aleatorio

Dettagli

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura)

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura) Soluzione della prova scritta di Analisi Matematica II del 5 Aprile 009 Ingegneria Edile e Architettura x. Calcolare J = ds essendo γ la curva ottenuta intersecando γ + y il cilindro di equazione x + y

Dettagli

SEGNALI COMPLESSI: MODULAZIONE IN FASE E QUADRATURA

SEGNALI COMPLESSI: MODULAZIONE IN FASE E QUADRATURA SEGNALI COMPLESSI: MODULAZIONE IN FASE E QUADRATURA Fndameni di segnali Fndameni e rasmise TLC Perche si uilizza la rappresenazine cmplessa In naura esisn sl segnali reali, uavia e pssibile pensare a segnali

Dettagli

Elenco candidati preselezione - Comune di Padova-4

Elenco candidati preselezione - Comune di Padova-4 CONCORSO PUBBLICO, PER ESAMI, A TEMPO INDETERMINATO PER N. 28 POSTI DI EDUCATORE ASILO NIDO DI CUI N. 4 PART-TIME, CATEGORIA C ELENCO CANDIDATI CHE DEVONO SOSTENERE LA PRESELEZIONE IL GIORNO 1 AGOSTO 2019

Dettagli

Effetto di carichi distribuiti

Effetto di carichi distribuiti Effetto di carichi distribuiti In acune appicazioni non si può più considerare carichi appicati mediante forze concentrate per a determinazione dee azioni interne. Si pensi a peso proprio (soai, bracci

Dettagli

F. Piacentini - Roma1. F. Piacentini - Roma1. Il cielo a microonde spettro di potenza angolare. Mappe della radiazione di fondo cosmico (CMB)

F. Piacentini - Roma1. F. Piacentini - Roma1. Il cielo a microonde spettro di potenza angolare. Mappe della radiazione di fondo cosmico (CMB) Lo spettro di potenza angoare dea radiazione di fondo cosmica Lo spettro di potenza angoare dea radiazione di fondo cosmica F. Piacentini - Roma F. Piacentini - Roma Page Mappe dea radiazione di fondo

Dettagli

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese Università degli Studi di Milano Laboratory of Applied Intelligent Systems (AIS-Lab) Dipartimento di Informatica borghese@di.unimi.it

Dettagli

Affidabilità dei sistemi

Affidabilità dei sistemi dei sisemi Un sisema (o uno qualsiasi dei suoi componeni) può essere soggeo a sress casuali. Es: un fusibile in un circuio; una rave di acciaio soo carico; l ala di un aereo soo l influenza di forze Collasso

Dettagli

SEGNALI PERIODICI, SEQUENZE, TRASFORMATA DISCRETA DI FOURIER. 1 Fondamenti Segnali e Trasmissione

SEGNALI PERIODICI, SEQUENZE, TRASFORMATA DISCRETA DI FOURIER. 1 Fondamenti Segnali e Trasmissione SEGALI PERIODICI, SEQUEZE, RASFORMAA DISCREA DI FOURIER Fndamenti Segnali e rasmissine Rappresentazine dei segnali peridii () Un segnale peridi n perid pu essere rappresentat me smma di espnenziali mplessi

Dettagli

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e Meccanica, Prof. P. Mannucci

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e Meccanica, Prof. P. Mannucci Universià degli Sudi di Padova Facolà di Ingegneria Laurea in Ingegneria Gesionale e Meccanica, Prof. P. Mannucci Soluzioni degli esercizi di auoverifica.. Inegrali di superficie.. Dae la superficie Vicenza

Dettagli

METODI PER LA STIMA DELLE PORTATE DI PIENA

METODI PER LA STIMA DELLE PORTATE DI PIENA METODI PER LA STIMA DELLE PORTATE DI PIENA METODO STATISTICO DIRETTO: analisi saisica di porae massime annuali applicabile solo in prossimià di sezioni fluviali con misure di poraa disponibili su moli

Dettagli

OPERAZIONI SU SPAZI DI HILBERT. Nel seguito introdurremo i concetti di prodotto diretto e somma diretta di due spazi di Hilbert.

OPERAZIONI SU SPAZI DI HILBERT. Nel seguito introdurremo i concetti di prodotto diretto e somma diretta di due spazi di Hilbert. 2/7 OPERAZIONI SU SPAZI DI HILBERT 08/09 1 OPERAZIONI SU SPAZI DI HILBERT Dati due spazi di Hibert H (1) e H (2) si possono definire su di essi operazioni i cui risutato è un nuovo spazio di Hibert H che

Dettagli

1) Scrivere le espressioni lagrangiane delle energie cinetica e potenziale e usarle per scrivere le equazioni di Lagrange per il sistema.

1) Scrivere le espressioni lagrangiane delle energie cinetica e potenziale e usarle per scrivere le equazioni di Lagrange per il sistema. 7 si può discutere come quea di un pendoo sempice con punto di equiibrio stabie ϕ e α quando δ < e come quea di un pendoo inverso cioè con a gravità verso ato invece che verso i basso e punto di equiibrio

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fndamenti di Autmatica Allievi in Ingegneria Elettrica - Prf. P. Claneri Appell del Lugli 4 Cgnme Nme N di Matricla Firma Durante la prva nn è cnsentita la cnsultazine di libri, dispense e quaderni. Quest

Dettagli

SCUOLE ITALIANE ALL ESTERO (EUROPA) SESSIONE ORDINARIA 2013 QUESITO 1

SCUOLE ITALIANE ALL ESTERO (EUROPA) SESSIONE ORDINARIA 2013 QUESITO 1 www.matefilia.it SCUOLE ITALIANE ALL ESTERO (EUROPA) SESSIONE ORDINARIA 2013 QUESITO 1 Dat un triangl ABC, si indichi cn M il punt medi del lat BC. Si dimstri che la mediana AM è il lug gemetric dei punti

Dettagli

TECNICHE DI ANALISI DEI DATI ANOVA

TECNICHE DI ANALISI DEI DATI ANOVA TECNICE DI ANALISI DEI DATI AA 06/07 PRO. V.P. SENESE Questi materiali sn dispnibili per tutti gli studenti al seguente indirizz: https://g.gl/rwabbd Università della Campania SUN Dipartiment di Psiclgia

Dettagli

Processi stocastici e affidabilità

Processi stocastici e affidabilità Processi socasici e affidabilià ω Dao un esperimeno casuale, si assuma di associare ad ogni ( ω ) esio ω una funzione x, di. Risula così definio un insieme di funzioni del empo, deo processo socasico,

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Probabilià e Saisica 26-7 PBaldi, GTerenzi Tuorao 5, 2 aprile 27 Corso di Laurea in Maemaica Esercizio Dire se esisono delle cosani c ali che le funzioni a) f (x)

Dettagli

Obiettivi dell unità didattica

Obiettivi dell unità didattica Indici di posizione Corso di STATISTICA Prof. Roberta Siciiano Ordinario di Statistica, Università di apoi Federico II Professore suppente, Università dea Basiicata a.a. 2011/2012 Prof. Roberta Siciiano

Dettagli

Geometria analitica del piano pag 1 Adolfo Scimone

Geometria analitica del piano pag 1 Adolfo Scimone Geomeria analiica del piano pag Adolfo Scimone GEOMETRIA ANALITICA Lo scopo della geomeria analiica è quello di individuare i puni di una rea, di un piano, dello spazio, o più in generale gli eni geomerici

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Tema d esame 18 febbraio 2014 v, a A g F t P O M, J G f s G R, J P Esercizio 1 I sistema in figura, posto ne piano verticae, è costituito daa trave AG, a cui estremo è

Dettagli

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1

Dettagli

PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA

PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA PROVINCIA DI VERONA RENDICONTO ESERCIZIO 2012 ELENCO DEI RESIDUI ATTIVI E PASSIVI DISTINTI PER ANNO DI PROVENIENZA 1 2 RIEPILOGO GENERALE RESIDUI ATTIVI CONSERVATI 3 4 Pgm. CPA0099R ***-----------------------------------------------------------***

Dettagli

DIDATTICA DI DISEGNO E DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO DUE

DIDATTICA DI DISEGNO E DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA ING. LAURA SGARBOSSA MODULO DUE DIDTTIC DI DISEGNO E DI PROGETTZIONE DELLE COSTRUZIONI PROF. CRELO ORN ING. LUR SGRBOSS ODULO DUE IL PROBLE DELL TRVE DI DE SINT VENNT (PRTE B) ODULI PER LO SPECILIZZNDO oduo 0 IN QUESTO ODULO: IL PROBLE

Dettagli

Caratterizzazione degli autovalori (cfr. Lez. VII, punto 2). Gli autovalori di A sono le radici del polinomio caratteristico det(a λi) di A.

Caratterizzazione degli autovalori (cfr. Lez. VII, punto 2). Gli autovalori di A sono le radici del polinomio caratteristico det(a λi) di A. Esercizi III Priima di dare la risoluzione dei segueni esercizi su auoveori, auovalori, diagonalizzabilià e diagonalizzazione, ricordiamo alcune definizioni, eoremi e fai su queso argomeno Sia A una marice

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Variabili casuali multidimensionali Variabili casuali multidimensionali: k-ple ordinate di variabili casuali unidimensionali definite sullo stesso spazio di probabilità X = (X 1,..., X k ) Funzione di

Dettagli

Lezione 7 Metodo dei Minimi Quadra1

Lezione 7 Metodo dei Minimi Quadra1 Lezione 7 Metodo dei Minimi Quadra1 S1matori di Minimi Quadra1 q Supponiamo di misurare due variabili casuali X e Y: ad ogni valore di X misuro il valore di Y. Per esempio negli istan1 x 1, x 2,, x n misuro

Dettagli

Teoremi di Stokes, della divergenza e di Gauss Green.

Teoremi di Stokes, della divergenza e di Gauss Green. Matematica 3 Esercitazioni eoremi di tokes, della divergenza e di Gauss Green. Esercizio 1 : Calcolare l area del dominio avente per frontiera la linea chiusa γ di equazioni parametriche x (1 t) t γ :,

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA SISTEMI LTI Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale complesso, l

Dettagli

Formulario. Coordinate del punto medio M di un segmento di estremi A(x 1, y 1 ) e B(x 2, y 2 ): x1 + x y 2

Formulario. Coordinate del punto medio M di un segmento di estremi A(x 1, y 1 ) e B(x 2, y 2 ): x1 + x y 2 Formulario Componenti di un vettore di estremi A(x 1, y 1 e B(x 2, y 2 B A = AB = (x2 x 1 i + (y 2 y 1 j Distanza tra due punti A(x 1, y 1 e B(x 2, y 2 : AB = (x 2 x 1 2 + (y 2 y 1 2 Coordinate del punto

Dettagli

calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1), calcolare rot ( E ), determinare un potenziale U(x, y, z) per E.

calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1), calcolare rot ( E ), determinare un potenziale U(x, y, z) per E. ANALISI VETTORIALE Soluzione esonero.1. Esercizio. Assegnato il campo E (x, y, z) = x(y + z ), y(x + z ), z(x + y ) } 1111 calcolare il lavoro di E lungo il segmento da A = ( 1, 1, 1) a B = (1, 1, 1),

Dettagli

Esercizi risolti Teorema del CAMPIONAMENTO

Esercizi risolti Teorema del CAMPIONAMENTO Esercizi risoli Teorema del CAMPIONAMENTO Esercizio 1 Si considerino 2 segnali a banda limiaa x1( ) con banda B 1 e x2( ) con banda B 2. Si cosruisca il segnale y () come: y () = x1() x2() Volendo applicare

Dettagli

graduatoria FASCIA 1 estrazione al 28/06/2018

graduatoria FASCIA 1 estrazione al 28/06/2018 graduatoria FASCIA 1 estrazione al 28/06/2018 Nome POSIZIONE ESITO STRUTTURA BC 1 AMMESSO STACCIABURATTA (nido 7.30/16.30) BC 2 AMMESSO STACCIABURATTA (nido 7.30-13.30) AC 3 AMMESSO LA GIRANDOLA (7.30-16.30)

Dettagli

1 Eventi. Operazioni tra eventi. Insiemi ed eventi. Insieme dei casi elementari. Definizione di probabilità.

1 Eventi. Operazioni tra eventi. Insiemi ed eventi. Insieme dei casi elementari. Definizione di probabilità. Quella che segue e la versione compatta delle slides usate a lezioni. NON sono appunti. Come testo di riferimento si può leggere Elementi di calcolo delle probabilità e statistica Rita Giuliano. Ed ETS

Dettagli

Computazione per l interazione naturale: Regressione probabilistica

Computazione per l interazione naturale: Regressione probabilistica Computazione per l interazione naturale: Regressione probabilistica Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2018.html

Dettagli

PROGETTO BUSINESS TRASFORMATIO"N TERRITORIALE

PROGETTO BUSINESS TRASFORMATION TERRITORIALE Cnsegnat OO.SS. 1 diembre 018 PROGETTO BUSINESS TRASFORMATIO"N TERRITORIALE.. ORGANIZZAZIONE MACRO AREA MERCATO PRIVATI Rma diembre 018 Risrse Umane e Organizzazine ,.f.;.';: 0 "J i... i=:: t: E - L....

Dettagli

Esercizi. 1, v 2 = 1. , v 3 = si determini un vettore non nullo appartenente a span{v 1, v 2 } span{v 3, v 4 }

Esercizi. 1, v 2 = 1. , v 3 = si determini un vettore non nullo appartenente a span{v 1, v 2 } span{v 3, v 4 } Esercizi Spazi veoriali. Nello spazio veoriale R 3 si considerino i veori v, v, v 3 si deermini un veore non nullo apparenene a span{v, v } span{v 3, v 4 }, v 4. Si deermini per quali valori del paramero

Dettagli

Trasformata di Fourier (1/7)

Trasformata di Fourier (1/7) 1 rasormaa di Fourier (1/7 + De: Un segnale x( è impulsivo se x ( d < + F : + j X( x( e π d F{ x( }, < < + F -1 + jπ 1 : x( X( e d F { X( }, < < + X( è una rappresenazione di x( nel dominio della requenza

Dettagli

approfondimento Lezione 4. Scomposizione canonica di Kalman F. Previdi - Controlli Automatici - Lez. 4 1

approfondimento Lezione 4. Scomposizione canonica di Kalman F. Previdi - Controlli Automatici - Lez. 4 1 Lezine. Scmpsizine cannica di Kalman F. Previdi - Cntrlli utmatici - Lez. Schema della lezine. Intrduzine alle scmpsizini canniche. Scmpsizine di raggiungibilità. Scmpsizine di sservabilità. Scmpsizine

Dettagli